Properties

Label 28.10.a
Level $28$
Weight $10$
Character orbit 28.a
Rep. character $\chi_{28}(1,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $40$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 28 = 2^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 28.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(40\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(28))\).

Total New Old
Modular forms 39 4 35
Cusp forms 33 4 29
Eisenstein series 6 0 6

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)FrickeDim
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(2\)
Minus space\(-\)\(2\)

Trace form

\( 4 q - 294 q^{3} + 3150 q^{5} + 7712 q^{9} + 11796 q^{11} - 62006 q^{13} - 135592 q^{15} - 78540 q^{17} + 566174 q^{19} - 369754 q^{21} - 241224 q^{23} + 5716992 q^{25} - 5935860 q^{27} - 4650852 q^{29}+ \cdots - 2672796508 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(28))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7
28.10.a.a 28.a 1.a $2$ $14.421$ \(\Q(\sqrt{4561}) \) None 28.10.a.a \(0\) \(-224\) \(1596\) \(4802\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-112-\beta )q^{3}+(798+9\beta )q^{5}+7^{4}q^{7}+\cdots\)
28.10.a.b 28.a 1.a $2$ $14.421$ \(\Q(\sqrt{11209}) \) None 28.10.a.b \(0\) \(-70\) \(1554\) \(-4802\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-35-\beta )q^{3}+(777-19\beta )q^{5}-7^{4}q^{7}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(28))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(28)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)