Properties

Label 28.6.e.b.9.2
Level $28$
Weight $6$
Character 28.9
Analytic conductor $4.491$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [28,6,Mod(9,28)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("28.9"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(28, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 28 = 2^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 28.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.49074695476\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{109})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 28x^{2} + 27x + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 9.2
Root \(-2.36008 + 4.08777i\) of defining polynomial
Character \(\chi\) \(=\) 28.9
Dual form 28.6.e.b.25.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.77985 - 3.08278i) q^{3} +(20.8209 - 36.0629i) q^{5} +(28.0000 - 126.582i) q^{7} +(115.164 - 199.470i) q^{9} +(-55.3768 - 95.9154i) q^{11} +179.135 q^{13} -148.232 q^{15} +(177.784 + 307.930i) q^{17} +(-977.981 + 1693.91i) q^{19} +(-440.061 + 138.979i) q^{21} +(-773.363 + 1339.50i) q^{23} +(695.479 + 1204.60i) q^{25} -1684.90 q^{27} +6273.94 q^{29} +(-3002.09 - 5199.77i) q^{31} +(-197.124 + 341.429i) q^{33} +(-3981.93 - 3645.31i) q^{35} +(4844.23 - 8390.44i) q^{37} +(-318.832 - 552.234i) q^{39} +10577.3 q^{41} +6716.00 q^{43} +(-4795.65 - 8306.31i) q^{45} +(-13620.4 + 23591.2i) q^{47} +(-15239.0 - 7088.59i) q^{49} +(632.855 - 1096.14i) q^{51} +(16339.7 + 28301.2i) q^{53} -4611.98 q^{55} +6962.63 q^{57} +(246.332 + 426.659i) q^{59} +(-20276.1 + 35119.3i) q^{61} +(-22024.8 - 20162.9i) q^{63} +(3729.75 - 6460.12i) q^{65} +(3844.07 + 6658.13i) q^{67} +5505.87 q^{69} +77879.3 q^{71} +(-36958.0 - 64013.1i) q^{73} +(2475.69 - 4288.02i) q^{75} +(-13691.7 + 4324.07i) q^{77} +(21966.6 - 38047.2i) q^{79} +(-24986.1 - 43277.1i) q^{81} +41194.2 q^{83} +14806.5 q^{85} +(-11166.7 - 19341.2i) q^{87} +(-32862.3 + 56919.1i) q^{89} +(5015.77 - 22675.2i) q^{91} +(-10686.5 + 18509.6i) q^{93} +(40724.9 + 70537.7i) q^{95} -68534.5 q^{97} -25509.7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 28 q^{3} - 42 q^{5} + 112 q^{7} - 124 q^{9} - 660 q^{11} - 1288 q^{13} + 3792 q^{15} + 210 q^{17} - 3724 q^{19} + 3794 q^{21} - 24 q^{23} - 2480 q^{25} + 2072 q^{27} + 11064 q^{29} - 2800 q^{31} - 13818 q^{33}+ \cdots + 338208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/28\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.77985 3.08278i −0.114177 0.197761i 0.803273 0.595611i \(-0.203090\pi\)
−0.917451 + 0.397850i \(0.869757\pi\)
\(4\) 0 0
\(5\) 20.8209 36.0629i 0.372456 0.645113i −0.617487 0.786581i \(-0.711849\pi\)
0.989943 + 0.141469i \(0.0451824\pi\)
\(6\) 0 0
\(7\) 28.0000 126.582i 0.215980 0.976398i
\(8\) 0 0
\(9\) 115.164 199.470i 0.473927 0.820866i
\(10\) 0 0
\(11\) −55.3768 95.9154i −0.137989 0.239005i 0.788746 0.614719i \(-0.210731\pi\)
−0.926735 + 0.375714i \(0.877397\pi\)
\(12\) 0 0
\(13\) 179.135 0.293982 0.146991 0.989138i \(-0.453041\pi\)
0.146991 + 0.989138i \(0.453041\pi\)
\(14\) 0 0
\(15\) −148.232 −0.170104
\(16\) 0 0
\(17\) 177.784 + 307.930i 0.149200 + 0.258422i 0.930932 0.365192i \(-0.118997\pi\)
−0.781732 + 0.623615i \(0.785663\pi\)
\(18\) 0 0
\(19\) −977.981 + 1693.91i −0.621508 + 1.07648i 0.367697 + 0.929946i \(0.380146\pi\)
−0.989205 + 0.146538i \(0.953187\pi\)
\(20\) 0 0
\(21\) −440.061 + 138.979i −0.217753 + 0.0687701i
\(22\) 0 0
\(23\) −773.363 + 1339.50i −0.304834 + 0.527988i −0.977224 0.212209i \(-0.931934\pi\)
0.672390 + 0.740197i \(0.265268\pi\)
\(24\) 0 0
\(25\) 695.479 + 1204.60i 0.222553 + 0.385473i
\(26\) 0 0
\(27\) −1684.90 −0.444801
\(28\) 0 0
\(29\) 6273.94 1.38531 0.692653 0.721271i \(-0.256442\pi\)
0.692653 + 0.721271i \(0.256442\pi\)
\(30\) 0 0
\(31\) −3002.09 5199.77i −0.561073 0.971806i −0.997403 0.0720199i \(-0.977055\pi\)
0.436331 0.899786i \(-0.356278\pi\)
\(32\) 0 0
\(33\) −197.124 + 341.429i −0.0315105 + 0.0545778i
\(34\) 0 0
\(35\) −3981.93 3645.31i −0.549444 0.502996i
\(36\) 0 0
\(37\) 4844.23 8390.44i 0.581728 1.00758i −0.413547 0.910483i \(-0.635710\pi\)
0.995275 0.0970996i \(-0.0309565\pi\)
\(38\) 0 0
\(39\) −318.832 552.234i −0.0335661 0.0581382i
\(40\) 0 0
\(41\) 10577.3 0.982686 0.491343 0.870966i \(-0.336506\pi\)
0.491343 + 0.870966i \(0.336506\pi\)
\(42\) 0 0
\(43\) 6716.00 0.553910 0.276955 0.960883i \(-0.410675\pi\)
0.276955 + 0.960883i \(0.410675\pi\)
\(44\) 0 0
\(45\) −4795.65 8306.31i −0.353034 0.611473i
\(46\) 0 0
\(47\) −13620.4 + 23591.2i −0.899384 + 1.55778i −0.0711012 + 0.997469i \(0.522651\pi\)
−0.828283 + 0.560310i \(0.810682\pi\)
\(48\) 0 0
\(49\) −15239.0 7088.59i −0.906706 0.421764i
\(50\) 0 0
\(51\) 632.855 1096.14i 0.0340705 0.0590119i
\(52\) 0 0
\(53\) 16339.7 + 28301.2i 0.799014 + 1.38393i 0.920259 + 0.391311i \(0.127978\pi\)
−0.121244 + 0.992623i \(0.538689\pi\)
\(54\) 0 0
\(55\) −4611.98 −0.205580
\(56\) 0 0
\(57\) 6962.63 0.283848
\(58\) 0 0
\(59\) 246.332 + 426.659i 0.00921277 + 0.0159570i 0.870595 0.492000i \(-0.163734\pi\)
−0.861382 + 0.507957i \(0.830401\pi\)
\(60\) 0 0
\(61\) −20276.1 + 35119.3i −0.697686 + 1.20843i 0.271580 + 0.962416i \(0.412454\pi\)
−0.969267 + 0.246012i \(0.920880\pi\)
\(62\) 0 0
\(63\) −22024.8 20162.9i −0.699133 0.640032i
\(64\) 0 0
\(65\) 3729.75 6460.12i 0.109495 0.189652i
\(66\) 0 0
\(67\) 3844.07 + 6658.13i 0.104618 + 0.181203i 0.913582 0.406655i \(-0.133305\pi\)
