Properties

Label 28.2.d.a.27.1
Level 2828
Weight 22
Character 28.27
Analytic conductor 0.2240.224
Analytic rank 00
Dimension 22
CM discriminant -7
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [28,2,Mod(27,28)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(28, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("28.27"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 28=227 28 = 2^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 28.d (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.2235811256600.223581125660
Analytic rank: 00
Dimension: 22
Coefficient field: Q(7)\Q(\sqrt{-7})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+2 x^{2} - x + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 27.1
Root 0.500000+1.32288i0.500000 + 1.32288i of defining polynomial
Character χ\chi == 28.27
Dual form 28.2.d.a.27.2

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+(0.5000001.32288i)q2+(1.50000+1.32288i)q4+2.64575iq7+(2.50000+1.32288i)q83.00000q95.29150iq11+(3.500001.32288i)q14+(0.5000003.96863i)q16+(1.50000+3.96863i)q18+(7.00000+2.64575i)q22+5.29150iq23+5.00000q25+(3.500003.96863i)q282.00000q29+(5.50000+1.32288i)q32+(4.500003.96863i)q36+6.00000q375.29150iq43+(7.00000+7.93725i)q44+(7.000002.64575i)q467.00000q49+(2.500006.61438i)q5010.0000q53+(3.50000+6.61438i)q56+(1.00000+2.64575i)q587.93725iq63+(4.50000+6.61438i)q64+15.8745iq67+5.29150iq71+(7.500003.96863i)q72+(3.000007.93725i)q74+14.0000q7715.8745iq79+9.00000q81+(7.00000+2.64575i)q86+(7.0000013.2288i)q88+(7.000007.93725i)q92+(3.50000+9.26013i)q98+15.8745iq99+O(q100)q+(-0.500000 - 1.32288i) q^{2} +(-1.50000 + 1.32288i) q^{4} +2.64575i q^{7} +(2.50000 + 1.32288i) q^{8} -3.00000 q^{9} -5.29150i q^{11} +(3.50000 - 1.32288i) q^{14} +(0.500000 - 3.96863i) q^{16} +(1.50000 + 3.96863i) q^{18} +(-7.00000 + 2.64575i) q^{22} +5.29150i q^{23} +5.00000 q^{25} +(-3.50000 - 3.96863i) q^{28} -2.00000 q^{29} +(-5.50000 + 1.32288i) q^{32} +(4.50000 - 3.96863i) q^{36} +6.00000 q^{37} -5.29150i q^{43} +(7.00000 + 7.93725i) q^{44} +(7.00000 - 2.64575i) q^{46} -7.00000 q^{49} +(-2.50000 - 6.61438i) q^{50} -10.0000 q^{53} +(-3.50000 + 6.61438i) q^{56} +(1.00000 + 2.64575i) q^{58} -7.93725i q^{63} +(4.50000 + 6.61438i) q^{64} +15.8745i q^{67} +5.29150i q^{71} +(-7.50000 - 3.96863i) q^{72} +(-3.00000 - 7.93725i) q^{74} +14.0000 q^{77} -15.8745i q^{79} +9.00000 q^{81} +(-7.00000 + 2.64575i) q^{86} +(7.00000 - 13.2288i) q^{88} +(-7.00000 - 7.93725i) q^{92} +(3.50000 + 9.26013i) q^{98} +15.8745i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq23q4+5q86q9+7q14+q16+3q1814q22+10q257q284q2911q32+9q36+12q37+14q44+14q4614q495q50++7q98+O(q100) 2 q - q^{2} - 3 q^{4} + 5 q^{8} - 6 q^{9} + 7 q^{14} + q^{16} + 3 q^{18} - 14 q^{22} + 10 q^{25} - 7 q^{28} - 4 q^{29} - 11 q^{32} + 9 q^{36} + 12 q^{37} + 14 q^{44} + 14 q^{46} - 14 q^{49} - 5 q^{50}+ \cdots + 7 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/28Z)×\left(\mathbb{Z}/28\mathbb{Z}\right)^\times.

