Properties

Label 2793.2.a.k.1.1
Level $2793$
Weight $2$
Character 2793.1
Self dual yes
Analytic conductor $22.302$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2793,2,Mod(1,2793)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2793.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2793, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2793 = 3 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2793.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,2,-1,2,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.3022172845\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2793.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -1.00000 q^{3} +2.00000 q^{4} -1.00000 q^{5} -2.00000 q^{6} +1.00000 q^{9} -2.00000 q^{10} +4.00000 q^{11} -2.00000 q^{12} -4.00000 q^{13} +1.00000 q^{15} -4.00000 q^{16} -3.00000 q^{17} +2.00000 q^{18} +1.00000 q^{19} -2.00000 q^{20} +8.00000 q^{22} -3.00000 q^{23} -4.00000 q^{25} -8.00000 q^{26} -1.00000 q^{27} +10.0000 q^{29} +2.00000 q^{30} -8.00000 q^{32} -4.00000 q^{33} -6.00000 q^{34} +2.00000 q^{36} -6.00000 q^{37} +2.00000 q^{38} +4.00000 q^{39} -2.00000 q^{41} -7.00000 q^{43} +8.00000 q^{44} -1.00000 q^{45} -6.00000 q^{46} +4.00000 q^{48} -8.00000 q^{50} +3.00000 q^{51} -8.00000 q^{52} -12.0000 q^{53} -2.00000 q^{54} -4.00000 q^{55} -1.00000 q^{57} +20.0000 q^{58} -12.0000 q^{59} +2.00000 q^{60} -10.0000 q^{61} -8.00000 q^{64} +4.00000 q^{65} -8.00000 q^{66} +10.0000 q^{67} -6.00000 q^{68} +3.00000 q^{69} +6.00000 q^{71} -6.00000 q^{73} -12.0000 q^{74} +4.00000 q^{75} +2.00000 q^{76} +8.00000 q^{78} -10.0000 q^{79} +4.00000 q^{80} +1.00000 q^{81} -4.00000 q^{82} -3.00000 q^{83} +3.00000 q^{85} -14.0000 q^{86} -10.0000 q^{87} +14.0000 q^{89} -2.00000 q^{90} -6.00000 q^{92} -1.00000 q^{95} +8.00000 q^{96} +12.0000 q^{97} +4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(3\) −1.00000 −0.577350
\(4\) 2.00000 1.00000
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) −2.00000 −0.816497
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) −2.00000 −0.632456
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) −2.00000 −0.577350
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) −4.00000 −1.00000
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 2.00000 0.471405
\(19\) 1.00000 0.229416
\(20\) −2.00000 −0.447214
\(21\) 0 0
\(22\) 8.00000 1.70561
\(23\) −3.00000 −0.625543 −0.312772 0.949828i \(-0.601257\pi\)
−0.312772 + 0.949828i \(0.601257\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) −8.00000 −1.56893
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 10.0000 1.85695 0.928477 0.371391i \(-0.121119\pi\)
0.928477 + 0.371391i \(0.121119\pi\)
\(30\) 2.00000 0.365148
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −8.00000 −1.41421
\(33\) −4.00000 −0.696311
\(34\) −6.00000 −1.02899
\(35\) 0 0
\(36\) 2.00000 0.333333
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 2.00000 0.324443
\(39\) 4.00000 0.640513
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) −7.00000 −1.06749 −0.533745 0.845645i \(-0.679216\pi\)
−0.533745 + 0.845645i \(0.679216\pi\)
\(44\) 8.00000 1.20605
\(45\) −1.00000 −0.149071
\(46\) −6.00000 −0.884652
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 4.00000 0.577350
\(49\) 0 0
\(50\) −8.00000 −1.13137
\(51\) 3.00000 0.420084
\(52\) −8.00000 −1.10940
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) −2.00000 −0.272166
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 20.0000 2.62613