−0.808964 + 0.587858i \(0.799971\pi\)
\(68\) 0 0
\(69\) 5505.87 0.139220
\(70\) 0 0
\(71\) 77879.3 1.83348 0.916740 0.399484i \(-0.130811\pi\)
0.916740 + 0.399484i \(0.130811\pi\)
\(72\) 0 0
\(73\) −36958.0 64013.1i −0.811710 1.40592i −0.911667 0.410931i \(-0.865204\pi\)
0.0999567 0.994992i \(-0.468130\pi\)
\(74\) 0 0
\(75\) 2475.69 4288.02i 0.0508210 0.0880246i
\(76\) 0 0
\(77\) −13691.7 + 4324.07i −0.263167 + 0.0831125i
\(78\) 0 0
\(79\) 21966.6 38047.2i 0.395999 0.685891i −0.597229 0.802071i \(-0.703732\pi\)
0.993228 + 0.116180i \(0.0370650\pi\)
\(80\) 0 0
\(81\) −24986.1 43277.1i −0.423141 0.732902i
\(82\) 0 0
\(83\) 41194.2 0.656359 0.328179 0.944615i \(-0.393565\pi\)
0.328179 + 0.944615i \(0.393565\pi\)
\(84\) 0 0
\(85\) 14806.5 0.222282
\(86\) 0 0
\(87\) −11166.7 19341.2i −0.158170 0.273959i
\(88\) 0 0
\(89\) −32862.3 + 56919.1i −0.439767 + 0.761699i −0.997671 0.0682064i \(-0.978272\pi\)
0.557904 + 0.829905i \(0.311606\pi\)
\(90\) 0 0
\(91\) 5015.77 22675.2i 0.0634942 0.287044i
\(92\) 0 0
\(93\) −10686.5 + 18509.6i −0.128123 + 0.221916i
\(94\) 0 0
\(95\) 40724.9 + 70537.7i 0.462969 + 0.801885i
\(96\) 0 0
\(97\) −68534.5 −0.739571 −0.369786 0.929117i \(-0.620569\pi\)
−0.369786 + 0.929117i \(0.620569\pi\)
\(98\) 0 0
\(99\) −25509.7 −0.261588
\(100\) 0 0
\(101\) 58679.2 + 101635.i 0.572375 + 0.991383i 0.996321 + 0.0856959i \(0.0273114\pi\)
−0.423946 + 0.905688i \(0.639355\pi\)
\(102\) 0 0
\(103\) 5409.51 9369.55i 0.0502418 0.0870213i −0.839811 0.542879i \(-0.817334\pi\)
0.890053 + 0.455858i \(0.150667\pi\)
\(104\) 0 0
\(105\) −4150.50 + 18763.5i −0.0367390 + 0.166089i
\(106\) 0 0
\(107\) −55200.1 + 95609.3i −0.466101 + 0.807311i −0.999250 0.0387102i \(-0.987675\pi\)
0.533149 + 0.846021i \(0.321008\pi\)
\(108\) 0 0
\(109\) −6130.59 10618.5i −0.0494238 0.0856045i 0.840255 0.542191i \(-0.182405\pi\)
−0.889679 + 0.456587i \(0.849072\pi\)
\(110\) 0 0
\(111\) −34487.9 −0.265680
\(112\) 0 0
\(113\) −122314. −0.901117 −0.450558 0.892747i \(-0.648775\pi\)
−0.450558 + 0.892747i \(0.648775\pi\)
\(114\) 0 0
\(115\) 32204.2 + 55779.4i 0.227075 + 0.393305i
\(116\) 0 0
\(117\) 20629.9 35732.1i 0.139326 0.241320i
\(118\) 0 0
\(119\) 43956.4 13882.2i 0.284547 0.0898648i
\(120\) 0 0
\(121\) 74392.3 128851.i 0.461918 0.800065i
\(122\) 0 0
\(123\) −18826.0 32607.5i −0.112200 0.194337i
\(124\) 0 0
\(125\) 188053. 1.07648
\(126\) 0 0
\(127\) −169073. −0.930174 −0.465087 0.885265i \(-0.653977\pi\)
−0.465087 + 0.885265i \(0.653977\pi\)
\(128\) 0 0
\(129\) −11953.5 20704.0i −0.0632440 0.109542i
\(130\) 0 0
\(131\) 188725. 326882.i 0.960842 1.66423i 0.240449 0.970662i \(-0.422705\pi\)
0.720393 0.693566i \(-0.243961\pi\)
\(132\) 0 0
\(133\) 187035. + 171224.i 0.916843 + 0.839337i
\(134\) 0 0
\(135\) −35081.3 + 60762.5i −0.165669 + 0.286947i
\(136\) 0 0
\(137\) −158315. 274209.i −0.720643 1.24819i −0.960742 0.277442i \(-0.910513\pi\)
0.240099 0.970748i \(-0.422820\pi\)
\(138\) 0 0
\(139\) −229447. −1.00727 −0.503634 0.863917i \(-0.668004\pi\)
−0.503634 + 0.863917i \(0.668004\pi\)
\(140\) 0 0
\(141\) 96968.9 0.410757
\(142\) 0 0
\(143\) −9919.90 17181.8i −0.0405665 0.0702632i
\(144\) 0 0
\(145\) 130629. 226257.i 0.515965 0.893678i
\(146\) 0 0
\(147\) 5270.48 + 59595.2i 0.0201167 + 0.227467i
\(148\) 0 0
\(149\) −78750.8 + 136400.i −0.290596 + 0.503326i −0.973951 0.226760i \(-0.927187\pi\)
0.683355 + 0.730086i \(0.260520\pi\)
\(150\) 0 0
\(151\) 73392.3 + 127119.i 0.261944 + 0.453700i 0.966758 0.255691i \(-0.0823031\pi\)
−0.704815 + 0.709392i \(0.748970\pi\)
\(152\) 0 0
\(153\) 81897.3 0.282840
\(154\) 0 0
\(155\) −250025. −0.835899
\(156\) 0 0
\(157\) 163742. + 283610.i 0.530166 + 0.918275i 0.999381 + 0.0351904i \(0.0112038\pi\)
−0.469215 + 0.883084i \(0.655463\pi\)
\(158\) 0 0
\(159\) 58164.3 100744.i 0.182458 0.316027i
\(160\) 0 0
\(161\) 147903. + 135400.i 0.449689 + 0.411674i
\(162\) 0 0
\(163\) −174093. + 301538.i −0.513231 + 0.888942i 0.486651 + 0.873596i \(0.338218\pi\)
−0.999882 + 0.0153459i \(0.995115\pi\)
\(164\) 0 0
\(165\) 8208.62 + 14217.7i 0.0234726 + 0.0406557i
\(166\) 0 0
\(167\) −547771. −1.51987 −0.759937 0.649996i \(-0.774770\pi\)
−0.759937 + 0.649996i \(0.774770\pi\)
\(168\) 0 0
\(169\) −339204. −0.913574
\(170\) 0 0
\(171\) 225257. + 390157.i 0.589099 + 1.02035i
\(172\) 0 0
\(173\) −91270.5 + 158085.i −0.231854 + 0.401583i −0.958354 0.285584i \(-0.907813\pi\)
0.726500 + 0.687167i \(0.241146\pi\)
\(174\) 0 0
\(175\) 171955. 54306.1i 0.424442 0.134046i
\(176\) 0 0
\(177\) 876.865 1518.78i 0.00210378 0.00364385i
\(178\) 0 0
\(179\) −68061.5 117886.i −0.158770 0.274998i 0.775655 0.631157i \(-0.217420\pi\)
−0.934425 + 0.356159i \(0.884086\pi\)
\(180\) 0 0
\(181\) 591381. 1.34175 0.670874 0.741571i \(-0.265919\pi\)
0.670874 + 0.741571i \(0.265919\pi\)
\(182\) 0 0
\(183\) 144354. 0.318640
\(184\) 0 0
\(185\) −201722. 349394.i −0.433336 0.750560i
\(186\) 0 0
\(187\) 19690.2 34104.4i 0.0411761 0.0713192i
\(188\) 0 0
\(189\) −47177.3 + 213279.i −0.0960680 + 0.434303i
\(190\) 0 0
\(191\) 220596. 382083.i 0.437536 0.757834i −0.559963 0.828517i \(-0.689185\pi\)
0.997499 + 0.0706837i \(0.0225181\pi\)
\(192\) 0 0
\(193\) −224188. 388304.i −0.433230 0.750376i 0.563920 0.825830i \(-0.309293\pi\)
−0.997149 + 0.0754539i \(0.975959\pi\)
\(194\) 0 0
\(195\) −26553.5 −0.0500076
\(196\) 0 0
\(197\) −542019. −0.995059 −0.497530 0.867447i \(-0.665759\pi\)
−0.497530 + 0.867447i \(0.665759\pi\)
\(198\) 0 0
