Properties

Label 28.6.e.b.9.1
Level $28$
Weight $6$
Character 28.9
Analytic conductor $4.491$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [28,6,Mod(9,28)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("28.9"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(28, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 28 = 2^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 28.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.49074695476\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{109})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 28x^{2} + 27x + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 9.1
Root \(2.86008 - 4.95380i\) of defining polynomial
Character \(\chi\) \(=\) 28.9
Dual form 28.6.e.b.25.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-12.2202 - 21.1659i) q^{3} +(-41.8209 + 72.4360i) q^{5} +(28.0000 + 126.582i) q^{7} +(-177.164 + 306.858i) q^{9} +(-274.623 - 475.661i) q^{11} -823.135 q^{13} +2044.23 q^{15} +(-72.7837 - 126.065i) q^{17} +(-884.019 + 1531.17i) q^{19} +(2337.06 - 2139.50i) q^{21} +(761.363 - 1318.72i) q^{23} +(-1935.48 - 3352.35i) q^{25} +2720.90 q^{27} -741.943 q^{29} +(1602.09 + 2774.90i) q^{31} +(-6711.88 + 11625.3i) q^{33} +(-10340.1 - 3265.57i) q^{35} +(1774.77 - 3074.00i) q^{37} +(10058.8 + 17422.4i) q^{39} -6461.29 q^{41} +6716.00 q^{43} +(-14818.3 - 25666.1i) q^{45} +(9588.40 - 16607.6i) q^{47} +(-15239.0 + 7088.59i) q^{49} +(-1778.86 + 3081.07i) q^{51} +(10639.3 + 18427.8i) q^{53} +45940.0 q^{55} +43211.4 q^{57} +(-18264.3 - 31634.8i) q^{59} +(-21716.9 + 37614.7i) q^{61} +(-43803.2 - 13833.8i) q^{63} +(34424.3 - 59624.6i) q^{65} +(-2514.07 - 4354.50i) q^{67} -37215.9 q^{69} -6311.32 q^{71} +(21299.0 + 36890.9i) q^{73} +(-47303.7 + 81932.4i) q^{75} +(52520.7 - 48080.9i) q^{77} +(-47534.6 + 82332.3i) q^{79} +(9801.05 + 16975.9i) q^{81} -34978.2 q^{83} +12175.5 q^{85} +(9066.66 + 15703.9i) q^{87} +(-50276.7 + 87081.8i) q^{89} +(-23047.8 - 104194. i) q^{91} +(39155.5 - 67819.3i) q^{93} +(-73940.9 - 128069. i) q^{95} +76794.5 q^{97} +194614. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 28 q^{3} - 42 q^{5} + 112 q^{7} - 124 q^{9} - 660 q^{11} - 1288 q^{13} + 3792 q^{15} + 210 q^{17} - 3724 q^{19} + 3794 q^{21} - 24 q^{23} - 2480 q^{25} + 2072 q^{27} + 11064 q^{29} - 2800 q^{31} - 13818 q^{33}+ \cdots + 338208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/28\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −12.2202 21.1659i −0.783923 1.35779i −0.929640 0.368468i \(-0.879882\pi\)
0.145717 0.989326i \(-0.453451\pi\)
\(4\) 0 0
\(5\) −41.8209 + 72.4360i −0.748115 + 1.29577i 0.200610 + 0.979671i \(0.435708\pi\)
−0.948725 + 0.316103i \(0.897626\pi\)
\(6\) 0 0
\(7\) 28.0000 + 126.582i 0.215980 + 0.976398i
\(8\) 0 0
\(9\) −177.164 + 306.858i −0.729071 + 1.26279i
\(10\) 0 0
\(11\) −274.623 475.661i −0.684314 1.18527i −0.973652 0.228040i \(-0.926768\pi\)
0.289338 0.957227i \(-0.406565\pi\)
\(12\) 0 0
\(13\) −823.135 −1.35087 −0.675433 0.737421i \(-0.736043\pi\)
−0.675433 + 0.737421i \(0.736043\pi\)
\(14\) 0 0
\(15\) 2044.23 2.34586
\(16\) 0 0
\(17\) −72.7837 126.065i −0.0610818 0.105797i 0.833867 0.551965i \(-0.186122\pi\)
−0.894949 + 0.446168i \(0.852788\pi\)
\(18\) 0 0
\(19\) −884.019 + 1531.17i −0.561794 + 0.973056i 0.435546 + 0.900167i \(0.356555\pi\)
−0.997340 + 0.0728898i \(0.976778\pi\)
\(20\) 0 0
\(21\) 2337.06 2139.50i 1.15644 1.05868i
\(22\) 0 0
\(23\) 761.363 1318.72i 0.300104 0.519796i −0.676055 0.736851i \(-0.736312\pi\)
0.976159 + 0.217055i \(0.0696453\pi\)
\(24\) 0 0
\(25\) −1935.48 3352.35i −0.619353 1.07275i
\(26\) 0 0
\(27\) 2720.90 0.718297
\(28\) 0 0
\(29\) −741.943 −0.163823 −0.0819116 0.996640i \(-0.526103\pi\)
−0.0819116 + 0.996640i \(0.526103\pi\)
\(30\) 0 0
\(31\) 1602.09 + 2774.90i 0.299421 + 0.518612i 0.976004 0.217755i \(-0.0698732\pi\)
−0.676583 + 0.736367i \(0.736540\pi\)
\(32\) 0 0
\(33\) −6711.88 + 11625.3i −1.07290 + 1.85832i
\(34\) 0 0
\(35\) −10340.1 3265.57i −1.42677 0.450597i
\(36\) 0 0
\(37\) 1774.77 3074.00i 0.213127 0.369147i −0.739564 0.673086i \(-0.764968\pi\)
0.952692 + 0.303939i \(0.0983018\pi\)
\(38\) 0 0
\(39\) 10058.8 + 17422.4i 1.05898 + 1.83420i
\(40\) 0 0
\(41\) −6461.29 −0.600288 −0.300144 0.953894i \(-0.597035\pi\)
−0.300144 + 0.953894i \(0.597035\pi\)
\(42\) 0 0
\(43\) 6716.00 0.553910 0.276955 0.960883i \(-0.410675\pi\)
0.276955 + 0.960883i \(0.410675\pi\)
\(44\) 0 0
\(45\) −14818.3 25666.1i −1.09086 1.88942i
\(46\) 0 0
\(47\) 9588.40 16607.6i 0.633143 1.09664i −0.353763 0.935335i \(-0.615098\pi\)
0.986905 0.161300i \(-0.0515687\pi\)
\(48\) 0 0
\(49\) −15239.0 + 7088.59i −0.906706 + 0.421764i
\(50\) 0 0
\(51\) −1778.86 + 3081.07i −0.0957669 + 0.165873i
\(52\) 0 0
\(53\) 10639.3 + 18427.8i 0.520263 + 0.901123i 0.999722 + 0.0235583i \(0.00749954\pi\)
−0.479459 + 0.877564i \(0.659167\pi\)
\(54\) 0 0
\(55\) 45940.0 2.04778
\(56\) 0 0
\(57\) 43211.4 1.76161
\(58\) 0 0
\(59\) −18264.3 31634.8i −0.683083 1.18314i −0.974035 0.226397i \(-0.927305\pi\)
0.290952 0.956738i \(-0.406028\pi\)
\(60\) 0 0
\(61\) −21716.9 + 37614.7i −0.747262 + 1.29430i 0.201869 + 0.979413i \(0.435299\pi\)
−0.949130 + 0.314883i \(0.898035\pi\)
\(62\) 0 0
\(63\) −43803.2 13833.8i −1.39045 0.439127i
\(64\) 0 0
\(65\) 34424.3 59624.6i 1.01060 1.75042i
\(66\) 0 0
\(67\) −2514.07 4354.50i −0.0684212 0.118509i 0.829785 0.558083i \(-0.188463\pi\)
