Properties

Label 28.8
Level 28
Weight 8
Dimension 92
Nonzero newspaces 4
Newform subspaces 6
Sturm bound 384
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 28 = 2^{2} \cdot 7 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 6 \)
Sturm bound: \(384\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(28))\).

Total New Old
Modular forms 183 104 79
Cusp forms 153 92 61
Eisenstein series 30 12 18

Trace form

\( 92 q - 3 q^{2} + 27 q^{3} - 3 q^{4} - 9 q^{5} + 332 q^{7} - 867 q^{8} - 5184 q^{9} + 9708 q^{10} + 10335 q^{11} - 13848 q^{12} - 31328 q^{13} - 19647 q^{14} + 15918 q^{15} + 47721 q^{16} - 9837 q^{17} + 25581 q^{18}+ \cdots - 95711028 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(28))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
28.8.a \(\chi_{28}(1, \cdot)\) 28.8.a.a 2 1
28.8.a.b 2
28.8.d \(\chi_{28}(27, \cdot)\) 28.8.d.a 2 1
28.8.d.b 24
28.8.e \(\chi_{28}(9, \cdot)\) 28.8.e.a 10 2
28.8.f \(\chi_{28}(3, \cdot)\) 28.8.f.a 52 2

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(28))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(28)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 1}\)