nn 1515 1717
χ(n)\chi(n) 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.500000 1.32288i −0.353553 0.935414i
33 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
44 −1.50000 + 1.32288i −0.750000 + 0.661438i
55 0 0 1.00000 00
−1.00000 π\pi
66 0 0
77 2.64575i 1.00000i
88 2.50000 + 1.32288i 0.883883 + 0.467707i
99 −3.00000 −1.00000
1010 0 0
1111 5.29150i 1.59545i −0.603023 0.797724i 0.706037π-0.706037\pi
0.603023 0.797724i 0.293963π-0.293963\pi
1212 0 0
1313 0 0 1.00000 00
−1.00000 π\pi
1414 3.50000 1.32288i 0.935414 0.353553i
1515 0 0
1616 0.500000 3.96863i 0.125000 0.992157i
1717 0 0 1.00000 00
−1.00000 π\pi
1818 1.50000 + 3.96863i 0.353553 + 0.935414i
1919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2020 0 0
2121 0 0
2222 −7.00000 + 2.64575i −1.49241 + 0.564076i
2323 5.29150i 1.10335i 0.834058 + 0.551677i 0.186012π0.186012\pi
−0.834058 + 0.551677i 0.813988π0.813988\pi
2424 0 0
2525 5.00000 1.00000
2626 0 0
2727 0 0
2828 −3.50000 3.96863i −0.661438 0.750000i
2929 −2.00000 −0.371391 −0.185695 0.982607i 0.559454π-0.559454\pi
−0.185695 + 0.982607i 0.559454π0.559454\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 −5.50000 + 1.32288i −0.972272 + 0.233854i
3333 0 0
3434 0 0
3535 0 0
3636 4.50000 3.96863i 0.750000 0.661438i
3737 6.00000 0.986394 0.493197 0.869918i 0.335828π-0.335828\pi
0.493197 + 0.869918i 0.335828π0.335828\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 5.29150i 0.806947i −0.914991 0.403473i 0.867803π-0.867803\pi
0.914991 0.403473i 0.132197π-0.132197\pi
4444 7.00000 + 7.93725i 1.05529 + 1.19659i
4545 0 0
4646 7.00000 2.64575i 1.03209 0.390095i
4747 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4848 0 0
4949 −7.00000 −1.00000
5050 −2.50000 6.61438i −0.353553 0.935414i
5151 0 0
5252 0 0
5353 −10.0000 −1.37361 −0.686803 0.726844i 0.740986π-0.740986\pi
−0.686803 + 0.726844i 0.740986π0.740986\pi
5454 0 0
5555 0 0
5656 −3.50000 + 6.61438i −0.467707 + 0.883883i
5757 0 0
5858 1.00000 + 2.64575i 0.131306 + 0.347404i
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 7.93725i 1.00000i
6464 4.50000 + 6.61438i 0.562500 + 0.826797i
6565 0 0
6666 0 0
6767 15.8745i 1.93938i 0.244339 + 0.969690i 0.421429π0.421429\pi
−0.244339 + 0.969690i 0.578571π0.578571\pi
6868 0 0
6969 0 0
7070 0 0
7171 5.29150i 0.627986i 0.949425 + 0.313993i 0.101667π0.101667\pi
−0.949425 + 0.313993i 0.898333π0.898333\pi
7272 −7.50000 3.96863i −0.883883 0.467707i
7373 0 0 1.00000 00
−1.00000 π\pi
7474 −3.00000 7.93725i −0.348743 0.922687i
7575 0 0
7676 0 0
7777 14.0000 1.59545
7878 0 0
7979 15.8745i 1.78602i −0.450035 0.893011i 0.648589π-0.648589\pi
0.450035 0.893011i 0.351411π-0.351411\pi
8080 0 0
8181 9.00000 1.00000
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 0 0
8686 −7.00000 + 2.64575i −0.754829 + 0.285299i
8787 0 0
8888 7.00000 13.2288i 0.746203 1.41019i
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 −7.00000 7.93725i −0.729800 0.827516i
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 3.50000 + 9.26013i 0.353553 + 0.935414i
9999 15.8745i 1.59545i
100100 −7.50000 + 6.61438i −0.750000 + 0.661438i
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 0 0
105105 0 0
106106 5.00000 + 13.2288i 0.485643 + 1.28489i
107107 5.29150i 0.511549i −0.966736 0.255774i 0.917670π-0.917670\pi
0.966736 0.255774i 0.0823304π-0.0823304\pi
108108 0 0
109109 −18.0000 −1.72409 −0.862044 0.506834i 0.830816π-0.830816\pi
−0.862044 + 0.506834i 0.830816π0.830816\pi
110110 0 0
111111 0 0
112112 10.5000 + 1.32288i 0.992157 + 0.125000i
113113 2.00000 0.188144 0.0940721 0.995565i 0.470012π-0.470012\pi
0.0940721 + 0.995565i 0.470012π0.470012\pi
114114 0 0
115115 0 0
116116 3.00000 2.64575i 0.278543 0.245652i
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −17.0000 −1.54545
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 −10.5000 + 3.96863i −0.935414 + 0.353553i
127127 15.8745i 1.40863i −0.709885 0.704317i 0.751253π-0.751253\pi
0.709885 0.704317i 0.248747π-0.248747\pi
128128 6.50000 9.26013i 0.574524 0.818488i
129129 0 0
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0 0
134134 21.0000 7.93725i 1.81412 0.685674i