−0.898207 + 0.439574i \(0.855130\pi\)
\(68\) 0 0
\(69\) −37215.9 −0.941034
\(70\) 0 0
\(71\) −6311.32 −0.148585 −0.0742923 0.997237i \(-0.523670\pi\)
−0.0742923 + 0.997237i \(0.523670\pi\)
\(72\) 0 0
\(73\) 21299.0 + 36890.9i 0.467790 + 0.810236i 0.999323 0.0368015i \(-0.0117169\pi\)
−0.531532 + 0.847038i \(0.678384\pi\)
\(74\) 0 0
\(75\) −47303.7 + 81932.4i −0.971051 + 1.68191i
\(76\) 0 0
\(77\) 52520.7 48080.9i 1.00949 0.924156i
\(78\) 0 0
\(79\) −47534.6 + 82332.3i −0.856923 + 1.48423i 0.0179267 + 0.999839i \(0.494293\pi\)
−0.874850 + 0.484395i \(0.839040\pi\)
\(80\) 0 0
\(81\) 9801.05 + 16975.9i 0.165982 + 0.287489i
\(82\) 0 0
\(83\) −34978.2 −0.557318 −0.278659 0.960390i \(-0.589890\pi\)
−0.278659 + 0.960390i \(0.589890\pi\)
\(84\) 0 0
\(85\) 12175.5 0.182785
\(86\) 0 0
\(87\) 9066.66 + 15703.9i 0.128425 + 0.222438i
\(88\) 0 0
\(89\) −50276.7 + 87081.8i −0.672809 + 1.16534i 0.304295 + 0.952578i \(0.401579\pi\)
−0.977104 + 0.212762i \(0.931754\pi\)
\(90\) 0 0
\(91\) −23047.8 104194.i −0.291760 1.31898i
\(92\) 0 0
\(93\) 39155.5 67819.3i 0.469446 0.813104i
\(94\) 0 0
\(95\) −73940.9 128069.i −0.840574 1.45592i
\(96\) 0 0
\(97\) 76794.5 0.828707 0.414353 0.910116i \(-0.364008\pi\)
0.414353 + 0.910116i \(0.364008\pi\)
\(98\) 0 0
\(99\) 194614. 1.99565
\(100\) 0 0
\(101\) −57020.2 98761.9i −0.556193 0.963355i −0.997810 0.0661508i \(-0.978928\pi\)
0.441617 0.897204i \(-0.354405\pi\)
\(102\) 0 0
\(103\) 61818.5 107073.i 0.574150 0.994457i −0.421983 0.906604i \(-0.638666\pi\)
0.996133 0.0878533i \(-0.0280007\pi\)
\(104\) 0 0
\(105\) 57238.5 + 258763.i 0.506658 + 2.29049i
\(106\) 0 0
\(107\) 11670.1 20213.2i 0.0985404 0.170677i −0.812540 0.582905i \(-0.801916\pi\)
0.911081 + 0.412228i \(0.135249\pi\)
\(108\) 0 0
\(109\) 13601.6 + 23558.6i 0.109654 + 0.189926i 0.915630 0.402022i \(-0.131692\pi\)
−0.805976 + 0.591948i \(0.798359\pi\)
\(110\) 0 0
\(111\) −86752.1 −0.668302
\(112\) 0 0
\(113\) −157394. −1.15955 −0.579777 0.814775i \(-0.696860\pi\)
−0.579777 + 0.814775i \(0.696860\pi\)
\(114\) 0 0
\(115\) 63681.8 + 110300.i 0.449025 + 0.777734i
\(116\) 0 0
\(117\) 145830. 252585.i 0.984878 1.70586i
\(118\) 0 0
\(119\) 13919.6 12742.9i 0.0901073 0.0824901i
\(120\) 0 0
\(121\) −70310.3 + 121781.i −0.436572 + 0.756165i
\(122\) 0 0
\(123\) 78958.0 + 136759.i 0.470580 + 0.815068i
\(124\) 0 0
\(125\) 62393.2 0.357160
\(126\) 0 0
\(127\) −253263. −1.39336 −0.696679 0.717383i \(-0.745340\pi\)
−0.696679 + 0.717383i \(0.745340\pi\)
\(128\) 0 0
\(129\) −82070.5 142150.i −0.434223 0.752097i
\(130\) 0 0
\(131\) 57772.6 100065.i 0.294133 0.509453i −0.680650 0.732609i \(-0.738302\pi\)
0.974783 + 0.223156i \(0.0716358\pi\)
\(132\) 0 0
\(133\) −218570. 69028.2i −1.07143 0.338374i
\(134\) 0 0
\(135\) −113791. + 197091.i −0.537369 + 0.930750i
\(136\) 0 0
\(137\) 103904. + 179967.i 0.472966 + 0.819202i 0.999521 0.0309393i \(-0.00984986\pi\)
−0.526555 + 0.850141i \(0.676517\pi\)
\(138\) 0 0
\(139\) −28993.1 −0.127279 −0.0636395 0.997973i \(-0.520271\pi\)
−0.0636395 + 0.997973i \(0.520271\pi\)
\(140\) 0 0
\(141\) −468687. −1.98534
\(142\) 0 0
\(143\) 226052. + 391533.i 0.924417 + 1.60114i
\(144\) 0 0
\(145\) 31028.7 53743.4i 0.122559 0.212278i
\(146\) 0 0
\(147\) 336260. + 235924.i 1.28346 + 0.900489i
\(148\) 0 0
\(149\) 165490. 286637.i 0.610668 1.05771i −0.380460 0.924798i \(-0.624234\pi\)
0.991128 0.132911i \(-0.0424325\pi\)
\(150\) 0 0
\(151\) −54428.3 94272.6i −0.194260 0.336468i 0.752398 0.658709i \(-0.228897\pi\)
−0.946658 + 0.322241i \(0.895564\pi\)
\(152\) 0 0
\(153\) 51578.7 0.178132
\(154\) 0 0
\(155\) −268003. −0.896005
\(156\) 0 0
\(157\) 248873. + 431060.i 0.805801 + 1.39569i 0.915749 + 0.401752i \(0.131598\pi\)
−0.109947 + 0.993937i \(0.535068\pi\)
\(158\) 0 0
\(159\) 260028. 450381.i 0.815693 1.41282i
\(160\) 0 0
\(161\) 188244. + 59450.7i 0.572344 + 0.180756i
\(162\) 0 0
\(163\) 179551. 310992.i 0.529321 0.916811i −0.470094 0.882616i \(-0.655780\pi\)
0.999415 0.0341950i \(-0.0108867\pi\)
\(164\) 0 0
\(165\) −561394. 972362.i −1.60531 2.78047i
\(166\) 0 0
\(167\) −50645.2 −0.140523 −0.0702614 0.997529i \(-0.522383\pi\)
−0.0702614 + 0.997529i \(0.522383\pi\)
\(168\) 0 0
\(169\) 306258. 0.824841
\(170\) 0 0
\(171\) −313233. 542536.i −0.819176 1.41885i
\(172\) 0 0
\(173\) −151595. + 262569.i −0.385095 + 0.667005i −0.991782 0.127936i \(-0.959165\pi\)
0.606687 + 0.794941i \(0.292498\pi\)
\(174\) 0 0
\(175\) 370153. 338862.i 0.913664 0.836428i
\(176\) 0 0
\(177\) −446386. + 773163.i −1.07097 + 1.85497i
\(178\) 0 0
\(179\) 341272. + 591100.i 0.796100 + 1.37889i 0.922138 + 0.386860i \(0.126440\pi\)
−0.126039 + 0.992025i \(0.540226\pi\)
\(180\) 0 0
\(181\) 182455. 0.413961 0.206980 0.978345i \(-0.433636\pi\)
0.206980 + 0.978345i \(0.433636\pi\)
\(182\) 0 0
\(183\) 1.06153e6 2.34318
\(184\) 0 0
\(185\) 148445. + 257115.i 0.318888 + 0.552329i
\(186\) 0 0
\(187\) −39976.2 + 69240.8i −0.0835983 + 0.144796i
\(188\) 0 0
\(189\) 76185.3 + 344418.i 0.155138 + 0.701343i
\(190\) 0 0
\(191\) −341772. + 591966.i −0.677879 + 1.17412i 0.297739 + 0.954647i \(0.403768\pi\)
−0.975618 + 0.219474i \(0.929566\pi\)
\(192\) 0 0
\(193\) −473251. 819696.i −0.914532 1.58402i −0.807586 0.589750i \(-0.799226\pi\)
−0.106946 0.994265i \(-0.534107\pi\)
\(194\) 0 0
\(195\) −1.68268e6 −3.16894
\(196\) 0 0
\(197\) −184209. −0.338178 −0.169089 0.985601i \(-0.554082\pi\)
−0.169089 + 0.985601i \(0.554082\pi\)
\(198\) 0 0