\(199\) 98979.3 + 171437.i 0.177179 + 0.306883i 0.940913 0.338648i \(-0.109970\pi\)
−0.763734 + 0.645531i \(0.776636\pi\)
\(200\) 0 0
\(201\) 13683.7 23700.9i 0.0238899 0.0413785i
\(202\) 0 0
\(203\) 175670. 794168.i 0.299198 1.35261i
\(204\) 0 0
\(205\) 220229. 381448.i 0.366007 0.633943i
\(206\) 0 0
\(207\) 178127. + 308526.i 0.288938 + 0.500456i
\(208\) 0 0
\(209\) 216630. 0.343046
\(210\) 0 0
\(211\) 1.13658e6 1.75749 0.878745 0.477292i \(-0.158382\pi\)
0.878745 + 0.477292i \(0.158382\pi\)
\(212\) 0 0
\(213\) −138613. 240085.i −0.209342 0.362590i
\(214\) 0 0
\(215\) 139833. 242198.i 0.206307 0.357335i
\(216\) 0 0
\(217\) −742255. + 234417.i −1.07005 + 0.337940i
\(218\) 0 0
\(219\) −131559. + 227867.i −0.185358 + 0.321049i
\(220\) 0 0
\(221\) 31847.2 + 55161.0i 0.0438623 + 0.0759717i
\(222\) 0 0
\(223\) −497078. −0.669364 −0.334682 0.942331i \(-0.608629\pi\)
−0.334682 + 0.942331i \(0.608629\pi\)
\(224\) 0 0
\(225\) 320377. 0.421896
\(226\) 0 0
\(227\) −467270. 809335.i −0.601870 1.04247i −0.992538 0.121938i \(-0.961089\pi\)
0.390668 0.920532i \(-0.372244\pi\)
\(228\) 0 0
\(229\) −526030. + 911110.i −0.662860 + 1.14811i 0.317001 + 0.948425i \(0.397324\pi\)
−0.979861 + 0.199682i \(0.936009\pi\)
\(230\) 0 0
\(231\) 37699.3 + 34512.4i 0.0464840 + 0.0425545i
\(232\) 0 0
\(233\) −207291. + 359039.i −0.250145 + 0.433263i −0.963565 0.267473i \(-0.913811\pi\)
0.713421 + 0.700736i \(0.247145\pi\)
\(234\) 0 0
\(235\) 567179. + 982382.i 0.669962 + 1.16041i
\(236\) 0 0
\(237\) −156388. −0.180856
\(238\) 0 0
\(239\) 481799. 0.545596 0.272798 0.962071i \(-0.412051\pi\)
0.272798 + 0.962071i \(0.412051\pi\)
\(240\) 0 0
\(241\) −14480.5 25081.0i −0.0160598 0.0278165i 0.857884 0.513844i \(-0.171779\pi\)
−0.873944 + 0.486027i \(0.838446\pi\)
\(242\) 0 0
\(243\) −293659. + 508632.i −0.319027 + 0.552570i
\(244\) 0 0
\(245\) −572925. + 401971.i −0.609793 + 0.427839i
\(246\) 0 0
\(247\) −175190. + 303439.i −0.182712 + 0.316467i
\(248\) 0 0
\(249\) −73319.4 126993.i −0.0749412 0.129802i
\(250\) 0 0
\(251\) 553855. 0.554896 0.277448 0.960741i \(-0.410511\pi\)
0.277448 + 0.960741i \(0.410511\pi\)
\(252\) 0 0
\(253\) 171305. 0.168256
\(254\) 0 0
\(255\) −26353.3 45645.2i −0.0253796 0.0439587i
\(256\) 0 0
\(257\) −939844. + 1.62786e6i −0.887612 + 1.53739i −0.0449211 + 0.998991i \(0.514304\pi\)
−0.842691 + 0.538398i \(0.819030\pi\)
\(258\) 0 0
\(259\) −926441. 848124.i −0.858160 0.785615i
\(260\) 0 0
\(261\) 722534. 1.25147e6i 0.656534 1.13715i
\(262\) 0 0
\(263\) 541685. + 938226.i 0.482900 + 0.836408i 0.999807 0.0196337i \(-0.00625001\pi\)
−0.516907 + 0.856042i \(0.672917\pi\)
\(264\) 0 0
\(265\) 1.36083e6 1.19039
\(266\) 0 0
\(267\) 233959. 0.200846
\(268\) 0 0
\(269\) −554068. 959673.i −0.466855 0.808617i 0.532428 0.846475i \(-0.321280\pi\)
−0.999283 + 0.0378586i \(0.987946\pi\)
\(270\) 0 0
\(271\) 161004. 278867.i 0.133172 0.230660i −0.791726 0.610877i \(-0.790817\pi\)
0.924898 + 0.380216i \(0.124150\pi\)
\(272\) 0 0
\(273\) −78830.2 + 24895.9i −0.0640156 + 0.0202172i
\(274\) 0 0
\(275\) 77026.7 133414.i 0.0614200 0.106383i
\(276\) 0 0
\(277\) −728732. 1.26220e6i −0.570648 0.988391i −0.996500 0.0835984i \(-0.973359\pi\)
0.425851 0.904793i \(-0.359975\pi\)
\(278\) 0 0
\(279\) −1.38293e6 −1.06363
\(280\) 0 0
\(281\) 1.03123e6 0.779092 0.389546 0.921007i \(-0.372632\pi\)
0.389546 + 0.921007i \(0.372632\pi\)
\(282\) 0 0
\(283\) −39832.4 68991.8i −0.0295645 0.0512072i 0.850865 0.525385i \(-0.176079\pi\)
−0.880429 + 0.474178i \(0.842745\pi\)
\(284\) 0 0
\(285\) 144968. 251092.i 0.105721 0.183114i
\(286\) 0 0
\(287\) 296164. 1.33889e6i 0.212240 0.959493i
\(288\) 0 0
\(289\) 646714. 1.12014e6i 0.455479 0.788912i
\(290\) 0 0
\(291\) 121981. + 211277.i 0.0844422 + 0.146258i
\(292\) 0 0
\(293\) 1.44146e6 0.980920 0.490460 0.871464i \(-0.336829\pi\)
0.490460 + 0.871464i \(0.336829\pi\)
\(294\) 0 0
\(295\) 20515.4 0.0137254
\(296\) 0 0
\(297\) 93304.6 + 161608.i 0.0613779 + 0.106310i
\(298\) 0 0
\(299\) −138536. + 239952.i −0.0896159 + 0.155219i
\(300\) 0 0
\(301\) 188048. 850125.i 0.119633 0.540837i
\(302\) 0 0
\(303\) 208880. 361791.i 0.130704 0.226387i
\(304\) 0 0
\(305\) 844335. + 1.46243e6i 0.519715 + 0.900173i
\(306\) 0 0
\(307\) −1.71962e6 −1.04132 −0.520662 0.853763i \(-0.674315\pi\)
−0.520662 + 0.853763i \(0.674315\pi\)
\(308\) 0 0
\(309\) −38512.4 −0.0229459
\(310\) 0 0
\(311\) 79804.7 + 138226.i 0.0467873 + 0.0810379i 0.888471 0.458933i \(-0.151768\pi\)
−0.841683 + 0.539971i \(0.818435\pi\)
\(312\) 0 0
\(313\) −226308. + 391978.i −0.130569 + 0.226152i −0.923896 0.382644i \(-0.875014\pi\)
0.793327 + 0.608796i \(0.208347\pi\)
\(314\) 0 0
\(315\) −1.18571e6 + 374466.i −0.673289 + 0.212636i
\(316\) 0 0
\(317\) −913154. + 1.58163e6i −0.510382 + 0.884008i 0.489545 + 0.871978i \(0.337163\pi\)
−0.999928 + 0.0120304i \(0.996171\pi\)
\(318\) 0 0
\(319\) −347431. 601768.i −0.191158 0.331095i
\(320\) 0 0
\(321\) 392991. 0.212873
\(322\) 0 0
\(323\) −695477. −0.370917
\(324\) 0 0
\(325\) 124584. + 215786.i 0.0654267 + 0.113322i
\(326\) 0 0
\(327\) −21823.0 + 37798.6i −0.0112861 + 0.0195482i
\(328\) 0 0
\(329\) 2.60485e6 + 2.38465e6i 1.32676 + 1.21461i
\(330\) 0 0
\(331\) −1.04106e6 + 1.80317e6i −0.522283 + 0.904620i 0.477381 + 0.878696i \(0.341586\pi\)
−0.999664 + 0.0259240i \(0.991747\pi\)
\(332\) 0 0
\(333\) −1.11576e6 1.93256e6i −0.551393 0.955041i
\(334\) 0 0
\(335\) 320149. 0.155862
\(336\) 0 0