135135 0 0
136136 0 0
137137 10.0000 0.854358 0.427179 0.904167i 0.359507π-0.359507\pi
0.427179 + 0.904167i 0.359507π0.359507\pi
138138 0 0
139139 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 0 0
142142 7.00000 2.64575i 0.587427 0.222027i
143143 0 0
144144 −1.50000 + 11.9059i −0.125000 + 0.992157i
145145 0 0
146146 0 0
147147 0 0
148148 −9.00000 + 7.93725i −0.739795 + 0.652438i
149149 22.0000 1.80231 0.901155 0.433497i 0.142720π-0.142720\pi
0.901155 + 0.433497i 0.142720π0.142720\pi
150150 0 0
151151 5.29150i 0.430616i 0.976546 + 0.215308i 0.0690756π0.0690756\pi
−0.976546 + 0.215308i 0.930924π0.930924\pi
152152 0 0
153153 0 0
154154 −7.00000 18.5203i −0.564076 1.49241i
155155 0 0
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 −21.0000 + 7.93725i −1.67067 + 0.631454i
159159 0 0
160160 0 0
161161 −14.0000 −1.10335
162162 −4.50000 11.9059i −0.353553 0.935414i
163163 15.8745i 1.24339i 0.783260 + 0.621694i 0.213555π0.213555\pi
−0.783260 + 0.621694i 0.786445π0.786445\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 13.0000 1.00000
170170 0 0
171171 0 0
172172 7.00000 + 7.93725i 0.533745 + 0.605210i
173173 0 0 1.00000 00
−1.00000 π\pi
174174 0 0
175175 13.2288i 1.00000i
176176 −21.0000 2.64575i −1.58293 0.199431i
177177 0 0
178178 0 0
179179 26.4575i 1.97753i −0.149487 0.988764i 0.547762π-0.547762\pi
0.149487 0.988764i 0.452238π-0.452238\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 −7.00000 + 13.2288i −0.516047 + 0.975237i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 26.4575i 1.91440i 0.289430 + 0.957199i 0.406534π0.406534\pi
−0.289430 + 0.957199i 0.593466π0.593466\pi
192192 0 0
193193 18.0000 1.29567 0.647834 0.761781i 0.275675π-0.275675\pi
0.647834 + 0.761781i 0.275675π0.275675\pi
194194 0 0
195195 0 0
196196 10.5000 9.26013i 0.750000 0.661438i
197197 −26.0000 −1.85242 −0.926212 0.377004i 0.876954π-0.876954\pi
−0.926212 + 0.377004i 0.876954π0.876954\pi
198198 21.0000 7.93725i 1.49241 0.564076i
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 12.5000 + 6.61438i 0.883883 + 0.467707i
201201 0 0
202202 0 0
203203 5.29150i 0.371391i
204204 0 0
205205 0 0
206206 0 0
207207 15.8745i 1.10335i
208208 0 0
209209 0 0
210210 0 0
211211 26.4575i 1.82141i −0.413057 0.910705i 0.635539π-0.635539\pi
0.413057 0.910705i 0.364461π-0.364461\pi
212212 15.0000 13.2288i 1.03020 0.908555i
213213 0 0
214214 −7.00000 + 2.64575i −0.478510 + 0.180860i
215215 0 0
216216 0 0
217217 0 0
218218 9.00000 + 23.8118i 0.609557 + 1.61274i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 −3.50000 14.5516i −0.233854 0.972272i
225225 −15.0000 −1.00000
226226 −1.00000 2.64575i −0.0665190 0.175993i
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 −5.00000 2.64575i −0.328266 0.173702i
233233 −22.0000 −1.44127 −0.720634 0.693316i 0.756149π-0.756149\pi
−0.720634 + 0.693316i 0.756149π0.756149\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 26.4575i 1.71139i 0.517477 + 0.855697i 0.326871π0.326871\pi
−0.517477 + 0.855697i 0.673129π0.673129\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 8.50000 + 22.4889i 0.546401 + 1.44564i
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 10.5000 + 11.9059i 0.661438 + 0.750000i
253253 28.0000 1.76034
254254 −21.0000 + 7.93725i −1.31766 + 0.498028i
255255 0 0
256256 −15.5000 3.96863i −0.968750 0.248039i
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 15.8745i 0.986394i
260260 0 0
261261 6.00000 0.371391
262262 0 0
263263 5.29150i 0.326288i 0.986602 + 0.163144i 0.0521635π0.0521635\pi
−0.986602 + 0.163144i 0.947836π0.947836\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 −21.0000 23.8118i −1.28278 1.45453i
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
272272 0 0
273273 0 0
274274 −5.00000 13.2288i −0.302061 0.799178i
275275 26.4575i 1.59545i
276276 0 0
277277 −10.0000 −0.600842 −0.300421 0.953807i 0.597127π-0.597127\pi
−0.300421 + 0.953807i 0.597127π0.597127\pi
278278 0 0
279279 0 0
280280 0 0
281281 26.0000 1.55103 0.775515 0.631329i 0.217490π-0.217490\pi
0.775515 + 0.631329i 0.217490π0.217490\pi
282282 0 0
