Properties

Label 28.8.a
Level $28$
Weight $8$
Character orbit 28.a
Rep. character $\chi_{28}(1,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $32$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 28 = 2^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 28.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(32\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(28))\).

Total New Old
Modular forms 31 4 27
Cusp forms 25 4 21
Eisenstein series 6 0 6

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)FrickeDim
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(2\)
Minus space\(-\)\(2\)

Trace form

\( 4 q - 252 q^{5} + 524 q^{9} + 3936 q^{11} - 4340 q^{13} - 3376 q^{15} - 13440 q^{17} + 23408 q^{19} - 9604 q^{21} + 23280 q^{23} + 39300 q^{25} - 105840 q^{27} + 26688 q^{29} - 15680 q^{31} - 5600 q^{33}+ \cdots + 23566784 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(28))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7
28.8.a.a 28.a 1.a $2$ $8.747$ \(\Q(\sqrt{3529}) \) None 28.8.a.a \(0\) \(-14\) \(42\) \(686\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-7-\beta )q^{3}+(21-3\beta )q^{5}+7^{3}q^{7}+\cdots\)
28.8.a.b 28.a 1.a $2$ $8.747$ \(\Q(\sqrt{1009}) \) None 28.8.a.b \(0\) \(14\) \(-294\) \(-686\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(7-\beta )q^{3}+(-147+11\beta )q^{5}-7^{3}q^{7}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(28))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(28)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)