\(199\) −34103.3 59068.6i −0.0610469 0.105736i 0.833887 0.551936i \(-0.186111\pi\)
−0.894934 + 0.446199i \(0.852777\pi\)
\(200\) 0 0
\(201\) −61444.7 + 106425.i −0.107274 + 0.185804i
\(202\) 0 0
\(203\) −20774.4 93916.6i −0.0353825 0.159957i
\(204\) 0 0
\(205\) 270217. 468030.i 0.449085 0.777837i
\(206\) 0 0
\(207\) 269773. + 467260.i 0.437594 + 0.757936i
\(208\) 0 0
\(209\) 971088. 1.53778
\(210\) 0 0
\(211\) −1.19270e6 −1.84427 −0.922134 0.386871i \(-0.873556\pi\)
−0.922134 + 0.386871i \(0.873556\pi\)
\(212\) 0 0
\(213\) 77125.2 + 133585.i 0.116479 + 0.201748i
\(214\) 0 0
\(215\) −280869. + 486480.i −0.414389 + 0.717743i
\(216\) 0 0
\(217\) −306394. + 280493.i −0.441703 + 0.404364i
\(218\) 0 0
\(219\) 520553. 901624.i 0.733423 1.27033i
\(220\) 0 0
\(221\) 59910.8 + 103769.i 0.0825134 + 0.142917i
\(222\) 0 0
\(223\) 200502. 0.269995 0.134998 0.990846i \(-0.456897\pi\)
0.134998 + 0.990846i \(0.456897\pi\)
\(224\) 0 0
\(225\) 1.37159e6 1.80621
\(226\) 0 0
\(227\) −145384. 251813.i −0.187264 0.324350i 0.757073 0.653330i \(-0.226629\pi\)
−0.944337 + 0.328980i \(0.893295\pi\)
\(228\) 0 0
\(229\) −472471. + 818344.i −0.595369 + 1.03121i 0.398125 + 0.917331i \(0.369661\pi\)
−0.993495 + 0.113879i \(0.963672\pi\)
\(230\) 0 0
\(231\) −1.65949e6 524094.i −2.04618 0.646218i
\(232\) 0 0
\(233\) −108192. + 187394.i −0.130558 + 0.226134i −0.923892 0.382653i \(-0.875010\pi\)
0.793334 + 0.608787i \(0.208344\pi\)
\(234\) 0 0
\(235\) 801991. + 1.38909e6i 0.947327 + 1.64082i
\(236\) 0 0
\(237\) 2.32352e6 2.68705
\(238\) 0 0
\(239\) −668807. −0.757366 −0.378683 0.925526i \(-0.623623\pi\)
−0.378683 + 0.925526i \(0.623623\pi\)
\(240\) 0 0
\(241\) −578006. 1.00114e6i −0.641047 1.11033i −0.985199 0.171413i \(-0.945167\pi\)
0.344152 0.938914i \(-0.388166\pi\)
\(242\) 0 0
\(243\) 570131. 987495.i 0.619382 1.07280i
\(244\) 0 0
\(245\) 123840. 1.40030e6i 0.131809 1.49041i
\(246\) 0 0
\(247\) 727666. 1.26036e6i 0.758909 1.31447i
\(248\) 0 0
\(249\) 427439. + 740347.i 0.436894 + 0.756723i
\(250\) 0 0
\(251\) −77574.9 −0.0777207 −0.0388604 0.999245i \(-0.512373\pi\)
−0.0388604 + 0.999245i \(0.512373\pi\)
\(252\) 0 0
\(253\) −836351. −0.821462
\(254\) 0 0
\(255\) −148787. 257706.i −0.143289 0.248184i
\(256\) 0 0
\(257\) 140101. 242662.i 0.132315 0.229176i −0.792254 0.610192i \(-0.791092\pi\)
0.924569 + 0.381016i \(0.124426\pi\)
\(258\) 0 0
\(259\) 438807. + 138583.i 0.406466 + 0.128369i
\(260\) 0 0
\(261\) 131446. 227671.i 0.119439 0.206874i
\(262\) 0 0
\(263\) 134983. + 233797.i 0.120334 + 0.208425i 0.919900 0.392154i \(-0.128270\pi\)
−0.799565 + 0.600579i \(0.794937\pi\)
\(264\) 0 0
\(265\) −1.77978e6 −1.55687
\(266\) 0 0
\(267\) 2.45756e6 2.10972
\(268\) 0 0
\(269\) −445133. 770994.i −0.375068 0.649636i 0.615270 0.788317i \(-0.289047\pi\)
−0.990337 + 0.138681i \(0.955714\pi\)
\(270\) 0 0
\(271\) −192140. + 332796.i −0.158926 + 0.275267i −0.934482 0.356012i \(-0.884136\pi\)
0.775556 + 0.631279i \(0.217470\pi\)
\(272\) 0 0
\(273\) −1.92372e6 + 1.76109e6i −1.56219 + 1.43013i
\(274\) 0 0
\(275\) −1.06305e6 + 1.84126e6i −0.847664 + 1.46820i
\(276\) 0 0
\(277\) 545967. + 945642.i 0.427530 + 0.740504i 0.996653 0.0817484i \(-0.0260504\pi\)
−0.569123 + 0.822253i \(0.692717\pi\)
\(278\) 0 0
\(279\) −1.13533e6 −0.873196
\(280\) 0 0
\(281\) 771640. 0.582974 0.291487 0.956575i \(-0.405850\pi\)
0.291487 + 0.956575i \(0.405850\pi\)
\(282\) 0 0
\(283\) 270902. + 469217.i 0.201070 + 0.348263i 0.948873 0.315657i \(-0.102225\pi\)
−0.747804 + 0.663920i \(0.768892\pi\)
\(284\) 0 0
\(285\) −1.80714e6 + 3.13006e6i −1.31789 + 2.28265i
\(286\) 0 0
\(287\) −180916. 817883.i −0.129650 0.586120i
\(288\) 0 0
\(289\) 699334. 1.21128e6i 0.492538 0.853101i
\(290\) 0 0
\(291\) −938441. 1.62543e6i −0.649643 1.12521i
\(292\) 0 0
\(293\) 1.69804e6 1.15552 0.577762 0.816205i \(-0.303926\pi\)
0.577762 + 0.816205i \(0.303926\pi\)
\(294\) 0 0
\(295\) 3.05532e6 2.04410
\(296\) 0 0
\(297\) −747224. 1.29423e6i −0.491541 0.851373i
\(298\) 0 0
\(299\) −626704. + 1.08548e6i −0.405401 + 0.702175i
\(300\) 0 0
\(301\) 188048. + 850125.i 0.119633 + 0.540837i
\(302\) 0 0
\(303\) −1.39359e6 + 2.41377e6i −0.872025 + 1.51039i
\(304\) 0 0
\(305\) −1.81644e6 3.14617e6i −1.11808 1.93656i
\(306\) 0 0
\(307\) −288376. −0.174627 −0.0873137 0.996181i \(-0.527828\pi\)
−0.0873137 + 0.996181i \(0.527828\pi\)
\(308\) 0 0
\(309\) −3.02173e6 −1.80036
\(310\) 0 0
\(311\) −173801. 301032.i −0.101894 0.176486i 0.810571 0.585641i \(-0.199157\pi\)
−0.912465 + 0.409154i \(0.865824\pi\)
\(312\) 0 0
\(313\) 385201. 667188.i 0.222242 0.384935i −0.733246 0.679963i \(-0.761996\pi\)
0.955489 + 0.295028i \(0.0953290\pi\)
\(314\) 0 0
\(315\) 2.83396e6 2.59439e6i 1.60922 1.47319i
\(316\) 0 0
\(317\) 1.00876e6 1.74722e6i 0.563819 0.976564i −0.433339 0.901231i \(-0.642665\pi\)
0.997158 0.0753328i \(-0.0240019\pi\)
\(318\) 0 0
\(319\) 203755. + 352914.i 0.112107 + 0.194174i
\(320\) 0 0
\(321\) −570441. −0.308993
\(322\) 0 0
\(323\) 257369. 0.137262
\(324\) 0 0
\(325\) 1.59316e6 + 2.75943e6i 0.836664 + 1.44914i
\(326\) 0 0
\(327\) 332427. 575780.i 0.171920 0.297775i
\(328\) 0 0
\(329\) 2.37070e6 + 748706.i 1.20750 + 0.381348i
\(330\) 0 0
\(331\) −212966. + 368868.i −0.106842 + 0.185055i −0.914489 0.404610i \(-0.867407\pi\)
0.807648 + 0.589666i \(0.200740\pi\)
\(332\) 0 0
\(333\) 628853. + 1.08921e6i 0.310770 + 0.538269i
\(334\) 0 0
\(335\) 420563. 0.204748
\(336\) 0 0