283283 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
284284 −7.00000 7.93725i −0.415374 0.470989i
285285 0 0
286286 0 0
287287 0 0
288288 16.5000 3.96863i 0.972272 0.233854i
289289 17.0000 1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 0 0
296296 15.0000 + 7.93725i 0.871857 + 0.461344i
297297 0 0
298298 −11.0000 29.1033i −0.637213 1.68591i
299299 0 0
300300 0 0
301301 14.0000 0.806947
302302 7.00000 2.64575i 0.402805 0.152246i
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 −21.0000 + 18.5203i −1.19659 + 1.05529i
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 0 0
316316 21.0000 + 23.8118i 1.18134 + 1.33952i
317317 −34.0000 −1.90963 −0.954815 0.297200i 0.903947π-0.903947\pi
−0.954815 + 0.297200i 0.903947π0.903947\pi
318318 0 0
319319 10.5830i 0.592535i
320320 0 0
321321 0 0
322322 7.00000 + 18.5203i 0.390095 + 1.03209i
323323 0 0
324324 −13.5000 + 11.9059i −0.750000 + 0.661438i
325325 0 0
326326 21.0000 7.93725i 1.16308 0.439604i
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 5.29150i 0.290847i −0.989369 0.145424i 0.953545π-0.953545\pi
0.989369 0.145424i 0.0464545π-0.0464545\pi
332332 0 0
333333 −18.0000 −0.986394
334334 0 0
335335 0 0
336336 0 0
337337 −30.0000 −1.63420 −0.817102 0.576493i 0.804421π-0.804421\pi
−0.817102 + 0.576493i 0.804421π0.804421\pi
338338 −6.50000 17.1974i −0.353553 0.935414i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 18.5203i 1.00000i
344344 7.00000 13.2288i 0.377415 0.713247i
345345 0 0
346346 0 0
347347 37.0405i 1.98844i 0.107366 + 0.994220i 0.465758π0.465758\pi
−0.107366 + 0.994220i 0.534242π0.534242\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 17.5000 6.61438i 0.935414 0.353553i
351351 0 0
352352 7.00000 + 29.1033i 0.373101 + 1.55121i
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 −35.0000 + 13.2288i −1.84981 + 0.699162i
359359 37.0405i 1.95492i −0.211112 0.977462i 0.567708π-0.567708\pi
0.211112 0.977462i 0.432292π-0.432292\pi
360360 0 0
361361 −19.0000 −1.00000
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 21.0000 + 2.64575i 1.09470 + 0.137919i
369369 0 0
370370 0 0
371371 26.4575i 1.37361i
372372 0 0
373373 22.0000 1.13912 0.569558 0.821951i 0.307114π-0.307114\pi
0.569558 + 0.821951i 0.307114π0.307114\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 37.0405i 1.90264i 0.308199 + 0.951322i 0.400274π0.400274\pi
−0.308199 + 0.951322i 0.599726π0.599726\pi
380380 0 0
381381 0 0
382382 35.0000 13.2288i 1.79076 0.676842i
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 0 0
386386 −9.00000 23.8118i −0.458088 1.21199i
387387 15.8745i 0.806947i
388388 0 0
389389 38.0000 1.92668 0.963338 0.268290i 0.0864585π-0.0864585\pi
0.963338 + 0.268290i 0.0864585π0.0864585\pi
390390 0 0
391391 0 0
392392 −17.5000 9.26013i −0.883883 0.467707i
393393 0 0
394394 13.0000 + 34.3948i 0.654931 + 1.73278i
395395 0 0
396396 −21.0000 23.8118i −1.05529 1.19659i
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0 0
399399 0 0
400400 2.50000 19.8431i 0.125000 0.992157i
401401 34.0000 1.69788 0.848939 0.528490i 0.177242π-0.177242\pi
0.848939 + 0.528490i 0.177242π0.177242\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 −7.00000 + 2.64575i −0.347404 + 0.131306i
407407 31.7490i 1.57374i
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 −21.0000 + 7.93725i −1.03209 + 0.390095i
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 −26.0000 −1.26716 −0.633581 0.773676i 0.718416π-0.718416\pi
−0.633581 + 0.773676i 0.718416π0.718416\pi
422422 −35.0000 + 13.2288i −1.70377 + 0.643966i
423423 0 0
424424 −25.0000 13.2288i −1.21411 0.642445i
425425 0 0
426426 0 0
427427 0 0
428428 7.00000 + 7.93725i 0.338358 + 0.383662i
429429 0 0
430430 0 0
431431 26.4575i 1.27441i 0.770693 + 0.637207i 0.219910π0.219910\pi
−0.770693 + 0.637207i 0.780090π0.780090\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 27.0000 23.8118i 1.29307 1.14038i
437437 0 0
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 21.0000 1.00000
442442 0 0
443443 37.0405i 1.75985i 0.475114 + 0.879924i 0.342407π0.342407\pi
−0.475114 + 0.879924i 0.657593π0.657593\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −17.5000 + 11.9059i −0.826797 + 0.562500i