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 2.00000 0.258199
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 4.00000 0.496139
\(66\) −8.00000 −0.984732
\(67\) 10.0000 1.22169 0.610847 0.791748i \(-0.290829\pi\)
0.610847 + 0.791748i \(0.290829\pi\)
\(68\) −6.00000 −0.727607
\(69\) 3.00000 0.361158
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) −12.0000 −1.39497
\(75\) 4.00000 0.461880
\(76\) 2.00000 0.229416
\(77\) 0 0
\(78\) 8.00000 0.905822
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 4.00000 0.447214
\(81\) 1.00000 0.111111
\(82\) −4.00000 −0.441726
\(83\) −3.00000 −0.329293 −0.164646 0.986353i \(-0.552648\pi\)
−0.164646 + 0.986353i \(0.552648\pi\)
\(84\) 0 0
\(85\) 3.00000 0.325396
\(86\) −14.0000 −1.50966
\(87\) −10.0000 −1.07211
\(88\) 0 0
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) −2.00000 −0.210819
\(91\) 0 0
\(92\) −6.00000 −0.625543
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 8.00000 0.816497
\(97\) 12.0000 1.21842 0.609208 0.793011i \(-0.291488\pi\)
0.609208 + 0.793011i \(0.291488\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) −8.00000 −0.800000
\(101\) −11.0000 −1.09454 −0.547270 0.836956i \(-0.684333\pi\)
−0.547270 + 0.836956i \(0.684333\pi\)
\(102\) 6.00000 0.594089
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −24.0000 −2.33109
\(107\) 10.0000 0.966736 0.483368 0.875417i \(-0.339413\pi\)
0.483368 + 0.875417i \(0.339413\pi\)
\(108\) −2.00000 −0.192450
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) −8.00000 −0.762770
\(111\) 6.00000 0.569495
\(112\) 0 0
\(113\) −8.00000 −0.752577 −0.376288 0.926503i \(-0.622800\pi\)
−0.376288 + 0.926503i \(0.622800\pi\)
\(114\) −2.00000 −0.187317
\(115\) 3.00000 0.279751
\(116\) 20.0000 1.85695
\(117\) −4.00000 −0.369800
\(118\) −24.0000 −2.20938
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −20.0000 −1.81071
\(123\) 2.00000 0.180334
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 0 0
\(129\) 7.00000 0.616316
\(130\) 8.00000 0.701646
\(131\) 5.00000 0.436852 0.218426 0.975854i \(-0.429908\pi\)
0.218426 + 0.975854i \(0.429908\pi\)
\(132\) −8.00000 −0.696311
\(133\) 0 0
\(134\) 20.0000 1.72774
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 6.00000 0.510754
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 12.0000 1.00702
\(143\) −16.0000 −1.33799
\(144\) −4.00000 −0.333333
\(145\) −10.0000 −0.830455
\(146\) −12.0000 −0.993127
\(147\) 0 0
\(148\) −12.0000 −0.986394
\(149\) −9.00000 −0.737309 −0.368654 0.929567i \(-0.620181\pi\)
−0.368654 + 0.929567i \(0.620181\pi\)
\(150\) 8.00000 0.653197
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 0 0
\(153\) −3.00000 −0.242536
\(154\) 0 0
\(155\) 0 0
\(156\) 8.00000 0.640513
\(157\) −1.00000 −0.0798087 −0.0399043 0.999204i \(-0.512705\pi\)
−0.0399043 + 0.999204i \(0.512705\pi\)
\(158\) −20.0000 −1.59111
\(159\) 12.0000 0.951662
\(160\) 8.00000 0.632456
\(161\) 0 0
\(162\) 2.00000 0.157135
\(163\) 19.0000 1.48819 0.744097 0.668071i \(-0.232880\pi\)
0.744097 + 0.668071i \(0.232880\pi\)
\(164\) −4.00000 −0.312348
\(165\) 4.00000 0.311400
\(166\) −6.00000 −0.465690
\(167\) 2.00000 0.154765 0.0773823 0.997001i \(-0.475344\pi\)
0.0773823 + 0.997001i \(0.475344\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 6.00000 0.460179
\(171\) 1.00000 0.0764719
\(172\) −14.0000 −1.06749
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) −20.0000 −1.51620
\(175\) 0 0
\(176\) −16.0000 −1.20605
\(177\) 12.0000 0.901975
\(178\) 28.0000 2.09869
