Defining parameters
| Level: | \( N \) | \(=\) | \( 28 = 2^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 28.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(16\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(28))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 15 | 2 | 13 |
| Cusp forms | 9 | 2 | 7 |
| Eisenstein series | 6 | 0 | 6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(5\) | \(0\) | \(5\) | \(3\) | \(0\) | \(3\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(3\) | \(0\) | \(3\) | \(1\) | \(0\) | \(1\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(4\) | \(1\) | \(3\) | \(3\) | \(1\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(3\) | \(1\) | \(2\) | \(2\) | \(1\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(8\) | \(1\) | \(7\) | \(5\) | \(1\) | \(4\) | \(3\) | \(0\) | \(3\) | ||||
| Minus space | \(-\) | \(7\) | \(1\) | \(6\) | \(4\) | \(1\) | \(3\) | \(3\) | \(0\) | \(3\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(28))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | |||||||
| 28.4.a.a | $1$ | $1.652$ | \(\Q\) | None | \(0\) | \(-10\) | \(-8\) | \(-7\) | $-$ | $+$ | \(q-10q^{3}-8q^{5}-7q^{7}+73q^{9}-40q^{11}+\cdots\) | |
| 28.4.a.b | $1$ | $1.652$ | \(\Q\) | None | \(0\) | \(4\) | \(6\) | \(7\) | $-$ | $-$ | \(q+4q^{3}+6q^{5}+7q^{7}-11q^{9}-12q^{11}+\cdots\) | |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(28))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(28)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)