\(337\) 329493. 0.158041 0.0790207 0.996873i \(-0.474821\pi\)
0.0790207 + 0.996873i \(0.474821\pi\)
\(338\) 0 0
\(339\) 217701. + 377069.i 0.102887 + 0.178206i
\(340\) 0 0
\(341\) −332492. + 575893.i −0.154844 + 0.268198i
\(342\) 0 0
\(343\) −1.32398e6 + 1.73050e6i −0.607640 + 0.794213i
\(344\) 0 0
\(345\) 114637. 198557.i 0.0518535 0.0898129i
\(346\) 0 0
\(347\) 621590. + 1.07663e6i 0.277128 + 0.480000i 0.970670 0.240417i \(-0.0772841\pi\)
−0.693542 + 0.720416i \(0.743951\pi\)
\(348\) 0 0
\(349\) −1.07921e6 −0.474287 −0.237143 0.971475i \(-0.576211\pi\)
−0.237143 + 0.971475i \(0.576211\pi\)
\(350\) 0 0
\(351\) −301825. −0.130764
\(352\) 0 0
\(353\) 263261. + 455981.i 0.112447 + 0.194764i 0.916756 0.399447i \(-0.130798\pi\)
−0.804309 + 0.594211i \(0.797464\pi\)
\(354\) 0 0
\(355\) 1.62152e6 2.80855e6i 0.682891 1.18280i
\(356\) 0 0
\(357\) −121031. 110800.i −0.0502606 0.0460118i
\(358\) 0 0
\(359\) −713788. + 1.23632e6i −0.292303 + 0.506283i −0.974354 0.225021i \(-0.927755\pi\)
0.682051 + 0.731305i \(0.261088\pi\)
\(360\) 0 0
\(361\) −674846. 1.16887e6i −0.272544 0.472060i
\(362\) 0 0
\(363\) −529628. −0.210962
\(364\) 0 0
\(365\) −3.07799e6 −1.20930
\(366\) 0 0
\(367\) 985646. + 1.70719e6i 0.381993 + 0.661632i 0.991347 0.131267i \(-0.0419045\pi\)
−0.609354 + 0.792898i \(0.708571\pi\)
\(368\) 0 0
\(369\) 1.21813e6 2.10986e6i 0.465722 0.806653i
\(370\) 0 0
\(371\) 4.03993e6 1.27588e6i 1.52384 0.481254i
\(372\) 0 0
\(373\) 1.32258e6 2.29078e6i 0.492211 0.852535i −0.507749 0.861505i \(-0.669522\pi\)
0.999960 + 0.00897066i \(0.00285549\pi\)
\(374\) 0 0
\(375\) −334705. 579726.i −0.122909 0.212885i
\(376\) 0 0
\(377\) 1.12388e6 0.407255
\(378\) 0 0
\(379\) −1.17483e6 −0.420123 −0.210062 0.977688i \(-0.567366\pi\)
−0.210062 + 0.977688i \(0.567366\pi\)
\(380\) 0 0
\(381\) 300923. + 521215.i 0.106205 + 0.183952i
\(382\) 0 0
\(383\) 1.95438e6 3.38509e6i 0.680788 1.17916i −0.293952 0.955820i \(-0.594971\pi\)
0.974741 0.223340i \(-0.0716960\pi\)
\(384\) 0 0
\(385\) −129135. + 583794.i −0.0444011 + 0.200728i
\(386\) 0 0
\(387\) 773443. 1.33964e6i 0.262513 0.454686i
\(388\) 0 0
\(389\) −97739.7 169290.i −0.0327489 0.0567228i 0.849186 0.528093i \(-0.177093\pi\)
−0.881935 + 0.471370i \(0.843760\pi\)
\(390\) 0 0
\(391\) −549965. −0.181925
\(392\) 0 0
\(393\) −1.34361e6 −0.438825
\(394\) 0 0
\(395\) −914728. 1.58436e6i −0.294985 0.510928i
\(396\) 0 0
\(397\) 1.65213e6 2.86157e6i 0.526099 0.911229i −0.473439 0.880827i \(-0.656988\pi\)
0.999538 0.0304029i \(-0.00967905\pi\)
\(398\) 0 0
\(399\) 194954. 881343.i 0.0613054 0.277149i
\(400\) 0 0
\(401\) −2.19319e6 + 3.79872e6i −0.681107 + 1.17971i 0.293536 + 0.955948i \(0.405168\pi\)
−0.974643 + 0.223764i \(0.928165\pi\)
\(402\) 0 0
\(403\) −537778. 931459.i −0.164946 0.285694i
\(404\) 0 0
\(405\) −2.08093e6 −0.630405
\(406\) 0 0
\(407\) −1.07303e6 −0.321089
\(408\) 0 0
\(409\) 1.60722e6 + 2.78379e6i 0.475081 + 0.822865i 0.999593 0.0285384i \(-0.00908528\pi\)
−0.524511 + 0.851403i \(0.675752\pi\)
\(410\) 0 0
\(411\) −563552. + 976101.i −0.164562 + 0.285030i
\(412\) 0 0
\(413\) 60904.6 19234.7i 0.0175701 0.00554894i
\(414\) 0 0
\(415\) 857702. 1.48558e6i 0.244465 0.423425i
\(416\) 0 0
\(417\) 408380. + 707336.i 0.115007 + 0.199198i
\(418\) 0 0
\(419\) 4.48815e6 1.24891 0.624457 0.781059i \(-0.285320\pi\)
0.624457 + 0.781059i \(0.285320\pi\)
\(420\) 0 0
\(421\) −4.05150e6 −1.11406 −0.557032 0.830491i \(-0.688060\pi\)
−0.557032 + 0.830491i \(0.688060\pi\)
\(422\) 0 0
\(423\) 3.13717e6 + 5.43373e6i 0.852485 + 1.47655i
\(424\) 0 0
\(425\) −247289. + 428318.i −0.0664100 + 0.115025i
\(426\) 0 0
\(427\) 3.87774e6 + 3.54993e6i 1.02922 + 0.942215i
\(428\) 0 0
\(429\) −35311.8 + 61161.9i −0.00926354 + 0.0160449i
\(430\) 0 0
\(431\) −1.41541e6 2.45156e6i −0.367019 0.635696i 0.622079 0.782955i \(-0.286288\pi\)
−0.989098 + 0.147259i \(0.952955\pi\)
\(432\) 0 0
\(433\) −3.39735e6 −0.870804 −0.435402 0.900236i \(-0.643394\pi\)
−0.435402 + 0.900236i \(0.643394\pi\)
\(434\) 0 0
\(435\) −930000. −0.235646
\(436\) 0 0
\(437\) −1.51267e6 2.62002e6i −0.378914 0.656297i
\(438\) 0 0
\(439\) −1.69631e6 + 2.93809e6i −0.420091 + 0.727618i −0.995948 0.0899319i \(-0.971335\pi\)
0.575857 + 0.817550i \(0.304668\pi\)
\(440\) 0 0
\(441\) −3.16895e6 + 2.22338e6i −0.775924 + 0.544398i
\(442\) 0 0
\(443\) −2.33478e6 + 4.04397e6i −0.565246 + 0.979035i 0.431781 + 0.901979i \(0.357885\pi\)
−0.997027 + 0.0770561i \(0.975448\pi\)
\(444\) 0 0
\(445\) 1.36845e6 + 2.37022e6i 0.327588 + 0.567399i
\(446\) 0 0
\(447\) 560657. 0.132718
\(448\) 0 0
\(449\) −782382. −0.183148 −0.0915742 0.995798i \(-0.529190\pi\)
−0.0915742 + 0.995798i \(0.529190\pi\)
\(450\) 0 0
\(451\) −585736. 1.01453e6i −0.135600 0.234867i
\(452\) 0 0
\(453\) 261254. 452506.i 0.0598161 0.103604i
\(454\) 0 0
\(455\) −713301. 653002.i −0.161527 0.147872i
\(456\) 0 0
\(457\) 265708. 460219.i 0.0595132 0.103080i −0.834734 0.550654i \(-0.814378\pi\)
0.894247 + 0.447574i \(0.147712\pi\)
\(458\) 0 0
\(459\) −299549. 518833.i −0.0663645 0.114947i
\(460\) 0 0
\(461\) −1.34721e6 −0.295245 −0.147623 0.989044i \(-0.547162\pi\)
−0.147623 + 0.989044i \(0.547162\pi\)
\(462\) 0 0
\(463\) 6.81207e6 1.47682 0.738409 0.674354i \(-0.235578\pi\)
0.738409 + 0.674354i \(0.235578\pi\)
\(464\) 0 0
\(465\) 445006. + 770773.i 0.0954407 + 0.165308i
\(466\) 0 0
\(467\) 510769. 884678.i 0.108376 0.187712i −0.806737 0.590911i \(-0.798768\pi\)
