Defining parameters
| Level: | \( N \) | \(=\) | \( 28 = 2^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 28.e (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(24\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(28, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 46 | 6 | 40 |
| Cusp forms | 34 | 6 | 28 |
| Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(28, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 28.6.e.a | $2$ | $4.491$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(19\) | \(-19\) | \(-140\) | \(q+19\zeta_{6}q^{3}+(-19+19\zeta_{6})q^{5}+(-133+\cdots)q^{7}+\cdots\) |
| 28.6.e.b | $4$ | $4.491$ | \(\Q(\sqrt{-3}, \sqrt{109})\) | None | \(0\) | \(-28\) | \(-42\) | \(112\) | \(q+(-14+14\beta _{1}+\beta _{2}+\beta _{3})q^{3}+(-21\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(28, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(28, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 2}\)