Properties

Label 28.6
Level 28
Weight 6
Dimension 62
Nonzero newspaces 4
Newform subspaces 7
Sturm bound 288
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 28 = 2^{2} \cdot 7 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 7 \)
Sturm bound: \(288\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(28))\).

Total New Old
Modular forms 135 74 61
Cusp forms 105 62 43
Eisenstein series 30 12 18

Trace form

\( 62 q - 3 q^{2} + 15 q^{3} - 3 q^{4} - 147 q^{5} - 28 q^{7} + 261 q^{8} - 54 q^{9} - 804 q^{10} - 813 q^{11} + 1632 q^{12} + 532 q^{13} + 1857 q^{14} + 3678 q^{15} - 1143 q^{16} - 2019 q^{17} - 6747 q^{18}+ \cdots + 381828 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(28))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
28.6.a \(\chi_{28}(1, \cdot)\) 28.6.a.a 1 1
28.6.a.b 1
28.6.d \(\chi_{28}(27, \cdot)\) 28.6.d.a 2 1
28.6.d.b 16
28.6.e \(\chi_{28}(9, \cdot)\) 28.6.e.a 2 2
28.6.e.b 4
28.6.f \(\chi_{28}(3, \cdot)\) 28.6.f.a 36 2

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(28))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(28)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 2}\)