0.915112 + 0.403199i \(0.132102\pi\)
\(468\) 0 0
\(469\) 950433. 300163.i 0.199521 0.0630122i
\(470\) 0 0
\(471\) 582873. 1.00957e6i 0.121066 0.209692i
\(472\) 0 0
\(473\) −371910. 644168.i −0.0764338 0.132387i
\(474\) 0 0
\(475\) −2.72066e6 −0.553274
\(476\) 0 0
\(477\) 7.52700e6 1.51470
\(478\) 0 0
\(479\) −4.15913e6 7.20382e6i −0.828254 1.43458i −0.899407 0.437113i \(-0.856001\pi\)
0.0711525 0.997465i \(-0.477332\pi\)
\(480\) 0 0
\(481\) 867769. 1.50302e6i 0.171018 0.296212i
\(482\) 0 0
\(483\) 154164. 696944.i 0.0300688 0.135935i
\(484\) 0 0
\(485\) −1.42695e6 + 2.47155e6i −0.275458 + 0.477107i
\(486\) 0 0
\(487\) −301362. 521975.i −0.0575793 0.0997303i 0.835799 0.549036i \(-0.185005\pi\)
−0.893378 + 0.449305i \(0.851672\pi\)
\(488\) 0 0
\(489\) 1.23944e6 0.234397
\(490\) 0 0
\(491\) −5.27617e6 −0.987678 −0.493839 0.869553i \(-0.664407\pi\)
−0.493839 + 0.869553i \(0.664407\pi\)
\(492\) 0 0
\(493\) 1.11540e6 + 1.93194e6i 0.206688 + 0.357994i
\(494\) 0 0
\(495\) −531136. + 919954.i −0.0974299 + 0.168754i
\(496\) 0 0
\(497\) 2.18062e6 9.85812e6i 0.395995 1.79021i
\(498\) 0 0
\(499\) 4.09788e6 7.09774e6i 0.736730 1.27605i −0.217230 0.976120i \(-0.569702\pi\)
0.953960 0.299933i \(-0.0969644\pi\)
\(500\) 0 0
\(501\) 974948. + 1.68866e6i 0.173535 + 0.300572i
\(502\) 0 0
\(503\) 3.81947e6 0.673106 0.336553 0.941665i \(-0.390739\pi\)
0.336553 + 0.941665i \(0.390739\pi\)
\(504\) 0 0
\(505\) 4.88702e6 0.852739
\(506\) 0 0
\(507\) 603731. + 1.04569e6i 0.104309 + 0.180669i
\(508\) 0 0
\(509\) −1.00020e6 + 1.73239e6i −0.171116 + 0.296382i −0.938810 0.344434i \(-0.888071\pi\)
0.767694 + 0.640816i \(0.221404\pi\)
\(510\) 0 0
\(511\) −9.13772e6 + 2.88585e6i −1.54805 + 0.488901i
\(512\) 0 0
\(513\) 1.64781e6 2.85408e6i 0.276447 0.478821i
\(514\) 0 0
\(515\) −225262. 390165.i −0.0374257 0.0648232i
\(516\) 0 0
\(517\) 3.01702e6 0.496422
\(518\) 0 0
\(519\) 649790. 0.105890
\(520\) 0 0
\(521\) −5.83316e6 1.01033e7i −0.941477 1.63069i −0.762656 0.646805i \(-0.776105\pi\)
−0.178821 0.983882i \(-0.557228\pi\)
\(522\) 0 0
\(523\) −5.41109e6 + 9.37228e6i −0.865029 + 1.49827i 0.00199012 + 0.999998i \(0.499367\pi\)
−0.867019 + 0.498276i \(0.833967\pi\)
\(524\) 0 0
\(525\) −473467. 433442.i −0.0749707 0.0686330i
\(526\) 0 0
\(527\) 1.06744e6 1.84887e6i 0.167424 0.289988i
\(528\) 0 0
\(529\) 2.02199e6 + 3.50219e6i 0.314152 + 0.544128i
\(530\) 0 0
\(531\) 113474. 0.0174647
\(532\) 0 0
\(533\) 1.89476e6 0.288892
\(534\) 0 0
\(535\) 2.29863e6 + 3.98135e6i 0.347204 + 0.601376i
\(536\) 0 0
\(537\) −242278. + 419638.i −0.0362559 + 0.0627971i
\(538\) 0 0
\(539\) 163982. + 1.85420e6i 0.0243122 + 0.274906i
\(540\) 0 0
\(541\) −543570. + 941491.i −0.0798477 + 0.138300i −0.903184 0.429253i \(-0.858777\pi\)
0.823336 + 0.567554i \(0.192110\pi\)
\(542\) 0 0
\(543\) −1.05257e6 1.82310e6i −0.153197 0.265345i
\(544\) 0 0
\(545\) −510578. −0.0736327
\(546\) 0 0
\(547\) 413333. 0.0590652 0.0295326 0.999564i \(-0.490598\pi\)
0.0295326 + 0.999564i \(0.490598\pi\)
\(548\) 0 0
\(549\) 4.67017e6 + 8.08897e6i 0.661305 + 1.14541i
\(550\) 0 0
\(551\) −6.13580e6 + 1.06275e7i −0.860978 + 1.49126i
\(552\) 0 0
\(553\) −4.20103e6 3.84589e6i −0.584174 0.534791i
\(554\) 0 0
\(555\) −718070. + 1.24373e6i −0.0989542 + 0.171394i
\(556\) 0 0
\(557\) 6.00908e6 + 1.04080e7i 0.820673 + 1.42145i 0.905182 + 0.425024i \(0.139734\pi\)
−0.0845091 + 0.996423i \(0.526932\pi\)
\(558\) 0 0
\(559\) 1.20307e6 0.162840
\(560\) 0 0
\(561\) −140182. −0.0188055
\(562\) 0 0
\(563\) −7.12659e6 1.23436e7i −0.947569 1.64124i −0.750524 0.660843i \(-0.770199\pi\)
−0.197045 0.980394i \(-0.563135\pi\)
\(564\) 0 0
\(565\) −2.54670e6 + 4.41101e6i −0.335626 + 0.581322i
\(566\) 0 0
\(567\) −6.17771e6 + 1.95102e6i −0.806993 + 0.254862i
\(568\) 0 0
\(569\) −1.36695e6 + 2.36762e6i −0.176999 + 0.306571i −0.940851 0.338820i \(-0.889972\pi\)
0.763852 + 0.645391i \(0.223306\pi\)
\(570\) 0 0
\(571\) 1.80448e6 + 3.12545e6i 0.231612 + 0.401164i 0.958283 0.285822i \(-0.0922666\pi\)
−0.726670 + 0.686986i \(0.758933\pi\)
\(572\) 0 0
\(573\) −1.57051e6 −0.199826
\(574\) 0 0
\(575\) −2.15143e6 −0.271367
\(576\) 0 0
\(577\) 812927. + 1.40803e6i 0.101651 + 0.176065i 0.912365 0.409378i \(-0.134254\pi\)
−0.810714 + 0.585443i \(0.800921\pi\)
\(578\) 0 0
\(579\) −798039. + 1.38224e6i −0.0989299 + 0.171352i
\(580\) 0 0
\(581\) 1.15344e6 5.21445e6i 0.141760 0.640867i
\(582\) 0 0
\(583\) 1.80968e6 3.13446e6i 0.220511 0.381936i
\(584\) 0 0
\(585\) −859068. 1.48795e6i −0.103786 0.179762i
\(586\) 0 0
\(587\) 9.69220e6 1.16099 0.580493 0.814265i \(-0.302860\pi\)
0.580493 + 0.814265i \(0.302860\pi\)
\(588\) 0 0
\(589\) 1.17439e7 1.39484
\(590\) 0 0
\(591\) 964711. + 1.67093e6i 0.113613 + 0.196784i
\(592\) 0 0
\(593\) 1.82133e6 3.15463e6i 0.212692 0.368394i −0.739864 0.672756i \(-0.765110\pi\)
0.952556 + 0.304363i \(0.0984435\pi\)
\(594\) 0 0
\(595\) 414581. 1.87423e6i 0.0480084 0.217036i
\(596\) 0 0
\(597\) 352336. 610264.i 0.0404596 0.0700780i
\(598\) 0 0
\(599\) −328643. 569226.i −0.0374246 0.0648213i 0.846706 0.532060i \(-0.178582\pi\)
−0.884131 + 0.467239i \(0.845249\pi\)
\(600\) 0 0
\(601\) −1.45544e7 −1.64365 −0.821824 0.569742i \(-0.807043\pi\)
−0.821824 + 0.569742i \(0.807043\pi\)
\(602\) 0 0
\(603\) 1.77080e6 0.198324
\(604\) 0 0
\(605\) −3.09783e6 5.36560e6i −0.344088 0.595978i
\(606\) 0 0
\(607\) 7.04214e6 1.21974e7i 0.775770 1.34367i −0.158590 0.987344i \(-0.550695\pi\)