\(337\) 1.15035e6 0.551767 0.275884 0.961191i \(-0.411030\pi\)
0.275884 + 0.961191i \(0.411030\pi\)
\(338\) 0 0
\(339\) 1.92338e6 + 3.33138e6i 0.909002 + 1.57444i
\(340\) 0 0
\(341\) 879941. 1.52410e6i 0.409796 0.709787i
\(342\) 0 0
\(343\) −1.32398e6 1.73050e6i −0.607640 0.794213i
\(344\) 0 0
\(345\) 1.55640e6 2.69577e6i 0.704002 1.21937i
\(346\) 0 0
\(347\) 156568. + 271184.i 0.0698039 + 0.120904i 0.898815 0.438328i \(-0.144429\pi\)
−0.829011 + 0.559232i \(0.811096\pi\)
\(348\) 0 0
\(349\) −3.01459e6 −1.32484 −0.662422 0.749131i \(-0.730471\pi\)
−0.662422 + 0.749131i \(0.730471\pi\)
\(350\) 0 0
\(351\) −2.23967e6 −0.970323
\(352\) 0 0
\(353\) −2.19230e6 3.79717e6i −0.936404 1.62190i −0.772111 0.635487i \(-0.780799\pi\)
−0.164292 0.986412i \(-0.552534\pi\)
\(354\) 0 0
\(355\) 263945. 457166.i 0.111158 0.192532i
\(356\) 0 0
\(357\) −439816. 138901.i −0.182642 0.0576813i
\(358\) 0 0
\(359\) 96327.8 166845.i 0.0394471 0.0683244i −0.845628 0.533773i \(-0.820774\pi\)
0.885075 + 0.465449i \(0.154107\pi\)
\(360\) 0 0
\(361\) −324928. 562792.i −0.131226 0.227290i
\(362\) 0 0
\(363\) 3.43681e6 1.36896
\(364\) 0 0
\(365\) −3.56297e6 −1.39984
\(366\) 0 0
\(367\) 1.16991e6 + 2.02634e6i 0.453405 + 0.785320i 0.998595 0.0529924i \(-0.0168759\pi\)
−0.545190 + 0.838312i \(0.683543\pi\)
\(368\) 0 0
\(369\) 1.14471e6 1.98270e6i 0.437653 0.758037i
\(370\) 0 0
\(371\) −2.03473e6 + 1.86272e6i −0.767488 + 0.702608i
\(372\) 0 0
\(373\) −1.96217e6 + 3.39857e6i −0.730237 + 1.26481i 0.226545 + 0.974001i \(0.427257\pi\)
−0.956782 + 0.290806i \(0.906077\pi\)
\(374\) 0 0
\(375\) −762455. 1.32061e6i −0.279986 0.484950i
\(376\) 0 0
\(377\) 610719. 0.221303
\(378\) 0 0
\(379\) −3.26556e6 −1.16778 −0.583889 0.811834i \(-0.698470\pi\)
−0.583889 + 0.811834i \(0.698470\pi\)
\(380\) 0 0
\(381\) 3.09492e6 + 5.36055e6i 1.09229 + 1.89190i
\(382\) 0 0
\(383\) 2.21488e6 3.83628e6i 0.771529 1.33633i −0.165195 0.986261i \(-0.552825\pi\)
0.936725 0.350067i \(-0.113841\pi\)
\(384\) 0 0
\(385\) 1.28632e6 + 5.81517e6i 0.442280 + 1.99945i
\(386\) 0 0
\(387\) −1.18984e6 + 2.06086e6i −0.403840 + 0.699472i
\(388\) 0 0
\(389\) 2.55733e6 + 4.42943e6i 0.856867 + 1.48414i 0.874902 + 0.484300i \(0.160926\pi\)
−0.0180345 + 0.999837i \(0.505741\pi\)
\(390\) 0 0
\(391\) −221659. −0.0733236
\(392\) 0 0
\(393\) −2.82396e6 −0.922311
\(394\) 0 0
\(395\) −3.97588e6 6.88642e6i −1.28215 2.22076i
\(396\) 0 0
\(397\) 770944. 1.33531e6i 0.245497 0.425214i −0.716774 0.697306i \(-0.754382\pi\)
0.962271 + 0.272092i \(0.0877154\pi\)
\(398\) 0 0
\(399\) 1.20992e6 + 5.46978e6i 0.380473 + 1.72004i
\(400\) 0 0
\(401\) −2.72114e6 + 4.71315e6i −0.845064 + 1.46369i 0.0405025 + 0.999179i \(0.487104\pi\)
−0.885566 + 0.464514i \(0.846229\pi\)
\(402\) 0 0
\(403\) −1.31873e6 2.28411e6i −0.404478 0.700576i
\(404\) 0 0
\(405\) −1.63956e6 −0.496694
\(406\) 0 0
\(407\) −1.94958e6 −0.583384
\(408\) 0 0
\(409\) −2.59241e6 4.49019e6i −0.766294 1.32726i −0.939560 0.342385i \(-0.888765\pi\)
0.173265 0.984875i \(-0.444568\pi\)
\(410\) 0 0
\(411\) 2.53944e6 4.39844e6i 0.741539 1.28438i
\(412\) 0 0
\(413\) 3.49299e6 3.19771e6i 1.00768 0.922494i
\(414\) 0 0
\(415\) 1.46282e6 2.53368e6i 0.416938 0.722157i
\(416\) 0 0
\(417\) 354300. + 613665.i 0.0997770 + 0.172819i
\(418\) 0 0
\(419\) −2.17093e6 −0.604102 −0.302051 0.953292i \(-0.597671\pi\)
−0.302051 + 0.953292i \(0.597671\pi\)
\(420\) 0 0
\(421\) 6.61967e6 1.82025 0.910125 0.414334i \(-0.135986\pi\)
0.910125 + 0.414334i \(0.135986\pi\)
\(422\) 0 0
\(423\) 3.39744e6 + 5.88455e6i 0.923212 + 1.59905i
\(424\) 0 0
\(425\) −281743. + 487992.i −0.0756624 + 0.131051i
\(426\) 0 0
\(427\) −5.36942e6 1.69575e6i −1.42514 0.450083i
\(428\) 0 0
\(429\) 5.52478e6 9.56920e6i 1.44934 2.51034i
\(430\) 0 0
\(431\) 1.44992e6 + 2.51134e6i 0.375968 + 0.651196i 0.990471 0.137718i \(-0.0439768\pi\)
−0.614503 + 0.788914i \(0.710643\pi\)
\(432\) 0 0
\(433\) 4.71803e6 1.20932 0.604659 0.796484i \(-0.293309\pi\)
0.604659 + 0.796484i \(0.293309\pi\)
\(434\) 0 0
\(435\) −1.51670e6 −0.384306
\(436\) 0 0
\(437\) 1.34612e6 + 2.33154e6i 0.337194 + 0.584036i
\(438\) 0 0
\(439\) 1.73850e6 3.01117e6i 0.430540 0.745718i −0.566379 0.824145i \(-0.691656\pi\)
0.996920 + 0.0784267i \(0.0249896\pi\)
\(440\) 0 0
\(441\) 524619. 5.93205e6i 0.128454 1.45247i
\(442\) 0 0
\(443\) −3.64829e6 + 6.31902e6i −0.883243 + 1.52982i −0.0355278 + 0.999369i \(0.511311\pi\)
−0.847715 + 0.530452i \(0.822022\pi\)
\(444\) 0 0
\(445\) −4.20524e6 7.28368e6i −1.00668 1.74362i
\(446\) 0 0
\(447\) −8.08924e6 −1.91487
\(448\) 0 0
\(449\) 3.65867e6 0.856462 0.428231 0.903669i \(-0.359137\pi\)
0.428231 + 0.903669i \(0.359137\pi\)
\(450\) 0 0
\(451\) 1.77442e6 + 3.07339e6i 0.410786 + 0.711501i
\(452\) 0 0
\(453\) −1.33025e6 + 2.30405e6i −0.304569 + 0.527530i
\(454\) 0 0
\(455\) 8.51127e6 + 2.68800e6i 1.92737 + 0.608697i
\(456\) 0 0
\(457\) −3.22031e6 + 5.57774e6i −0.721286 + 1.24930i 0.239199 + 0.970971i \(0.423115\pi\)
−0.960485 + 0.278333i \(0.910218\pi\)
\(458\) 0 0
\(459\) −198037. 343011.i −0.0438748 0.0759935i
\(460\) 0 0
\(461\) 4.47898e6 0.981583 0.490791 0.871277i \(-0.336708\pi\)
0.490791 + 0.871277i \(0.336708\pi\)
\(462\) 0 0
\(463\) −2.11214e6 −0.457899 −0.228949 0.973438i \(-0.573529\pi\)
−0.228949 + 0.973438i \(0.573529\pi\)
\(464\) 0 0
\(465\) 3.27504e6 + 5.67253e6i 0.702399 + 1.21659i
\(466\) 0 0
\(467\) −3.92919e6 + 6.80556e6i −0.833702 + 1.44401i 0.0613806 + 0.998114i \(0.480450\pi\)