\(179\) −16.0000 −1.19590 −0.597948 0.801535i \(-0.704017\pi\)
−0.597948 + 0.801535i \(0.704017\pi\)
\(180\) −2.00000 −0.149071
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 10.0000 0.739221
\(184\) 0 0
\(185\) 6.00000 0.441129
\(186\) 0 0
\(187\) −12.0000 −0.877527
\(188\) 0 0
\(189\) 0 0
\(190\) −2.00000 −0.145095
\(191\) −17.0000 −1.23008 −0.615038 0.788497i \(-0.710860\pi\)
−0.615038 + 0.788497i \(0.710860\pi\)
\(192\) 8.00000 0.577350
\(193\) −16.0000 −1.15171 −0.575853 0.817554i \(-0.695330\pi\)
−0.575853 + 0.817554i \(0.695330\pi\)
\(194\) 24.0000 1.72310
\(195\) −4.00000 −0.286446
\(196\) 0 0
\(197\) −11.0000 −0.783718 −0.391859 0.920025i \(-0.628168\pi\)
−0.391859 + 0.920025i \(0.628168\pi\)
\(198\) 8.00000 0.568535
\(199\) 27.0000 1.91398 0.956990 0.290122i \(-0.0936959\pi\)
0.956990 + 0.290122i \(0.0936959\pi\)
\(200\) 0 0
\(201\) −10.0000 −0.705346
\(202\) −22.0000 −1.54791
\(203\) 0 0
\(204\) 6.00000 0.420084
\(205\) 2.00000 0.139686
\(206\) −16.0000 −1.11477
\(207\) −3.00000 −0.208514
\(208\) 16.0000 1.10940
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) −24.0000 −1.64833
\(213\) −6.00000 −0.411113
\(214\) 20.0000 1.36717
\(215\) 7.00000 0.477396
\(216\) 0 0
\(217\) 0 0
\(218\) −12.0000 −0.812743
\(219\) 6.00000 0.405442
\(220\) −8.00000 −0.539360
\(221\) 12.0000 0.807207
\(222\) 12.0000 0.805387
\(223\) −10.0000 −0.669650 −0.334825 0.942280i \(-0.608677\pi\)
−0.334825 + 0.942280i \(0.608677\pi\)
\(224\) 0 0
\(225\) −4.00000 −0.266667
\(226\) −16.0000 −1.06430
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) −2.00000 −0.132453
\(229\) 7.00000 0.462573 0.231287 0.972886i \(-0.425707\pi\)
0.231287 + 0.972886i \(0.425707\pi\)
\(230\) 6.00000 0.395628
\(231\) 0 0
\(232\) 0 0
\(233\) 9.00000 0.589610 0.294805 0.955557i \(-0.404745\pi\)
0.294805 + 0.955557i \(0.404745\pi\)
\(234\) −8.00000 −0.522976
\(235\) 0 0
\(236\) −24.0000 −1.56227
\(237\) 10.0000 0.649570
\(238\) 0 0
\(239\) 9.00000 0.582162 0.291081 0.956698i \(-0.405985\pi\)
0.291081 + 0.956698i \(0.405985\pi\)
\(240\) −4.00000 −0.258199
\(241\) 28.0000 1.80364 0.901819 0.432113i \(-0.142232\pi\)
0.901819 + 0.432113i \(0.142232\pi\)
\(242\) 10.0000 0.642824
\(243\) −1.00000 −0.0641500
\(244\) −20.0000 −1.28037
\(245\) 0 0
\(246\) 4.00000 0.255031
\(247\) −4.00000 −0.254514
\(248\) 0 0
\(249\) 3.00000 0.190117
\(250\) 18.0000 1.13842
\(251\) 23.0000 1.45175 0.725874 0.687828i \(-0.241436\pi\)
0.725874 + 0.687828i \(0.241436\pi\)
\(252\) 0 0
\(253\) −12.0000 −0.754434
\(254\) 24.0000 1.50589
\(255\) −3.00000 −0.187867
\(256\) 16.0000 1.00000
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) 14.0000 0.871602
\(259\) 0 0
\(260\) 8.00000 0.496139
\(261\) 10.0000 0.618984
\(262\) 10.0000 0.617802
\(263\) −17.0000 −1.04826 −0.524132 0.851637i \(-0.675610\pi\)
−0.524132 + 0.851637i \(0.675610\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 0 0
\(267\) −14.0000 −0.856786
\(268\) 20.0000 1.22169
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 2.00000 0.121716
\(271\) 23.0000 1.39715 0.698575 0.715537i \(-0.253818\pi\)
0.698575 + 0.715537i \(0.253818\pi\)
\(272\) 12.0000 0.727607
\(273\) 0 0
\(274\) −36.0000 −2.17484
\(275\) −16.0000 −0.964836
\(276\) 6.00000 0.361158
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 24.0000 1.43942
\(279\) 0 0
\(280\) 0 0
\(281\) 20.0000 1.19310 0.596550 0.802576i \(-0.296538\pi\)
0.596550 + 0.802576i \(0.296538\pi\)
\(282\) 0 0
\(283\) −1.00000 −0.0594438 −0.0297219 0.999558i \(-0.509462\pi\)