449449 2.00000 0.0943858 0.0471929 0.998886i 0.484972π-0.484972\pi
0.0471929 + 0.998886i 0.484972π0.484972\pi
450450 7.50000 + 19.8431i 0.353553 + 0.935414i
451451 0 0
452452 −3.00000 + 2.64575i −0.141108 + 0.124446i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −6.00000 −0.280668 −0.140334 0.990104i 0.544818π-0.544818\pi
−0.140334 + 0.990104i 0.544818π0.544818\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 15.8745i 0.737751i −0.929479 0.368875i 0.879743π-0.879743\pi
0.929479 0.368875i 0.120257π-0.120257\pi
464464 −1.00000 + 7.93725i −0.0464238 + 0.368478i
465465 0 0
466466 11.0000 + 29.1033i 0.509565 + 1.34818i
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 −42.0000 −1.93938
470470 0 0
471471 0 0
472472 0 0
473473 −28.0000 −1.28744
474474 0 0
475475 0 0
476476 0 0
477477 30.0000 1.37361
478478 35.0000 13.2288i 1.60086 0.605069i
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 25.5000 22.4889i 1.15909 1.02222i
485485 0 0
486486 0 0
487487 37.0405i 1.67847i −0.543772 0.839233i 0.683004π-0.683004\pi
0.543772 0.839233i 0.316996π-0.316996\pi
488488 0 0
489489 0 0
490490 0 0
491491 5.29150i 0.238802i −0.992846 0.119401i 0.961903π-0.961903\pi
0.992846 0.119401i 0.0380974π-0.0380974\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 −14.0000 −0.627986
498498 0 0
499499 26.4575i 1.18440i −0.805791 0.592200i 0.798259π-0.798259\pi
0.805791 0.592200i 0.201741π-0.201741\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 10.5000 19.8431i 0.467707 0.883883i
505505 0 0
506506 −14.0000 37.0405i −0.622376 1.64665i
507507 0 0
508508 21.0000 + 23.8118i 0.931724 + 1.05648i
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 2.50000 + 22.4889i 0.110485 + 0.993878i
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 21.0000 7.93725i 0.922687 0.348743i
519519 0 0
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 −3.00000 7.93725i −0.131306 0.347404i
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 0 0
526526 7.00000 2.64575i 0.305215 0.115360i
527527 0 0
528528 0 0
529529 −5.00000 −0.217391
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 −21.0000 + 39.6863i −0.907062 + 1.71419i
537537 0 0
538538 0 0
539539 37.0405i 1.59545i
540540 0 0
541541 −34.0000 −1.46177 −0.730887 0.682498i 0.760893π-0.760893\pi
−0.730887 + 0.682498i 0.760893π0.760893\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 15.8745i 0.678745i 0.940652 + 0.339372i 0.110215π0.110215\pi
−0.940652 + 0.339372i 0.889785π0.889785\pi
548548 −15.0000 + 13.2288i −0.640768 + 0.565104i
549549 0 0
550550 −35.0000 + 13.2288i −1.49241 + 0.564076i
551551 0 0
552552 0 0
553553 42.0000 1.78602
554554 5.00000 + 13.2288i 0.212430 + 0.562036i
555555 0 0
556556 0 0
557557 46.0000 1.94908 0.974541 0.224208i 0.0719796π-0.0719796\pi
0.974541 + 0.224208i 0.0719796π0.0719796\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 −13.0000 34.3948i −0.548372 1.45086i
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 0 0
567567 23.8118i 1.00000i
568568 −7.00000 + 13.2288i −0.293713 + 0.555066i
569569 −22.0000 −0.922288 −0.461144 0.887325i 0.652561π-0.652561\pi
−0.461144 + 0.887325i 0.652561π0.652561\pi
570570 0 0
571571 47.6235i 1.99298i −0.0836974 0.996491i 0.526673π-0.526673\pi
0.0836974 0.996491i 0.473327π-0.473327\pi
572572 0 0
573573 0 0
574574 0 0
575575 26.4575i 1.10335i
576576 −13.5000 19.8431i −0.562500 0.826797i
577577 0 0 1.00000 00
−1.00000 π\pi
578578 −8.50000 22.4889i −0.353553 0.935414i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 52.9150i 2.19152i
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 3.00000 23.8118i 0.123299 0.978657i
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 −33.0000 + 29.1033i −1.35173 + 1.19212i
597597 0 0
598598 0 0
599599 37.0405i 1.51343i −0.653742 0.756717i 0.726802π-0.726802\pi
0.653742 0.756717i 0.273198π-0.273198\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 −7.00000 18.5203i −0.285299 0.754829i
603603 47.6235i 1.93938i
604604 −7.00000 7.93725i −0.284826 0.322962i
605605 0 0