−0.895083 + 0.445900i \(0.852884\pi\)
\(468\) 0 0
\(469\) 480808. 440162.i 0.100934 0.0924019i
\(470\) 0 0
\(471\) 6.08252e6 1.05352e7i 1.26337 2.18823i
\(472\) 0 0
\(473\) −1.84437e6 3.19454e6i −0.379049 0.656532i
\(474\) 0 0
\(475\) 6.84400e6 1.39180
\(476\) 0 0
\(477\) −7.53961e6 −1.51724
\(478\) 0 0
\(479\) −4.24373e6 7.35035e6i −0.845101 1.46376i −0.885533 0.464576i \(-0.846207\pi\)
0.0404324 0.999182i \(-0.487126\pi\)
\(480\) 0 0
\(481\) −1.46088e6 + 2.53032e6i −0.287907 + 0.498669i
\(482\) 0 0
\(483\) −1.04204e6 4.71086e6i −0.203244 0.918824i
\(484\) 0 0
\(485\) −3.21162e6 + 5.56269e6i −0.619968 + 1.07382i
\(486\) 0 0
\(487\) −1.37808e6 2.38691e6i −0.263301 0.456051i 0.703816 0.710382i \(-0.251478\pi\)
−0.967117 + 0.254331i \(0.918145\pi\)
\(488\) 0 0
\(489\) −8.77658e6 −1.65979
\(490\) 0 0
\(491\) 2.45533e6 0.459628 0.229814 0.973235i \(-0.426188\pi\)
0.229814 + 0.973235i \(0.426188\pi\)
\(492\) 0 0
\(493\) 54001.3 + 93533.1i 0.0100066 + 0.0173320i
\(494\) 0 0
\(495\) −8.13892e6 + 1.40970e7i −1.49298 + 2.58592i
\(496\) 0 0
\(497\) −176717. 798899.i −0.0320913 0.145078i
\(498\) 0 0
\(499\) 2.22925e6 3.86117e6i 0.400781 0.694172i −0.593040 0.805173i \(-0.702072\pi\)
0.993820 + 0.111001i \(0.0354056\pi\)
\(500\) 0 0
\(501\) 618892. + 1.07195e6i 0.110159 + 0.190801i
\(502\) 0 0
\(503\) 2.64080e6 0.465389 0.232694 0.972550i \(-0.425246\pi\)
0.232694 + 0.972550i \(0.425246\pi\)
\(504\) 0 0
\(505\) 9.53856e6 1.66439
\(506\) 0 0
\(507\) −3.74252e6 6.48223e6i −0.646612 1.11997i
\(508\) 0 0
\(509\) −2.35520e6 + 4.07933e6i −0.402934 + 0.697902i −0.994079 0.108663i \(-0.965343\pi\)
0.591145 + 0.806566i \(0.298676\pi\)
\(510\) 0 0
\(511\) −4.07335e6 + 3.72901e6i −0.690080 + 0.631744i
\(512\) 0 0
\(513\) −2.40533e6 + 4.16615e6i −0.403535 + 0.698943i
\(514\) 0 0
\(515\) 5.17061e6 + 8.95576e6i 0.859061 + 1.48794i
\(516\) 0 0
\(517\) −1.05328e7 −1.73307
\(518\) 0 0
\(519\) 7.41003e6 1.20754
\(520\) 0 0
\(521\) 1.40134e6 + 2.42720e6i 0.226178 + 0.391752i 0.956672 0.291167i \(-0.0940436\pi\)
−0.730494 + 0.682919i \(0.760710\pi\)
\(522\) 0 0
\(523\) 1.49878e6 2.59596e6i 0.239598 0.414995i −0.721001 0.692934i \(-0.756318\pi\)
0.960599 + 0.277939i \(0.0896512\pi\)
\(524\) 0 0
\(525\) −1.16957e7 3.69369e6i −1.85194 0.584874i
\(526\) 0 0
\(527\) 233212. 403934.i 0.0365783 0.0633555i
\(528\) 0 0
\(529\) 2.05883e6 + 3.56599e6i 0.319875 + 0.554040i
\(530\) 0 0
\(531\) 1.29431e7 1.99207
\(532\) 0 0
\(533\) 5.31851e6 0.810909
\(534\) 0 0
\(535\) 976107. + 1.69067e6i 0.147439 + 0.255372i
\(536\) 0 0
\(537\) 8.34078e6 1.44467e7i 1.24816 2.16188i
\(538\) 0 0
\(539\) 7.55675e6 + 5.30191e6i 1.12037 + 0.786069i
\(540\) 0 0
\(541\) −1.65252e6 + 2.86225e6i −0.242747 + 0.420450i −0.961496 0.274820i \(-0.911382\pi\)
0.718749 + 0.695270i \(0.244715\pi\)
\(542\) 0 0
\(543\) −2.22963e6 3.86183e6i −0.324514 0.562074i
\(544\) 0 0
\(545\) −2.27532e6 −0.328135
\(546\) 0 0
\(547\) 3.51435e6 0.502201 0.251100 0.967961i \(-0.419208\pi\)
0.251100 + 0.967961i \(0.419208\pi\)
\(548\) 0 0
\(549\) −7.69491e6 1.33280e7i −1.08961 1.88727i
\(550\) 0 0
\(551\) 655891. 1.13604e6i 0.0920350 0.159409i
\(552\) 0 0
\(553\) −1.17528e7 3.71172e6i −1.63428 0.516133i
\(554\) 0 0
\(555\) 3.62805e6 6.28397e6i 0.499967 0.865968i
\(556\) 0 0
\(557\) 2.99093e6 + 5.18045e6i 0.408478 + 0.707505i 0.994719 0.102632i \(-0.0327263\pi\)
−0.586241 + 0.810137i \(0.699393\pi\)
\(558\) 0 0
\(559\) −5.52817e6 −0.748259
\(560\) 0 0
\(561\) 1.95406e6 0.262138
\(562\) 0 0
\(563\) −5.36921e6 9.29974e6i −0.713903 1.23652i −0.963381 0.268136i \(-0.913592\pi\)
0.249478 0.968380i \(-0.419741\pi\)
\(564\) 0 0
\(565\) 6.58235e6 1.14010e7i 0.867481 1.50252i
\(566\) 0 0
\(567\) −1.87442e6 + 1.71596e6i −0.244855 + 0.224156i
\(568\) 0 0
\(569\) 3.29774e6 5.71186e6i 0.427008 0.739600i −0.569598 0.821924i \(-0.692901\pi\)
0.996606 + 0.0823241i \(0.0262343\pi\)
\(570\) 0 0
\(571\) 1.30789e6 + 2.26533e6i 0.167873 + 0.290764i 0.937672 0.347522i \(-0.112977\pi\)
−0.769799 + 0.638286i \(0.779644\pi\)
\(572\) 0 0
\(573\) 1.67060e7 2.12562
\(574\) 0 0
\(575\) −5.89440e6 −0.743482
\(576\) 0 0
\(577\) 619490. + 1.07299e6i 0.0774630 + 0.134170i 0.902155 0.431413i \(-0.141985\pi\)
−0.824692 + 0.565583i \(0.808651\pi\)
\(578\) 0 0
\(579\) −1.15664e7 + 2.00336e7i −1.43385 + 2.48349i
\(580\) 0 0
\(581\) −979391. 4.42761e6i −0.120369 0.544164i
\(582\) 0 0
\(583\) 5.84360e6 1.01214e7i 0.712047 1.23330i
\(584\) 0 0
\(585\) 1.21975e7 + 2.11267e7i 1.47360 + 2.55236i
\(586\) 0 0
\(587\) 1.02896e7 1.23254 0.616270 0.787535i \(-0.288643\pi\)
0.616270 + 0.787535i \(0.288643\pi\)
\(588\) 0 0
\(589\) −5.66510e6 −0.672852
\(590\) 0 0
\(591\) 2.25106e6 + 3.89895e6i 0.265105 + 0.459176i
\(592\) 0 0
\(593\) −7.65889e6 + 1.32656e7i −0.894394 + 1.54914i −0.0598415 + 0.998208i \(0.519060\pi\)
−0.834553 + 0.550928i \(0.814274\pi\)
\(594\) 0 0
\(595\) 340915. + 1.54120e6i 0.0394778 + 0.178471i
\(596\) 0 0
\(597\) −833495. + 1.44366e6i −0.0957122 + 0.165778i
\(598\) 0 0
\(599\) −1.34748e6 2.33391e6i −0.153446 0.265776i 0.779046 0.626967i \(-0.215704\pi\)
−0.932492 + 0.361190i \(0.882370\pi\)
\(600\) 0 0
\(601\) 1.54704e6 0.174709 0.0873547 0.996177i \(-0.472159\pi\)
0.0873547 + 0.996177i \(0.472159\pi\)
\(602\) 0 0
\(603\) 1.78162e6 0.199536
\(604\) 0 0
\(605\) −5.88088e6 1.01860e7i −0.653212 1.13140i
\(606\) 0 0
