Defining parameters
Level: | \( N \) | \(=\) | \( 28 = 2^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 28.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(28))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 31 | 4 | 27 |
Cusp forms | 25 | 4 | 21 |
Eisenstein series | 6 | 0 | 6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(2\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(2\) |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(28))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | |||||||
28.8.a.a | $2$ | $8.747$ | \(\Q(\sqrt{3529}) \) | None | \(0\) | \(-14\) | \(42\) | \(686\) | $-$ | $-$ | \(q+(-7-\beta )q^{3}+(21-3\beta )q^{5}+7^{3}q^{7}+\cdots\) | |
28.8.a.b | $2$ | $8.747$ | \(\Q(\sqrt{1009}) \) | None | \(0\) | \(14\) | \(-294\) | \(-686\) | $-$ | $+$ | \(q+(7-\beta )q^{3}+(-147+11\beta )q^{5}-7^{3}q^{7}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(28))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(28)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)