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 38.0000 1.53481 0.767403 0.641165i 0.221549π-0.221549\pi
0.767403 + 0.641165i 0.221549π0.221549\pi
614614 0 0
615615 0 0
616616 35.0000 + 18.5203i 1.41019 + 0.746203i
617617 26.0000 1.04672 0.523360 0.852111i 0.324678π-0.324678\pi
0.523360 + 0.852111i 0.324678π0.324678\pi
618618 0 0
619619 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 25.0000 1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 47.6235i 1.89586i 0.318475 + 0.947931i 0.396829π0.396829\pi
−0.318475 + 0.947931i 0.603171π0.603171\pi
632632 21.0000 39.6863i 0.835335 1.57864i
633633 0 0
634634 17.0000 + 44.9778i 0.675156 + 1.78630i
635635 0 0
636636 0 0
637637 0 0
638638 14.0000 5.29150i 0.554265 0.209493i
639639 15.8745i 0.627986i
640640 0 0
641641 −46.0000 −1.81689 −0.908445 0.418004i 0.862730π-0.862730\pi
−0.908445 + 0.418004i 0.862730π0.862730\pi
642642 0 0
643643 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
644644 21.0000 18.5203i 0.827516 0.729800i
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 22.5000 + 11.9059i 0.883883 + 0.467707i
649649 0 0
650650 0 0
651651 0 0
652652 −21.0000 23.8118i −0.822423 0.932541i
653653 −50.0000 −1.95665 −0.978326 0.207072i 0.933606π-0.933606\pi
−0.978326 + 0.207072i 0.933606π0.933606\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 26.4575i 1.03064i −0.856998 0.515319i 0.827673π-0.827673\pi
0.856998 0.515319i 0.172327π-0.172327\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 −7.00000 + 2.64575i −0.272063 + 0.102830i
663663 0 0
664664 0 0
665665 0 0
666666 9.00000 + 23.8118i 0.348743 + 0.922687i
667667 10.5830i 0.409776i
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −30.0000 −1.15642 −0.578208 0.815890i 0.696248π-0.696248\pi
−0.578208 + 0.815890i 0.696248π0.696248\pi
674674 15.0000 + 39.6863i 0.577778 + 1.52866i
675675 0 0
676676 −19.5000 + 17.1974i −0.750000 + 0.661438i
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 5.29150i 0.202474i −0.994862 0.101237i 0.967720π-0.967720\pi
0.994862 0.101237i 0.0322800π-0.0322800\pi
684684 0 0
685685 0 0
686686 −24.5000 + 9.26013i −0.935414 + 0.353553i
687687 0 0
688688 −21.0000 2.64575i −0.800617 0.100868i
689689 0 0
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 −42.0000 −1.59545
694694 49.0000 18.5203i 1.86001 0.703019i
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 −17.5000 19.8431i −0.661438 0.750000i
701701 −2.00000 −0.0755390 −0.0377695 0.999286i 0.512025π-0.512025\pi
−0.0377695 + 0.999286i 0.512025π0.512025\pi
702702 0 0
703703 0 0
704704 35.0000 23.8118i 1.31911 0.897440i
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 6.00000 0.225335 0.112667 0.993633i 0.464061π-0.464061\pi
0.112667 + 0.993633i 0.464061π0.464061\pi
710710 0 0
711711 47.6235i 1.78602i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 35.0000 + 39.6863i 1.30801 + 1.48315i
717717 0 0
718718 −49.0000 + 18.5203i −1.82866 + 0.691170i
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 9.50000 + 25.1346i 0.353553 + 0.935414i
723723 0 0
724724 0 0
725725 −10.0000 −0.371391
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 −27.0000 −1.00000
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 0 0
736736 −7.00000 29.1033i −0.258023 1.07276i
737737 84.0000 3.09418
738738 0 0
739739 15.8745i 0.583953i 0.956425 + 0.291977i 0.0943129π0.0943129\pi
−0.956425 + 0.291977i 0.905687π0.905687\pi
740740 0 0
741741 0 0
742742 −35.0000 + 13.2288i −1.28489 + 0.485643i
743743 37.0405i 1.35888i −0.733729 0.679442i 0.762222π-0.762222\pi
0.733729 0.679442i 0.237778π-0.237778\pi
744744 0 0
745745 0 0
746746 −11.0000 29.1033i −0.402739 1.06555i
747747 0 0
748748 0 0
749749 14.0000 0.511549
750750 0 0
751751 26.4575i 0.965448i 0.875772 + 0.482724i 0.160353π0.160353\pi
−0.875772 + 0.482724i 0.839647π0.839647\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 54.0000 1.96266 0.981332 0.192323i 0.0616021π-0.0616021\pi
0.981332 + 0.192323i 0.0616021π0.0616021\pi
758758 49.0000 18.5203i 1.77976 0.672686i
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 47.6235i 1.72409i
764764 −35.0000 39.6863i −1.26626 1.43580i