\(607\) −1.89569e6 + 3.28343e6i −0.208831 + 0.361706i −0.951347 0.308123i \(-0.900299\pi\)
0.742516 + 0.669829i \(0.233633\pi\)
\(608\) 0 0
\(609\) −1.73397e6 + 1.58738e6i −0.189451 + 0.173436i
\(610\) 0 0
\(611\) −7.89255e6 + 1.36703e7i −0.855291 + 1.48141i
\(612\) 0 0
\(613\) −3.09603e6 5.36249e6i −0.332778 0.576388i 0.650277 0.759697i \(-0.274653\pi\)
−0.983055 + 0.183308i \(0.941319\pi\)
\(614\) 0 0
\(615\) −1.32084e7 −1.40819
\(616\) 0 0
\(617\) −1.59349e7 −1.68514 −0.842571 0.538585i \(-0.818959\pi\)
−0.842571 + 0.538585i \(0.818959\pi\)
\(618\) 0 0
\(619\) 5.78660e6 + 1.00227e7i 0.607011 + 1.05137i 0.991730 + 0.128341i \(0.0409651\pi\)
−0.384719 + 0.923034i \(0.625702\pi\)
\(620\) 0 0
\(621\) 2.07159e6 3.58811e6i 0.215564 0.373367i
\(622\) 0 0
\(623\) −1.24307e7 3.92584e6i −1.28315 0.405240i
\(624\) 0 0
\(625\) 3.43903e6 5.95657e6i 0.352156 0.609953i
\(626\) 0 0
\(627\) −1.18668e7 2.05540e7i −1.20550 2.08798i
\(628\) 0 0
\(629\) −516699. −0.0520728
\(630\) 0 0
\(631\) 900933. 0.0900781 0.0450390 0.998985i \(-0.485659\pi\)
0.0450390 + 0.998985i \(0.485659\pi\)
\(632\) 0 0
\(633\) 1.45749e7 + 2.52445e7i 1.44576 + 2.50414i
\(634\) 0 0
\(635\) 1.05917e7 1.83454e7i 1.04239 1.80548i
\(636\) 0 0
\(637\) 1.25437e7 5.83487e6i 1.22484 0.569747i
\(638\) 0 0
\(639\) 1.11814e6 1.93667e6i 0.108329 0.187631i
\(640\) 0 0
\(641\) 424385. + 735057.i 0.0407958 + 0.0706604i 0.885702 0.464254i \(-0.153677\pi\)
−0.844907 + 0.534914i \(0.820344\pi\)
\(642\) 0 0
\(643\) −1.37977e7 −1.31607 −0.658036 0.752986i \(-0.728613\pi\)
−0.658036 + 0.752986i \(0.728613\pi\)
\(644\) 0 0
\(645\) 1.37291e7 1.29940
\(646\) 0 0
\(647\) 1.82675e6 + 3.16402e6i 0.171561 + 0.297152i 0.938966 0.344011i \(-0.111786\pi\)
−0.767405 + 0.641163i \(0.778452\pi\)
\(648\) 0 0
\(649\) −1.00316e7 + 1.73753e7i −0.934887 + 1.61927i
\(650\) 0 0
\(651\) 9.68106e6 + 3.05744e6i 0.895304 + 0.282752i
\(652\) 0 0
\(653\) −5.89558e6 + 1.02115e7i −0.541058 + 0.937140i 0.457786 + 0.889063i \(0.348643\pi\)
−0.998844 + 0.0480774i \(0.984691\pi\)
\(654\) 0 0
\(655\) 4.83221e6 + 8.36963e6i 0.440091 + 0.762260i
\(656\) 0 0
\(657\) −1.50937e7 −1.36421
\(658\) 0 0
\(659\) −1.15208e7 −1.03340 −0.516700 0.856166i \(-0.672840\pi\)
−0.516700 + 0.856166i \(0.672840\pi\)
\(660\) 0 0
\(661\) −2.68607e6 4.65241e6i −0.239119 0.414166i 0.721343 0.692578i \(-0.243525\pi\)
−0.960462 + 0.278412i \(0.910192\pi\)
\(662\) 0 0
\(663\) 1.46424e6 2.53613e6i 0.129368 0.224072i
\(664\) 0 0
\(665\) 1.41409e7 1.29455e7i 1.24001 1.13518i
\(666\) 0 0
\(667\) −564888. + 978414.i −0.0491640 + 0.0851546i
\(668\) 0 0
\(669\) −2.45016e6 4.24381e6i −0.211655 0.366598i
\(670\) 0 0
\(671\) 2.38558e7 2.04545
\(672\) 0 0
\(673\) 1.48042e7 1.25993 0.629966 0.776623i \(-0.283069\pi\)
0.629966 + 0.776623i \(0.283069\pi\)
\(674\) 0 0
\(675\) −5.26625e6 9.12142e6i −0.444879 0.770554i
\(676\) 0 0
\(677\) 2.95353e6 5.11567e6i 0.247668 0.428974i −0.715210 0.698909i \(-0.753669\pi\)
0.962878 + 0.269935i \(0.0870024\pi\)
\(678\) 0 0
\(679\) 2.15025e6 + 9.72080e6i 0.178984 + 0.809148i
\(680\) 0 0
\(681\) −3.55324e6 + 6.15439e6i −0.293601 + 0.508531i
\(682\) 0 0
\(683\) −1.10080e7 1.90663e7i −0.902932 1.56392i −0.823670 0.567070i \(-0.808077\pi\)
−0.0792618 0.996854i \(-0.525256\pi\)
\(684\) 0 0
\(685\) −1.73814e7 −1.41533
\(686\) 0 0
\(687\) 2.30947e7 1.86690
\(688\) 0 0
\(689\) −8.75757e6 1.51686e7i −0.702806 1.21730i
\(690\) 0 0
\(691\) −6.53254e6 + 1.13147e7i −0.520460 + 0.901463i 0.479257 + 0.877674i \(0.340906\pi\)
−0.999717 + 0.0237881i \(0.992427\pi\)
\(692\) 0 0
\(693\) 5.44918e6 + 2.46346e7i 0.431021 + 1.94855i
\(694\) 0 0
\(695\) 1.21252e6 2.10014e6i 0.0952194 0.164925i
\(696\) 0 0
\(697\) 470276. + 814543.i 0.0366667 + 0.0635085i
\(698\) 0 0
\(699\) 5.28848e6 0.409391
\(700\) 0 0
\(701\) 1.20043e7 0.922658 0.461329 0.887229i \(-0.347373\pi\)
0.461329 + 0.887229i \(0.347373\pi\)
\(702\) 0 0
\(703\) 3.13787e6 + 5.43495e6i 0.239467 + 0.414770i
\(704\) 0 0
\(705\) 1.96009e7 3.39498e7i 1.48526 2.57255i
\(706\) 0 0
\(707\) 1.09049e7 9.98307e6i 0.820491 0.751131i
\(708\) 0 0
\(709\) 8.23972e6 1.42716e7i 0.615597 1.06625i −0.374682 0.927153i \(-0.622248\pi\)
0.990279 0.139093i \(-0.0444185\pi\)
\(710\) 0 0
\(711\) −1.68429e7 2.91727e7i −1.24952 2.16422i
\(712\) 0 0
\(713\) 4.87908e6 0.359430
\(714\) 0 0
\(715\) −3.78148e7 −2.76628
\(716\) 0 0
\(717\) 8.17292e6 + 1.41559e7i 0.593717 + 1.02835i
\(718\) 0 0
\(719\) 3.66177e6 6.34237e6i 0.264161 0.457540i −0.703183 0.711009i \(-0.748238\pi\)
0.967343 + 0.253469i \(0.0815717\pi\)
\(720\) 0 0
\(721\) 1.52844e7 + 4.82707e6i 1.09499 + 0.345816i
\(722\) 0 0
\(723\) −1.41267e7 + 2.44681e7i −1.00506 + 1.74082i
\(724\) 0 0
\(725\) 1.43601e6 + 2.48725e6i 0.101464 + 0.175742i
\(726\) 0 0
\(727\) 1.83777e7 1.28960 0.644798 0.764353i \(-0.276941\pi\)
0.644798 + 0.764353i \(0.276941\pi\)
\(728\) 0 0
\(729\) −2.31050e7 −1.61023
\(730\) 0 0
\(731\) −488815. 846653.i −0.0338338 0.0586019i
\(732\) 0 0
\(733\) 5.92488e6 1.02622e7i 0.407305 0.705472i −0.587282 0.809382i \(-0.699802\pi\)
0.994587 + 0.103910i \(0.0331354\pi\)
\(734\) 0 0
\(735\) −3.11521e7 + 1.44907e7i −2.12700 + 0.989400i
\(736\) 0 0
\(737\) −1.38085e6 + 2.39170e6i −0.0936432 + 0.162195i
\(738\) 0 0
\(739\) 1.04756e7 + 1.81442e7i 0.705613 + 1.22216i 0.966470 + 0.256780i \(0.0826616\pi\)
−0.260857 + 0.965377i \(0.584005\pi\)
\(740\) 0 0
\(741\) −3.55688e7 −2.37971
\(742\) 0 0
\(743\) −1.42524e7 −0.947141 −0.473570 0.880756i \(-0.657035\pi\)
