Properties

Label 28.6.e
Level $28$
Weight $6$
Character orbit 28.e
Rep. character $\chi_{28}(9,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $6$
Newform subspaces $2$
Sturm bound $24$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 28 = 2^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 28.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(28, [\chi])\).

Total New Old
Modular forms 46 6 40
Cusp forms 34 6 28
Eisenstein series 12 0 12

Trace form

\( 6 q - 9 q^{3} - 61 q^{5} - 28 q^{7} - 242 q^{9} - 101 q^{11} - 724 q^{13} + 3070 q^{15} - 1049 q^{17} - 1767 q^{19} - 1127 q^{21} + 2953 q^{23} + 284 q^{25} + 6822 q^{27} + 10940 q^{29} - 4837 q^{31} - 24439 q^{33}+ \cdots + 206284 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(28, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
28.6.e.a 28.e 7.c $2$ $4.491$ \(\Q(\sqrt{-3}) \) None 28.6.e.a \(0\) \(19\) \(-19\) \(-140\) $\mathrm{SU}(2)[C_{3}]$ \(q+19\zeta_{6}q^{3}+(-19+19\zeta_{6})q^{5}+(-133+\cdots)q^{7}+\cdots\)
28.6.e.b 28.e 7.c $4$ $4.491$ \(\Q(\sqrt{-3}, \sqrt{109})\) None 28.6.e.b \(0\) \(-28\) \(-42\) \(112\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-14+14\beta _{1}+\beta _{2}+\beta _{3})q^{3}+(-21\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(28, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(28, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 2}\)