0.934361 0.356329i \(-0.115972\pi\)
\(608\) 0 0
\(609\) −2.76092e6 + 871944.i −0.301655 + 0.0952676i
\(610\) 0 0
\(611\) −2.43989e6 + 4.22601e6i −0.264403 + 0.457960i
\(612\) 0 0
\(613\) −1.72048e6 2.97996e6i −0.184926 0.320302i 0.758625 0.651527i \(-0.225871\pi\)
−0.943552 + 0.331225i \(0.892538\pi\)
\(614\) 0 0
\(615\) −1.56789e6 −0.167159
\(616\) 0 0
\(617\) 6.03183e6 0.637876 0.318938 0.947776i \(-0.396674\pi\)
0.318938 + 0.947776i \(0.396674\pi\)
\(618\) 0 0
\(619\) −5.73176e6 9.92770e6i −0.601259 1.04141i −0.992631 0.121178i \(-0.961333\pi\)
0.391372 0.920233i \(-0.372001\pi\)
\(620\) 0 0
\(621\) 1.30304e6 2.25694e6i 0.135591 0.234850i
\(622\) 0 0
\(623\) 6.28479e6 + 5.75351e6i 0.648740 + 0.593899i
\(624\) 0 0
\(625\) 1.74206e6 3.01734e6i 0.178387 0.308975i
\(626\) 0 0
\(627\) −385568. 667823.i −0.0391681 0.0678411i
\(628\) 0 0
\(629\) 3.44490e6 0.347176
\(630\) 0 0
\(631\) 536107. 0.0536016 0.0268008 0.999641i \(-0.491468\pi\)
0.0268008 + 0.999641i \(0.491468\pi\)
\(632\) 0 0
\(633\) −2.02293e6 3.50382e6i −0.200665 0.347562i
\(634\) 0 0
\(635\) −3.52025e6 + 6.09725e6i −0.346449 + 0.600067i
\(636\) 0 0
\(637\) −2.72983e6 1.26981e6i −0.266555 0.123991i
\(638\) 0 0
\(639\) 8.96892e6 1.55346e7i 0.868936 1.50504i
\(640\) 0 0
\(641\) −1.45587e6 2.52164e6i −0.139952 0.242403i 0.787526 0.616281i \(-0.211361\pi\)
−0.927478 + 0.373877i \(0.878028\pi\)
\(642\) 0 0
\(643\) 1.93974e7 1.85019 0.925096 0.379732i \(-0.123984\pi\)
0.925096 + 0.379732i \(0.123984\pi\)
\(644\) 0 0
\(645\) −995527. −0.0942223
\(646\) 0 0
\(647\) 7.00425e6 + 1.21317e7i 0.657811 + 1.13936i 0.981181 + 0.193090i \(0.0618508\pi\)
−0.323370 + 0.946273i \(0.604816\pi\)
\(648\) 0 0
\(649\) 27282.1 47254.0i 0.00254253 0.00440379i
\(650\) 0 0
\(651\) 2.04376e6 + 1.87099e6i 0.189007 + 0.173029i
\(652\) 0 0
\(653\) −5.55312e6 + 9.61829e6i −0.509629 + 0.882703i 0.490309 + 0.871549i \(0.336884\pi\)
−0.999938 + 0.0111546i \(0.996449\pi\)
\(654\) 0 0
\(655\) −7.85887e6 1.36120e7i −0.715743 1.23970i
\(656\) 0 0
\(657\) −1.70249e7 −1.53877
\(658\) 0 0
\(659\) −1.00615e7 −0.902502 −0.451251 0.892397i \(-0.649022\pi\)
−0.451251 + 0.892397i \(0.649022\pi\)
\(660\) 0 0
\(661\) 7.14337e6 + 1.23727e7i 0.635916 + 1.10144i 0.986320 + 0.164840i \(0.0527108\pi\)
−0.350405 + 0.936598i \(0.613956\pi\)
\(662\) 0 0
\(663\) 113366. 196356.i 0.0100161 0.0173485i
\(664\) 0 0
\(665\) 1.00691e7 3.17999e6i 0.882951 0.278851i
\(666\) 0 0
\(667\) −4.85203e6 + 8.40397e6i −0.422288 + 0.731425i
\(668\) 0 0
\(669\) 884722. + 1.53238e6i 0.0764261 + 0.132374i
\(670\) 0 0
\(671\) 4.49130e6 0.385094
\(672\) 0 0
\(673\) −2.05348e7 −1.74764 −0.873822 0.486245i \(-0.838366\pi\)
−0.873822 + 0.486245i \(0.838366\pi\)
\(674\) 0 0
\(675\) −1.17182e6 2.02964e6i −0.0989919 0.171459i
\(676\) 0 0
\(677\) 1.79648e6 3.11159e6i 0.150643 0.260922i −0.780821 0.624755i \(-0.785199\pi\)
0.931464 + 0.363833i \(0.118532\pi\)
\(678\) 0 0
\(679\) −1.91897e6 + 8.67524e6i −0.159732 + 0.722116i
\(680\) 0 0
\(681\) −1.66334e6 + 2.88098e6i −0.137440 + 0.238053i
\(682\) 0 0
\(683\) 5.96018e6 + 1.03233e7i 0.488886 + 0.846776i 0.999918 0.0127857i \(-0.00406992\pi\)
−0.511032 + 0.859562i \(0.670737\pi\)
\(684\) 0 0
\(685\) −1.31850e7 −1.07363
\(686\) 0 0
\(687\) 3.74501e6 0.302734
\(688\) 0 0
\(689\) 2.92701e6 + 5.06973e6i 0.234896 + 0.406852i
\(690\) 0 0
\(691\) 2.14050e6 3.70746e6i 0.170538 0.295380i −0.768070 0.640366i \(-0.778783\pi\)
0.938608 + 0.344985i \(0.112116\pi\)
\(692\) 0 0
\(693\) −714272. + 3.22907e6i −0.0564977 + 0.255414i
\(694\) 0 0
\(695\) −4.77730e6 + 8.27452e6i −0.375163 + 0.649802i
\(696\) 0 0
\(697\) 1.88047e6 + 3.25707e6i 0.146617 + 0.253948i
\(698\) 0 0
\(699\) 1.47579e6 0.114243
\(700\) 0 0
\(701\) −8.79081e6 −0.675669 −0.337834 0.941206i \(-0.609694\pi\)
−0.337834 + 0.941206i \(0.609694\pi\)
\(702\) 0 0
\(703\) 9.47512e6 + 1.64114e7i 0.723097 + 1.25244i
\(704\) 0 0
\(705\) 2.01898e6 3.49698e6i 0.152989 0.264984i
\(706\) 0 0
\(707\) 1.45082e7 4.58194e6i 1.09161 0.344748i
\(708\) 0 0
\(709\) −1.98988e6 + 3.44658e6i −0.148666 + 0.257497i −0.930735 0.365695i \(-0.880831\pi\)
0.782069 + 0.623192i \(0.214165\pi\)
\(710\) 0 0
\(711\) −5.05953e6 8.76336e6i −0.375350 0.650124i
\(712\) 0 0
\(713\) 9.28681e6 0.684136
\(714\) 0 0
\(715\) −826166. −0.0604369
\(716\) 0 0
\(717\) −857528. 1.48528e6i −0.0622946 0.107897i
\(718\) 0 0
\(719\) 1.44409e6 2.50124e6i 0.104177 0.180440i −0.809225 0.587499i \(-0.800112\pi\)
0.913402 + 0.407059i \(0.133446\pi\)
\(720\) 0 0
\(721\) −1.03455e6 947094.i −0.0741162 0.0678508i
\(722\) 0 0
\(723\) −51546.2 + 89280.6i −0.00366734 + 0.00635201i
\(724\) 0 0
\(725\) 4.36339e6 + 7.55762e6i 0.308304 + 0.533998i
\(726\) 0 0
\(727\) −2.12040e7 −1.48793 −0.743963 0.668221i \(-0.767056\pi\)
−0.743963 + 0.668221i \(0.767056\pi\)
\(728\) 0 0
\(729\) −1.00526e7 −0.700580
\(730\) 0 0
\(731\) 1.19400e6 + 2.06806e6i 0.0826436 + 0.143143i
\(732\) 0 0
\(733\) 9.79859e6 1.69716e7i 0.673602 1.16671i −0.303273 0.952904i \(-0.598079\pi\)
0.976875 0.213810i \(-0.0685872\pi\)
\(734\) 0 0
\(735\) 2.25891e6 + 1.05076e6i 0.154234 + 0.0717438i
\(736\) 0 0
\(737\) 425745. 737412.i 0.0288723 0.0500082i
\(738\) 0 0
\(739\) −1.20566e7 2.08827e7i −0.812108 1.40661i −0.911386 0.411553i \(-0.864986\pi\)
0.0992773 0.995060i \(-0.468347\pi\)
\(740\) 0 0
\(741\) 1.24725e6 0.0834464
\(742\) 0 0
\(743\) −7.79774e6 −0.518199 −0.259100 0.965851i \(-0.583426\pi\)