−0.473570 + 0.880756i \(0.657035\pi\)
\(744\) 0 0
\(745\) 1.38419e7 + 2.39748e7i 0.913701 + 1.58258i
\(746\) 0 0
\(747\) 6.19689e6 1.07333e7i 0.406324 0.703774i
\(748\) 0 0
\(749\) 2.88539e6 + 911253.i 0.187931 + 0.0593519i
\(750\) 0 0
\(751\) −659846. + 1.14289e6i −0.0426916 + 0.0739441i −0.886582 0.462572i \(-0.846927\pi\)
0.843890 + 0.536516i \(0.180260\pi\)
\(752\) 0 0
\(753\) 947977. + 1.64194e6i 0.0609271 + 0.105529i
\(754\) 0 0
\(755\) 9.10497e6 0.581315
\(756\) 0 0
\(757\) 102138. 0.00647812 0.00323906 0.999995i \(-0.498969\pi\)
0.00323906 + 0.999995i \(0.498969\pi\)
\(758\) 0 0
\(759\) 1.02203e7 + 1.77022e7i 0.643963 + 1.11538i
\(760\) 0 0
\(761\) −1.09596e7 + 1.89826e7i −0.686016 + 1.18821i 0.287100 + 0.957901i \(0.407309\pi\)
−0.973116 + 0.230314i \(0.926025\pi\)
\(762\) 0 0
\(763\) −2.60126e6 + 2.38136e6i −0.161760 + 0.148086i
\(764\) 0 0
\(765\) −2.15707e6 + 3.73615e6i −0.133263 + 0.230819i
\(766\) 0 0
\(767\) 1.50340e7 + 2.60397e7i 0.922755 + 1.59826i
\(768\) 0 0
\(769\) 6.44098e6 0.392768 0.196384 0.980527i \(-0.437080\pi\)
0.196384 + 0.980527i \(0.437080\pi\)
\(770\) 0 0
\(771\) −6.84823e6 −0.414899
\(772\) 0 0
\(773\) −1.45580e6 2.52152e6i −0.0876302 0.151780i 0.818879 0.573966i \(-0.194596\pi\)
−0.906509 + 0.422187i \(0.861263\pi\)
\(774\) 0 0
\(775\) 6.20161e6 1.07415e7i 0.370894 0.642408i
\(776\) 0 0
\(777\) −2.42906e6 1.09813e7i −0.144340 0.652528i
\(778\) 0 0
\(779\) 5.71190e6 9.89330e6i 0.337238 0.584114i
\(780\) 0 0
\(781\) 1.73323e6 + 3.00205e6i 0.101679 + 0.176113i
\(782\) 0 0
\(783\) −2.01876e6 −0.117674
\(784\) 0 0
\(785\) −4.16323e7 −2.41133
\(786\) 0 0
\(787\) −1.27290e7 2.20472e7i −0.732582 1.26887i −0.955776 0.294095i \(-0.904982\pi\)
0.223195 0.974774i \(-0.428351\pi\)
\(788\) 0 0
\(789\) 3.29902e6 5.71408e6i 0.188666 0.326779i
\(790\) 0 0
\(791\) −4.40702e6 1.99232e7i −0.250440 1.13219i
\(792\) 0 0
\(793\) 1.78759e7 3.09620e7i 1.00945 1.74842i
\(794\) 0 0
\(795\) 2.17492e7 + 3.76707e7i 1.22046 + 2.11391i
\(796\) 0 0
\(797\) −2.04344e7 −1.13950 −0.569752 0.821817i \(-0.692961\pi\)
−0.569752 + 0.821817i \(0.692961\pi\)
\(798\) 0 0
\(799\) −2.79152e6 −0.154694
\(800\) 0 0
\(801\) −1.78145e7 3.08556e7i −0.981051 1.69923i
\(802\) 0 0
\(803\) 1.16984e7 2.02622e7i 0.640231 1.10891i
\(804\) 0 0
\(805\) −1.21789e7 + 1.11494e7i −0.662398 + 0.606402i
\(806\) 0 0
\(807\) −1.08792e7 + 1.88433e7i −0.588048 + 1.01853i
\(808\) 0 0
\(809\) −1.41416e7 2.44939e7i −0.759672 1.31579i −0.943018 0.332743i \(-0.892026\pi\)
0.183345 0.983049i \(-0.441307\pi\)
\(810\) 0 0
\(811\) 1.58852e7 0.848087 0.424043 0.905642i \(-0.360610\pi\)
0.424043 + 0.905642i \(0.360610\pi\)
\(812\) 0 0
\(813\) 9.39191e6 0.498342
\(814\) 0 0
\(815\) 1.50180e7 + 2.60119e7i 0.791987 + 1.37176i
\(816\) 0 0
\(817\) −5.93707e6 + 1.02833e7i −0.311184 + 0.538986i
\(818\) 0 0
\(819\) 3.60560e7 + 1.13871e7i 1.87831 + 0.593202i
\(820\) 0 0
\(821\) −7.72198e6 + 1.33749e7i −0.399826 + 0.692519i −0.993704 0.112036i \(-0.964263\pi\)
0.593878 + 0.804555i \(0.297596\pi\)
\(822\) 0 0
\(823\) −1.48943e7 2.57977e7i −0.766516 1.32764i −0.939441 0.342710i \(-0.888655\pi\)
0.172926 0.984935i \(-0.444678\pi\)
\(824\) 0 0
\(825\) 5.19628e7 2.65801
\(826\) 0 0
\(827\) 1.66831e7 0.848230 0.424115 0.905608i \(-0.360585\pi\)
0.424115 + 0.905608i \(0.360585\pi\)
\(828\) 0 0
\(829\) 1.10568e7 + 1.91510e7i 0.558785 + 0.967844i 0.997598 + 0.0692656i \(0.0220656\pi\)
−0.438813 + 0.898578i \(0.644601\pi\)
\(830\) 0 0
\(831\) 1.33436e7 2.31118e7i 0.670302 1.16100i
\(832\) 0 0
\(833\) 2.00277e6 + 1.40517e6i 0.100004 + 0.0701644i
\(834\) 0 0
\(835\) 2.11803e6 3.66853e6i 0.105127 0.182086i
\(836\) 0 0
\(837\) 4.35913e6 + 7.55023e6i 0.215073 + 0.372517i
\(838\) 0 0
\(839\) 539166. 0.0264434 0.0132217 0.999913i \(-0.495791\pi\)
0.0132217 + 0.999913i \(0.495791\pi\)
\(840\) 0 0
\(841\) −1.99607e7 −0.973162
\(842\) 0 0
\(843\) −9.42956e6 1.63325e7i −0.457007 0.791559i
\(844\) 0 0
\(845\) −1.28080e7 + 2.21841e7i −0.617076 + 1.06881i
\(846\) 0 0
\(847\) −1.73840e7 5.49015e6i −0.832608 0.262952i
\(848\) 0 0
\(849\) 6.62094e6 1.14678e7i 0.315247 0.546023i
\(850\) 0 0
\(851\) −2.70249e6 4.68086e6i −0.127921 0.221565i
\(852\) 0 0
\(853\) 2.55452e6 0.120209 0.0601044 0.998192i \(-0.480857\pi\)
0.0601044 + 0.998192i \(0.480857\pi\)
\(854\) 0 0
\(855\) 5.23988e7 2.45135
\(856\) 0 0
\(857\) −120039. 207913.i −0.00558303 0.00967008i 0.863220 0.504827i \(-0.168444\pi\)
−0.868803 + 0.495157i \(0.835110\pi\)
\(858\) 0 0
\(859\) −3.33955e6 + 5.78428e6i −0.154421 + 0.267464i −0.932848 0.360270i \(-0.882684\pi\)
0.778427 + 0.627735i \(0.216018\pi\)
\(860\) 0 0
\(861\) −1.51004e7 + 1.38239e7i −0.694195 + 0.635511i
\(862\) 0 0
\(863\) 1.02530e7 1.77587e7i 0.468622 0.811678i −0.530734 0.847538i \(-0.678084\pi\)
0.999357 + 0.0358604i \(0.0114172\pi\)
\(864\) 0 0
\(865\) −1.26796e7 2.19618e7i −0.576192 0.997993i
\(866\) 0 0
\(867\) −3.41839e7 −1.54445
\(868\) 0 0
\(869\) 5.22164e7 2.34562
\(870\) 0 0
\(871\) 2.06942e6 + 3.58434e6i 0.0924280 + 0.160090i
\(872\) 0 0
\(873\) −1.36052e7 + 2.35650e7i −0.604186 + 1.04648i
\(874\) 0 0
\(875\) 1.74701e6 + 7.89786e6i 0.0771392 + 0.348730i
\(876\) 0 0
\(877\) −1.26387e7 + 2.18909e7i −0.554888 + 0.961093i 0.443025 + 0.896509i \(0.353905\pi\)
−0.997912 + 0.0645840i \(0.979428\pi\)
\(878\) 0 0
\(879\) −2.07503e7 3.59406e7i −0.905842 1.56896i
\(880\) 0 0