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 −27.0000 + 23.8118i −0.971751 + 0.857004i
773773 0 0 1.00000 00
−1.00000 π\pi
774774 21.0000 7.93725i 0.754829 0.285299i
775775 0 0
776776 0 0
777777 0 0
778778 −19.0000 50.2693i −0.681183 1.80224i
779779 0 0
780780 0 0
781781 28.0000 1.00192
782782 0 0
783783 0 0
784784 −3.50000 + 27.7804i −0.125000 + 0.992157i
785785 0 0
786786 0 0
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 39.0000 34.3948i 1.38932 1.22526i
789789 0 0
790790 0 0
791791 5.29150i 0.188144i
792792 −21.0000 + 39.6863i −0.746203 + 1.41019i
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 0 0
800800 −27.5000 + 6.61438i −0.972272 + 0.233854i
801801 0 0
802802 −17.0000 44.9778i −0.600291 1.58822i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −38.0000 −1.33601 −0.668004 0.744157i 0.732851π-0.732851\pi
−0.668004 + 0.744157i 0.732851π0.732851\pi
810810 0 0
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 7.00000 + 7.93725i 0.245652 + 0.278543i
813813 0 0
814814 −42.0000 + 15.8745i −1.47210 + 0.556401i
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 22.0000 0.767805 0.383903 0.923374i 0.374580π-0.374580\pi
0.383903 + 0.923374i 0.374580π0.374580\pi
822822 0 0
823823 47.6235i 1.66005i 0.557725 + 0.830026i 0.311674π0.311674\pi
−0.557725 + 0.830026i 0.688326π0.688326\pi
824824 0 0
825825 0 0
826826 0 0
827827 37.0405i 1.28803i 0.765015 + 0.644013i 0.222732π0.222732\pi
−0.765015 + 0.644013i 0.777268π0.777268\pi
828828 21.0000 + 23.8118i 0.729800 + 0.827516i
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 −25.0000 −0.862069
842842 13.0000 + 34.3948i 0.448010 + 1.18532i
843843 0 0
844844 35.0000 + 39.6863i 1.20475 + 1.36606i
845845 0 0
846846 0 0
847847 44.9778i 1.54545i
848848 −5.00000 + 39.6863i −0.171701 + 1.36283i
849849 0 0
850850 0 0
851851 31.7490i 1.08834i
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 7.00000 13.2288i 0.239255 0.452150i
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 35.0000 13.2288i 1.19210 0.450573i
863863 58.2065i 1.98137i −0.136162 0.990687i 0.543477π-0.543477\pi
0.136162 0.990687i 0.456523π-0.456523\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 −84.0000 −2.84950
870870 0 0
871871 0 0
872872 −45.0000 23.8118i −1.52389 0.806368i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 −50.0000 −1.68838 −0.844190 0.536044i 0.819918π-0.819918\pi
−0.844190 + 0.536044i 0.819918π0.819918\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 −10.5000 27.7804i −0.353553 0.935414i
883883 58.2065i 1.95881i 0.201916 + 0.979403i 0.435283π0.435283\pi
−0.201916 + 0.979403i 0.564717π0.564717\pi
884884 0 0
885885 0 0
886886 49.0000 18.5203i 1.64619 0.622200i
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 42.0000 1.40863
890890 0 0
891891 47.6235i 1.59545i
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 24.5000 + 17.1974i 0.818488 + 0.574524i
897897 0 0
898898 −1.00000 2.64575i −0.0333704 0.0882899i
899899 0 0
900900 22.5000 19.8431i 0.750000 0.661438i
901901 0 0
902902 0 0
903903 0 0
904904 5.00000 + 2.64575i 0.166298 + 0.0879964i
905905 0 0
906906 0 0
907907 5.29150i 0.175701i −0.996134 0.0878507i 0.972000π-0.972000\pi
0.996134 0.0878507i 0.0279999π-0.0279999\pi
908908 0 0
909909 0 0
910910 0 0
911911 58.2065i 1.92847i −0.265052 0.964234i 0.585389π-0.585389\pi
0.265052 0.964234i 0.414611π-0.414611\pi
912912 0 0
913913 0 0
914914 3.00000 + 7.93725i 0.0992312 + 0.262541i
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 37.0405i 1.22185i −0.791687 0.610927i 0.790797π-0.790797\pi
0.791687 0.610927i 0.209203π-0.209203\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 30.0000 0.986394
926926 −21.0000 + 7.93725i −0.690103 + 0.260834i
927927 0 0
928928 11.0000 2.64575i 0.361093 0.0868510i
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0 0
932932 33.0000 29.1033i 1.08095 0.953309i
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 21.0000 + 55.5608i 0.685674 + 1.81412i
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 14.0000 + 37.0405i 0.455179 + 1.20429i
947947 58.2065i 1.89146i 0.324956 + 0.945729i 0.394650π0.394650\pi