−0.259100 + 0.965851i \(0.583426\pi\)
\(744\) 0 0
\(745\) 3.27933e6 + 5.67996e6i 0.216468 + 0.374934i
\(746\) 0 0
\(747\) 4.74411e6 8.21703e6i 0.311066 0.538782i
\(748\) 0 0
\(749\) 1.05568e7 + 9.66440e6i 0.687588 + 0.629463i
\(750\) 0 0
\(751\) 1.00843e7 1.74666e7i 0.652450 1.13008i −0.330077 0.943954i \(-0.607075\pi\)
0.982527 0.186122i \(-0.0595920\pi\)
\(752\) 0 0
\(753\) −985777. 1.70742e6i −0.0633565 0.109737i
\(754\) 0 0
\(755\) 6.11238e6 0.390250
\(756\) 0 0
\(757\) −2.80945e6 −0.178190 −0.0890948 0.996023i \(-0.528397\pi\)
−0.0890948 + 0.996023i \(0.528397\pi\)
\(758\) 0 0
\(759\) −304897. 528097.i −0.0192110 0.0332744i
\(760\) 0 0
\(761\) 9.35273e6 1.61994e7i 0.585433 1.01400i −0.409389 0.912360i \(-0.634258\pi\)
0.994821 0.101639i \(-0.0324087\pi\)
\(762\) 0 0
\(763\) −1.51577e6 + 478704.i −0.0942586 + 0.0297684i
\(764\) 0 0
\(765\) 1.70518e6 2.95345e6i 0.105346 0.182464i
\(766\) 0 0
\(767\) 44126.6 + 76429.4i 0.00270839 + 0.00469107i
\(768\) 0 0
\(769\) 2.25184e7 1.37316 0.686580 0.727054i \(-0.259111\pi\)
0.686580 + 0.727054i \(0.259111\pi\)
\(770\) 0 0
\(771\) 6.69111e6 0.405380
\(772\) 0 0
\(773\) −1.12470e7 1.94804e7i −0.677001 1.17260i −0.975880 0.218309i \(-0.929946\pi\)
0.298879 0.954291i \(-0.403387\pi\)
\(774\) 0 0
\(775\) 4.17578e6 7.23266e6i 0.249737 0.432557i
\(776\) 0 0
\(777\) −965662. + 4.36555e6i −0.0573816 + 0.259410i
\(778\) 0 0
\(779\) −1.03444e7 + 1.79170e7i −0.610747 + 1.05784i
\(780\) 0 0
\(781\) −4.31271e6 7.46983e6i −0.253001 0.438211i
\(782\) 0 0
\(783\) −1.05710e7 −0.616186
\(784\) 0 0
\(785\) 1.36371e7 0.789854
\(786\) 0 0
\(787\) −4.90014e6 8.48729e6i −0.282014 0.488463i 0.689866 0.723937i \(-0.257669\pi\)
−0.971881 + 0.235473i \(0.924336\pi\)
\(788\) 0 0
\(789\) 1.92823e6 3.33980e6i 0.110272 0.190997i
\(790\) 0 0
\(791\) −3.42480e6 + 1.54828e7i −0.194623 + 0.879848i
\(792\) 0 0
\(793\) −3.63216e6 + 6.29108e6i −0.205108 + 0.355257i
\(794\) 0 0
\(795\) −2.42207e6 4.19515e6i −0.135915 0.235412i
\(796\) 0 0
\(797\) −1.21486e7 −0.677456 −0.338728 0.940884i \(-0.609997\pi\)
−0.338728 + 0.940884i \(0.609997\pi\)
\(798\) 0 0
\(799\) −9.68594e6 −0.536753
\(800\) 0 0
\(801\) 7.56912e6 + 1.31101e7i 0.416835 + 0.721980i
\(802\) 0 0
\(803\) −4.09323e6 + 7.08967e6i −0.224015 + 0.388005i
\(804\) 0 0
\(805\) 7.96238e6 2.51465e6i 0.433065 0.136769i
\(806\) 0 0
\(807\) −1.97231e6 + 3.41614e6i −0.106608 + 0.184651i
\(808\) 0 0
\(809\) 2.86932e6 + 4.96981e6i 0.154137 + 0.266974i 0.932745 0.360538i \(-0.117407\pi\)
−0.778607 + 0.627512i \(0.784074\pi\)
\(810\) 0 0
\(811\) 1.14111e7 0.609220 0.304610 0.952477i \(-0.401474\pi\)
0.304610 + 0.952477i \(0.401474\pi\)
\(812\) 0 0
\(813\) −1.14625e6 −0.0608208
\(814\) 0 0
\(815\) 7.24956e6 + 1.25566e7i 0.382312 + 0.662184i
\(816\) 0 0
\(817\) −6.56812e6 + 1.13763e7i −0.344260 + 0.596275i
\(818\) 0 0
\(819\) −3.94540e6 3.61187e6i −0.205533 0.188158i
\(820\) 0 0
\(821\) 7.69674e6 1.33311e7i 0.398519 0.690255i −0.595025 0.803708i \(-0.702858\pi\)
0.993543 + 0.113453i \(0.0361910\pi\)
\(822\) 0 0
\(823\) 8.45959e6 + 1.46524e7i 0.435361 + 0.754068i 0.997325 0.0730941i \(-0.0232873\pi\)
−0.561964 + 0.827162i \(0.689954\pi\)
\(824\) 0 0
\(825\) −548383. −0.0280511
\(826\) 0 0
\(827\) −2.64225e7 −1.34341 −0.671707 0.740817i \(-0.734439\pi\)
−0.671707 + 0.740817i \(0.734439\pi\)
\(828\) 0 0
\(829\) 989105. + 1.71318e6i 0.0499869 + 0.0865798i 0.889936 0.456085i \(-0.150749\pi\)
−0.839949 + 0.542665i \(0.817415\pi\)
\(830\) 0 0
\(831\) −2.59406e6 + 4.49305e6i −0.130310 + 0.225704i
\(832\) 0 0
\(833\) −526453. 5.95279e6i −0.0262874 0.297240i
\(834\) 0 0
\(835\) −1.14051e7 + 1.97542e7i −0.566086 + 0.980490i
\(836\) 0 0
\(837\) 5.05823e6 + 8.76111e6i 0.249566 + 0.432261i
\(838\) 0 0
\(839\) −2.20079e7 −1.07938 −0.539689 0.841865i \(-0.681458\pi\)
−0.539689 + 0.841865i \(0.681458\pi\)
\(840\) 0 0
\(841\) 1.88512e7 0.919071
\(842\) 0 0
\(843\) −1.83543e6 3.17905e6i −0.0889546 0.154074i
\(844\) 0 0
\(845\) −7.06253e6 + 1.22327e7i −0.340266 + 0.589358i
\(846\) 0 0
\(847\) −1.42273e7 1.30246e7i −0.681417 0.623813i
\(848\) 0 0
\(849\) −141791. + 245590.i −0.00675119 + 0.0116934i
\(850\) 0 0
\(851\) 7.49268e6 + 1.29777e7i 0.354661 + 0.614291i
\(852\) 0 0
\(853\) −2.53601e6 −0.119338 −0.0596689 0.998218i \(-0.519004\pi\)
−0.0596689 + 0.998218i \(0.519004\pi\)
\(854\) 0 0
\(855\) 1.87602e7 0.877653
\(856\) 0 0
\(857\) 573156. + 992735.i 0.0266576 + 0.0461723i 0.879046 0.476736i \(-0.158180\pi\)
−0.852389 + 0.522908i \(0.824847\pi\)
\(858\) 0 0
\(859\) −8.38795e6 + 1.45284e7i −0.387858 + 0.671790i −0.992161 0.124964i \(-0.960118\pi\)
0.604303 + 0.796755i \(0.293452\pi\)
\(860\) 0 0
\(861\) −4.65465e6 + 1.47002e6i −0.213983 + 0.0675794i
\(862\) 0 0
\(863\) 9.24028e6 1.60046e7i 0.422336 0.731507i −0.573832 0.818973i \(-0.694544\pi\)
0.996168 + 0.0874660i \(0.0278769\pi\)
\(864\) 0 0
\(865\) 3.80067e6 + 6.58295e6i 0.172711 + 0.299144i
\(866\) 0 0
\(867\) −4.60421e6 −0.208021
\(868\) 0 0
\(869\) −4.86575e6 −0.218575
\(870\) 0 0
\(871\) 688607. + 1.19270e6i 0.0307557 + 0.0532705i
\(872\) 0 0
\(873\) −7.89273e6 + 1.36706e7i −0.350503 + 0.607089i
\(874\) 0 0
\(875\) 5.26548e6 2.38041e7i 0.232497 1.05107i
\(876\) 0 0
\(877\) 3.30705e6 5.72798e6i 0.145192 0.251479i −0.784253 0.620441i \(-0.786953\pi\)
0.929444 + 0.368962i \(0.120287\pi\)
\(878\) 0 0
\(879\) −2.56558e6 4.44371e6i −0.111999 0.193987i
\(880\) 0 0