\(881\) −2.45932e7 −1.06752 −0.533759 0.845637i \(-0.679221\pi\)
−0.533759 + 0.845637i \(0.679221\pi\)
\(882\) 0 0
\(883\) 2.78301e7 1.20120 0.600598 0.799551i \(-0.294929\pi\)
0.600598 + 0.799551i \(0.294929\pi\)
\(884\) 0 0
\(885\) −3.73365e7 6.46688e7i −1.60242 2.77547i
\(886\) 0 0
\(887\) −1.74928e7 + 3.02984e7i −0.746534 + 1.29304i 0.202940 + 0.979191i \(0.434950\pi\)
−0.949474 + 0.313844i \(0.898383\pi\)
\(888\) 0 0
\(889\) −7.09137e6 3.20586e7i −0.300937 1.36047i
\(890\) 0 0
\(891\) 5.38319e6 9.32396e6i 0.227167 0.393465i
\(892\) 0 0
\(893\) 1.69526e7 + 2.93629e7i 0.711392 + 1.23217i
\(894\) 0 0
\(895\) −5.70892e7 −2.38230
\(896\) 0 0
\(897\) 3.06337e7 1.27121
\(898\) 0 0
\(899\) −1.18866e6 2.05882e6i −0.0490521 0.0849607i
\(900\) 0 0
\(901\) 1.54873e6 2.68249e6i 0.0635572 0.110084i
\(902\) 0 0
\(903\) 1.56957e7 1.43689e7i 0.640562 0.586412i
\(904\) 0 0
\(905\) −7.63044e6 + 1.32163e7i −0.309691 + 0.536400i
\(906\) 0 0
\(907\) 2.03300e7 + 3.52127e7i 0.820578 + 1.42128i 0.905252 + 0.424874i \(0.139682\pi\)
−0.0846741 + 0.996409i \(0.526985\pi\)
\(908\) 0 0
\(909\) 4.04078e7 1.62202
\(910\) 0 0
\(911\) −2.87014e7 −1.14579 −0.572897 0.819627i \(-0.694180\pi\)
−0.572897 + 0.819627i \(0.694180\pi\)
\(912\) 0 0
\(913\) 9.60584e6 + 1.66378e7i 0.381380 + 0.660570i
\(914\) 0 0
\(915\) −4.43943e7 + 7.68933e7i −1.75297 + 3.03624i
\(916\) 0 0
\(917\) 1.42841e7 + 4.51115e6i 0.560956 + 0.177159i
\(918\) 0 0
\(919\) −1.47415e7 + 2.55330e7i −0.575773 + 0.997269i 0.420184 + 0.907439i \(0.361966\pi\)
−0.995957 + 0.0898297i \(0.971368\pi\)
\(920\) 0 0
\(921\) 3.52399e6 + 6.10374e6i 0.136895 + 0.237108i
\(922\) 0 0
\(923\) 5.19506e6 0.200718
\(924\) 0 0
\(925\) −1.37402e7 −0.528004
\(926\) 0 0
\(927\) 2.19041e7 + 3.79389e7i 0.837192 + 1.45006i
\(928\) 0 0
\(929\) 7.94112e6 1.37544e7i 0.301886 0.522881i −0.674677 0.738113i \(-0.735717\pi\)
0.976563 + 0.215231i \(0.0690505\pi\)
\(930\) 0 0
\(931\) 2.61776e6 2.95999e7i 0.0989817 1.11922i
\(932\) 0 0
\(933\) −4.24774e6 + 7.35731e6i −0.159755 + 0.276704i
\(934\) 0 0
\(935\) −3.34368e6 5.79143e6i −0.125082 0.216649i
\(936\) 0 0
\(937\) 1.04452e7 0.388656 0.194328 0.980937i \(-0.437747\pi\)
0.194328 + 0.980937i \(0.437747\pi\)
\(938\) 0 0
\(939\) −1.88289e7 −0.696884
\(940\) 0 0
\(941\) 1.34241e7 + 2.32513e7i 0.494211 + 0.855998i 0.999978 0.00667223i \(-0.00212385\pi\)
−0.505767 + 0.862670i \(0.668791\pi\)
\(942\) 0 0
\(943\) −4.91938e6 + 8.52062e6i −0.180149 + 0.312027i
\(944\) 0 0
\(945\) −2.81344e7 8.88530e6i −1.02484 0.323663i
\(946\) 0 0
\(947\) 7.62047e6 1.31990e7i 0.276126 0.478264i −0.694293 0.719693i \(-0.744283\pi\)
0.970418 + 0.241429i \(0.0776161\pi\)
\(948\) 0 0
\(949\) −1.75319e7 3.03662e7i −0.631922 1.09452i
\(950\) 0 0
\(951\) −4.93088e7 −1.76796
\(952\) 0 0
\(953\) −1.29112e7 −0.460504 −0.230252 0.973131i \(-0.573955\pi\)
−0.230252 + 0.973131i \(0.573955\pi\)
\(954\) 0 0
\(955\) −2.85864e7 4.95131e7i −1.01426 1.75676i
\(956\) 0 0
\(957\) 4.97983e6 8.62532e6i 0.175766 0.304435i
\(958\) 0 0
\(959\) −1.98712e7 + 1.81914e7i −0.697716 + 0.638734i
\(960\) 0 0
\(961\) 9.18121e6 1.59023e7i 0.320694 0.555459i
\(962\) 0 0
\(963\) 4.13504e6 + 7.16211e6i 0.143686 + 0.248871i
\(964\) 0 0
\(965\) 7.91672e7 2.73670
\(966\) 0 0
\(967\) 4.60406e7 1.58334 0.791671 0.610948i \(-0.209211\pi\)
0.791671 + 0.610948i \(0.209211\pi\)
\(968\) 0 0
\(969\) −3.14508e6 5.44744e6i −0.107603 0.186373i
\(970\) 0 0
\(971\) −9.36580e6 + 1.62220e7i −0.318784 + 0.552150i −0.980235 0.197839i \(-0.936608\pi\)
0.661451 + 0.749989i \(0.269941\pi\)
\(972\) 0 0
\(973\) −811806. 3.67000e6i −0.0274897 0.124275i
\(974\) 0 0
\(975\) 3.89373e7 6.74414e7i 1.31176 2.27204i
\(976\) 0 0
\(977\) 1.44602e7 + 2.50458e7i 0.484660 + 0.839456i 0.999845 0.0176231i \(-0.00560991\pi\)
−0.515184 + 0.857079i \(0.672277\pi\)
\(978\) 0 0
\(979\) 5.52286e7 1.84165
\(980\) 0 0
\(981\) −9.63886e6 −0.319781
\(982\) 0 0
\(983\) −1.08834e7 1.88505e7i −0.359235 0.622214i 0.628598 0.777730i \(-0.283629\pi\)
−0.987833 + 0.155517i \(0.950296\pi\)
\(984\) 0 0
\(985\) 7.70379e6 1.33433e7i 0.252996 0.438202i
\(986\) 0 0
\(987\) −1.31232e7 5.93273e7i −0.428793 1.93848i
\(988\) 0 0
\(989\) 5.11331e6 8.85651e6i 0.166231 0.287920i
\(990\) 0 0
\(991\) 9.39333e6 + 1.62697e7i 0.303833 + 0.526255i 0.977001 0.213235i \(-0.0684001\pi\)
−0.673168 + 0.739490i \(0.735067\pi\)
\(992\) 0 0
\(993\) 1.04099e7 0.335023
\(994\) 0 0
\(995\) 5.70492e6 0.182680
\(996\) 0 0
\(997\) 7.38382e6 + 1.27891e7i 0.235257 + 0.407477i 0.959347 0.282228i \(-0.0910734\pi\)
−0.724090 + 0.689705i \(0.757740\pi\)
\(998\) 0 0
\(999\) 4.82899e6 8.36406e6i 0.153089 0.265157i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 28.6.e.b.9.1 4
3.2 odd 2 252.6.k.d.37.2 4
4.3 odd 2 112.6.i.e.65.2 4
7.2 even 3 196.6.a.j.1.2 2
7.3 odd 6 196.6.e.k.165.2 4
7.4 even 3 inner 28.6.e.b.25.1 yes 4
7.5 odd 6 196.6.a.h.1.1 2
7.6 odd 2 196.6.e.k.177.2 4
21.11 odd 6 252.6.k.d.109.2 4
28.11 odd 6 112.6.i.e.81.2 4
28.19 even 6 784.6.a.bd.1.2 2
28.23 odd 6 784.6.a.o.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.6.e.b.9.1 4 1.1 even 1 trivial
28.6.e.b.25.1 yes 4 7.4 even 3 inner
112.6.i.e.65.2 4 4.3 odd 2
112.6.i.e.81.2 4 28.11 odd 6
196.6.a.h.1.1 2 7.5 odd 6
196.6.a.j.1.2 2 7.2 even 3
196.6.e.k.165.2 4 7.3 odd 6
196.6.e.k.177.2 4 7.6 odd 2
252.6.k.d.37.2 4 3.2 odd 2
252.6.k.d.109.2 4 21.11 odd 6
784.6.a.o.1.1 2 28.23 odd 6
784.6.a.bd.1.2 2 28.19 even 6