−0.324956 + 0.945729i 0.605350π0.605350\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 58.0000 1.87880 0.939402 0.342817i 0.111381π-0.111381\pi
0.939402 + 0.342817i 0.111381π0.111381\pi
954954 −15.0000 39.6863i −0.485643 1.28489i
955955 0 0
956956 −35.0000 39.6863i −1.13198 1.28355i
957957 0 0
958958 0 0
959959 26.4575i 0.854358i
960960 0 0
961961 −31.0000 −1.00000
962962 0 0
963963 15.8745i 0.511549i
964964 0 0
965965 0 0
966966 0 0
967967 47.6235i 1.53147i 0.643157 + 0.765735i 0.277624π0.277624\pi
−0.643157 + 0.765735i 0.722376π0.722376\pi
968968 −42.5000 22.4889i −1.36600 0.722820i
969969 0 0
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 0 0
974974 −49.0000 + 18.5203i −1.57006 + 0.593427i
975975 0 0
976976 0 0
977977 −46.0000 −1.47167 −0.735835 0.677161i 0.763210π-0.763210\pi
−0.735835 + 0.677161i 0.763210π0.763210\pi
978978 0 0
979979 0 0
980980 0 0
981981 54.0000 1.72409
982982 −7.00000 + 2.64575i −0.223379 + 0.0844293i
983983 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 28.0000 0.890348
990990 0 0
991991 58.2065i 1.84899i −0.381193 0.924496i 0.624487π-0.624487\pi
0.381193 0.924496i 0.375513π-0.375513\pi
992992 0 0
993993 0 0
994994 7.00000 + 18.5203i 0.222027 + 0.587427i
995995 0 0
996996 0 0
997997 0 0 1.00000 00
−1.00000 π\pi
998998 −35.0000 + 13.2288i −1.10791 + 0.418749i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 28.2.d.a.27.1 2
3.2 odd 2 252.2.b.a.55.2 2
4.3 odd 2 inner 28.2.d.a.27.2 yes 2
5.2 odd 4 700.2.c.d.699.3 4
5.3 odd 4 700.2.c.d.699.2 4
5.4 even 2 700.2.g.a.251.2 2
7.2 even 3 196.2.f.b.31.1 4
7.3 odd 6 196.2.f.b.19.2 4
7.4 even 3 196.2.f.b.19.2 4
7.5 odd 6 196.2.f.b.31.1 4
7.6 odd 2 CM 28.2.d.a.27.1 2
8.3 odd 2 448.2.f.b.447.1 2
8.5 even 2 448.2.f.b.447.2 2
12.11 even 2 252.2.b.a.55.1 2
16.3 odd 4 1792.2.e.b.895.4 4
16.5 even 4 1792.2.e.b.895.2 4
16.11 odd 4 1792.2.e.b.895.3 4
16.13 even 4 1792.2.e.b.895.1 4
20.3 even 4 700.2.c.d.699.4 4
20.7 even 4 700.2.c.d.699.1 4
20.19 odd 2 700.2.g.a.251.1 2
21.20 even 2 252.2.b.a.55.2 2
24.5 odd 2 4032.2.b.e.3583.2 2
24.11 even 2 4032.2.b.e.3583.1 2
28.3 even 6 196.2.f.b.19.1 4
28.11 odd 6 196.2.f.b.19.1 4
28.19 even 6 196.2.f.b.31.2 4
28.23 odd 6 196.2.f.b.31.2 4
28.27 even 2 inner 28.2.d.a.27.2 yes 2
35.13 even 4 700.2.c.d.699.2 4
35.27 even 4 700.2.c.d.699.3 4
35.34 odd 2 700.2.g.a.251.2 2
56.13 odd 2 448.2.f.b.447.2 2
56.27 even 2 448.2.f.b.447.1 2
84.83 odd 2 252.2.b.a.55.1 2
112.13 odd 4 1792.2.e.b.895.1 4
112.27 even 4 1792.2.e.b.895.3 4
112.69 odd 4 1792.2.e.b.895.2 4
112.83 even 4 1792.2.e.b.895.4 4
140.27 odd 4 700.2.c.d.699.1 4
140.83 odd 4 700.2.c.d.699.4 4
140.139 even 2 700.2.g.a.251.1 2
168.83 odd 2 4032.2.b.e.3583.1 2
168.125 even 2 4032.2.b.e.3583.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.2.d.a.27.1 2 1.1 even 1 trivial
28.2.d.a.27.1 2 7.6 odd 2 CM
28.2.d.a.27.2 yes 2 4.3 odd 2 inner
28.2.d.a.27.2 yes 2 28.27 even 2 inner
196.2.f.b.19.1 4 28.3 even 6
196.2.f.b.19.1 4 28.11 odd 6
196.2.f.b.19.2 4 7.3 odd 6
196.2.f.b.19.2 4 7.4 even 3
196.2.f.b.31.1 4 7.2 even 3
196.2.f.b.31.1 4 7.5 odd 6
196.2.f.b.31.2 4 28.19 even 6
196.2.f.b.31.2 4 28.23 odd 6
252.2.b.a.55.1 2 12.11 even 2
252.2.b.a.55.1 2 84.83 odd 2
252.2.b.a.55.2 2 3.2 odd 2
252.2.b.a.55.2 2 21.20 even 2
448.2.f.b.447.1 2 8.3 odd 2
448.2.f.b.447.1 2 56.27 even 2
448.2.f.b.447.2 2 8.5 even 2
448.2.f.b.447.2 2 56.13 odd 2
700.2.c.d.699.1 4 20.7 even 4
700.2.c.d.699.1 4 140.27 odd 4
700.2.c.d.699.2 4 5.3 odd 4
700.2.c.d.699.2 4 35.13 even 4
700.2.c.d.699.3 4 5.2 odd 4
700.2.c.d.699.3 4 35.27 even 4
700.2.c.d.699.4 4 20.3 even 4
700.2.c.d.699.4 4 140.83 odd 4
700.2.g.a.251.1 2 20.19 odd 2
700.2.g.a.251.1 2 140.139 even 2
700.2.g.a.251.2 2 5.4 even 2
700.2.g.a.251.2 2 35.34 odd 2
1792.2.e.b.895.1 4 16.13 even 4
1792.2.e.b.895.1 4 112.13 odd 4
1792.2.e.b.895.2 4 16.5 even 4
1792.2.e.b.895.2 4 112.69 odd 4
1792.2.e.b.895.3 4 16.11 odd 4
1792.2.e.b.895.3 4 112.27 even 4
1792.2.e.b.895.4 4 16.3 odd 4
1792.2.e.b.895.4 4 112.83 even 4
4032.2.b.e.3583.1 2 24.11 even 2
4032.2.b.e.3583.1 2 168.83 odd 2
4032.2.b.e.3583.2 2 24.5 odd 2
4032.2.b.e.3583.2 2 168.125 even 2