Defining parameters
Level: | \( N \) | = | \( 28 = 2^{2} \cdot 7 \) |
Weight: | \( k \) | = | \( 8 \) |
Nonzero newspaces: | \( 4 \) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(28))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 183 | 104 | 79 |
Cusp forms | 153 | 92 | 61 |
Eisenstein series | 30 | 12 | 18 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(28))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(28))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_1(28)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 1}\)