\(881\) 3.43282e7 1.49009 0.745043 0.667016i \(-0.232429\pi\)
0.745043 + 0.667016i \(0.232429\pi\)
\(882\) 0 0
\(883\) 5.51963e6 0.238236 0.119118 0.992880i \(-0.461993\pi\)
0.119118 + 0.992880i \(0.461993\pi\)
\(884\) 0 0
\(885\) −36514.3 63244.6i −0.00156713 0.00271435i
\(886\) 0 0
\(887\) 3.77735e6 6.54256e6i 0.161205 0.279215i −0.774096 0.633068i \(-0.781795\pi\)
0.935301 + 0.353853i \(0.115129\pi\)
\(888\) 0 0
\(889\) −4.73404e6 + 2.14016e7i −0.200899 + 0.908220i
\(890\) 0 0
\(891\) −2.76729e6 + 4.79309e6i −0.116778 + 0.202265i
\(892\) 0 0
\(893\) −2.66410e7 4.61436e7i −1.11795 1.93634i
\(894\) 0 0
\(895\) −5.66842e6 −0.236540
\(896\) 0 0
\(897\) 986292. 0.0409284
\(898\) 0 0
\(899\) −1.88349e7 3.26230e7i −0.777257 1.34625i
\(900\) 0 0
\(901\) −5.80987e6 + 1.00630e7i −0.238426 + 0.412966i
\(902\) 0 0
\(903\) −2.95545e6 + 933380.i −0.120616 + 0.0380925i
\(904\) 0 0
\(905\) 1.23131e7 2.13269e7i 0.499742 0.865578i
\(906\) 0 0
\(907\) 1.69135e7 + 2.92951e7i 0.682678 + 1.18243i 0.974161 + 0.225857i \(0.0725181\pi\)
−0.291483 + 0.956576i \(0.594149\pi\)
\(908\) 0 0
\(909\) 2.70310e7 1.08506
\(910\) 0 0
\(911\) 3.27859e7 1.30885 0.654426 0.756126i \(-0.272910\pi\)
0.654426 + 0.756126i \(0.272910\pi\)
\(912\) 0 0
\(913\) −2.28120e6 3.95116e6i −0.0905706 0.156873i
\(914\) 0 0
\(915\) 3.00557e6 5.20581e6i 0.118679 0.205558i
\(916\) 0 0
\(917\) −3.60931e7 3.30419e7i −1.41743 1.29760i
\(918\) 0 0
\(919\) 2.34936e7 4.06921e7i 0.917615 1.58936i 0.114588 0.993413i \(-0.463445\pi\)
0.803027 0.595943i \(-0.203222\pi\)
\(920\) 0 0
\(921\) 3.06065e6 + 5.30121e6i 0.118895 + 0.205933i
\(922\) 0 0
\(923\) 1.39509e7 0.539011
\(924\) 0 0
\(925\) 1.34762e7 0.517862
\(926\) 0 0
\(927\) −1.24597e6 2.15808e6i −0.0476219 0.0824835i
\(928\) 0 0
\(929\) −1.97801e7 + 3.42602e7i −0.751952 + 1.30242i 0.194923 + 0.980819i \(0.437554\pi\)
−0.946875 + 0.321601i \(0.895779\pi\)
\(930\) 0 0
\(931\) 2.69109e7 1.88810e7i 1.01755 0.713923i
\(932\) 0 0
\(933\) 284080. 492042.i 0.0106841 0.0185054i
\(934\) 0 0
\(935\) −819935. 1.42017e6i −0.0306726 0.0531265i
\(936\) 0 0
\(937\) −2.90483e7 −1.08086 −0.540432 0.841387i \(-0.681739\pi\)
−0.540432 + 0.841387i \(0.681739\pi\)
\(938\) 0 0
\(939\) 1.61118e6 0.0596320
\(940\) 0 0
\(941\) −1.65600e7 2.86827e7i −0.609656 1.05596i −0.991297 0.131645i \(-0.957974\pi\)
0.381641 0.924311i \(-0.375359\pi\)
\(942\) 0 0
\(943\) −8.18008e6 + 1.41683e7i −0.299556 + 0.518847i
\(944\) 0 0
\(945\) 6.70917e6 + 6.14201e6i 0.244393 + 0.223733i
\(946\) 0 0
\(947\) −1.99566e7 + 3.45658e7i −0.723121 + 1.25248i 0.236622 + 0.971602i \(0.423960\pi\)
−0.959743 + 0.280880i \(0.909374\pi\)
\(948\) 0 0
\(949\) −6.62045e6 1.14670e7i −0.238628 0.413317i
\(950\) 0 0
\(951\) 6.50109e6 0.233096
\(952\) 0 0
\(953\) 1.23250e7 0.439596 0.219798 0.975545i \(-0.429460\pi\)
0.219798 + 0.975545i \(0.429460\pi\)
\(954\) 0 0
\(955\) −9.18600e6 1.59106e7i −0.325925 0.564519i
\(956\) 0 0
\(957\) −1.23675e6 + 2.14211e6i −0.0436517 + 0.0756069i
\(958\) 0 0
\(959\) −3.91428e7 + 1.23619e7i −1.37437 + 0.434051i
\(960\) 0 0
\(961\) −3.71048e6 + 6.42675e6i −0.129605 + 0.224483i
\(962\) 0 0
\(963\) 1.27142e7 + 2.20216e7i 0.441796 + 0.765213i
\(964\) 0 0
\(965\) −1.86712e7 −0.645436
\(966\) 0 0
\(967\) 4.13540e7 1.42217 0.711084 0.703107i \(-0.248204\pi\)
0.711084 + 0.703107i \(0.248204\pi\)
\(968\) 0 0
\(969\) 1.23784e6 + 2.14400e6i 0.0423502 + 0.0733527i
\(970\) 0 0
\(971\) 1.44158e7 2.49690e7i 0.490672 0.849870i −0.509270 0.860607i \(-0.670084\pi\)
0.999942 + 0.0107372i \(0.00341783\pi\)
\(972\) 0 0
\(973\) −6.42451e6 + 2.90439e7i −0.217550 + 0.983495i
\(974\) 0 0
\(975\) 443482. 768134.i 0.0149405 0.0258777i
\(976\) 0 0
\(977\) 4.42571e6 + 7.66556e6i 0.148336 + 0.256926i 0.930613 0.366006i \(-0.119275\pi\)
−0.782277 + 0.622931i \(0.785942\pi\)
\(978\) 0 0
\(979\) 7.27923e6 0.242733
\(980\) 0 0
\(981\) −2.82410e6 −0.0936931
\(982\) 0 0
\(983\) 1.38853e7 + 2.40500e7i 0.458322 + 0.793836i 0.998872 0.0474751i \(-0.0151175\pi\)
−0.540551 + 0.841311i \(0.681784\pi\)
\(984\) 0 0
\(985\) −1.12853e7 + 1.95468e7i −0.370616 + 0.641925i
\(986\) 0 0
\(987\) 2.71513e6 1.22745e7i 0.0887151 0.401062i
\(988\) 0 0
\(989\) −5.19390e6 + 8.99610e6i −0.168851 + 0.292458i
\(990\) 0 0
\(991\) 2.72862e7 + 4.72612e7i 0.882591 + 1.52869i 0.848450 + 0.529276i \(0.177536\pi\)
0.0341418 + 0.999417i \(0.489130\pi\)
\(992\) 0 0
\(993\) 7.41171e6 0.238531
\(994\) 0 0
\(995\) 8.24336e6 0.263965
\(996\) 0 0
\(997\) −8.19953e6 1.42020e7i −0.261247 0.452493i 0.705327 0.708882i \(-0.250800\pi\)
−0.966574 + 0.256390i \(0.917467\pi\)
\(998\) 0 0
\(999\) −8.16206e6 + 1.41371e7i −0.258753 + 0.448174i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 28.6.e.b.9.2 4
3.2 odd 2 252.6.k.d.37.1 4
4.3 odd 2 112.6.i.e.65.1 4
7.2 even 3 196.6.a.j.1.1 2
7.3 odd 6 196.6.e.k.165.1 4
7.4 even 3 inner 28.6.e.b.25.2 yes 4
7.5 odd 6 196.6.a.h.1.2 2
7.6 odd 2 196.6.e.k.177.1 4
21.11 odd 6 252.6.k.d.109.1 4
28.11 odd 6 112.6.i.e.81.1 4
28.19 even 6 784.6.a.bd.1.1 2
28.23 odd 6 784.6.a.o.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.6.e.b.9.2 4 1.1 even 1 trivial
28.6.e.b.25.2 yes 4 7.4 even 3 inner
112.6.i.e.65.1 4 4.3 odd 2
112.6.i.e.81.1 4 28.11 odd 6
196.6.a.h.1.2 2 7.5 odd 6
196.6.a.j.1.1 2 7.2 even 3
196.6.e.k.165.1 4 7.3 odd 6
196.6.e.k.177.1 4 7.6 odd 2
252.6.k.d.37.1 4 3.2 odd 2
252.6.k.d.109.1 4 21.11 odd 6
784.6.a.o.1.2 2 28.23 odd 6
784.6.a.bd.1.1 2 28.19 even 6