−0.0297219 + 0.999558i \(0.509462\pi\)
\(284\) 12.0000 0.712069
\(285\) 1.00000 0.0592349
\(286\) −32.0000 −1.89220
\(287\) 0 0
\(288\) −8.00000 −0.471405
\(289\) −8.00000 −0.470588
\(290\) −20.0000 −1.17444
\(291\) −12.0000 −0.703452
\(292\) −12.0000 −0.702247
\(293\) 16.0000 0.934730 0.467365 0.884064i \(-0.345203\pi\)
0.467365 + 0.884064i \(0.345203\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 0 0
\(297\) −4.00000 −0.232104
\(298\) −18.0000 −1.04271
\(299\) 12.0000 0.693978
\(300\) 8.00000 0.461880
\(301\) 0 0
\(302\) −20.0000 −1.15087
\(303\) 11.0000 0.631933
\(304\) −4.00000 −0.229416
\(305\) 10.0000 0.572598
\(306\) −6.00000 −0.342997
\(307\) −22.0000 −1.25561 −0.627803 0.778372i \(-0.716046\pi\)
−0.627803 + 0.778372i \(0.716046\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) −3.00000 −0.170114 −0.0850572 0.996376i \(-0.527107\pi\)
−0.0850572 + 0.996376i \(0.527107\pi\)
\(312\) 0 0
\(313\) −11.0000 −0.621757 −0.310878 0.950450i \(-0.600623\pi\)
−0.310878 + 0.950450i \(0.600623\pi\)
\(314\) −2.00000 −0.112867
\(315\) 0 0
\(316\) −20.0000 −1.12509
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 24.0000 1.34585
\(319\) 40.0000 2.23957
\(320\) 8.00000 0.447214
\(321\) −10.0000 −0.558146
\(322\) 0 0
\(323\) −3.00000 −0.166924
\(324\) 2.00000 0.111111
\(325\) 16.0000 0.887520
\(326\) 38.0000 2.10463
\(327\) 6.00000 0.331801
\(328\) 0 0
\(329\) 0 0
\(330\) 8.00000 0.440386
\(331\) −22.0000 −1.20923 −0.604615 0.796518i \(-0.706673\pi\)
−0.604615 + 0.796518i \(0.706673\pi\)
\(332\) −6.00000 −0.329293
\(333\) −6.00000 −0.328798
\(334\) 4.00000 0.218870
\(335\) −10.0000 −0.546358
\(336\) 0 0
\(337\) −8.00000 −0.435788 −0.217894 0.975972i \(-0.569919\pi\)
−0.217894 + 0.975972i \(0.569919\pi\)
\(338\) 6.00000 0.326357
\(339\) 8.00000 0.434500
\(340\) 6.00000 0.325396
\(341\) 0 0
\(342\) 2.00000 0.108148
\(343\) 0 0
\(344\) 0 0
\(345\) −3.00000 −0.161515
\(346\) −28.0000 −1.50529
\(347\) 29.0000 1.55680 0.778401 0.627768i \(-0.216031\pi\)
0.778401 + 0.627768i \(0.216031\pi\)
\(348\) −20.0000 −1.07211
\(349\) −13.0000 −0.695874 −0.347937 0.937518i \(-0.613118\pi\)
−0.347937 + 0.937518i \(0.613118\pi\)
\(350\) 0 0
\(351\) 4.00000 0.213504
\(352\) −32.0000 −1.70561
\(353\) 26.0000 1.38384 0.691920 0.721974i \(-0.256765\pi\)
0.691920 + 0.721974i \(0.256765\pi\)
\(354\) 24.0000 1.27559
\(355\) −6.00000 −0.318447
\(356\) 28.0000 1.48400
\(357\) 0 0
\(358\) −32.0000 −1.69125
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 28.0000 1.47165
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) 6.00000 0.314054
\(366\) 20.0000 1.04542
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 12.0000 0.625543
\(369\) −2.00000 −0.104116
\(370\) 12.0000 0.623850
\(371\) 0 0
\(372\) 0 0
\(373\) 32.0000 1.65690 0.828449 0.560065i \(-0.189224\pi\)
0.828449 + 0.560065i \(0.189224\pi\)
\(374\) −24.0000 −1.24101
\(375\) −9.00000 −0.464758
\(376\) 0 0
\(377\) −40.0000 −2.06010
\(378\) 0 0
\(379\) 12.0000 0.616399 0.308199 0.951322i \(-0.400274\pi\)
0.308199 + 0.951322i \(0.400274\pi\)
\(380\) −2.00000 −0.102598
\(381\) −12.0000 −0.614779
\(382\) −34.0000 −1.73959
\(383\) −12.0000 −0.613171 −0.306586 0.951843i \(-0.599187\pi\)
−0.306586 + 0.951843i \(0.599187\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −32.0000 −1.62876
\(387\) −7.00000 −0.355830
\(388\) 24.0000 1.21842
\(389\) −3.00000 −0.152106 −0.0760530 0.997104i \(-0.524232\pi\)
−0.0760530 + 0.997104i \(0.524232\pi\)
\(390\) −8.00000 −0.405096
\(391\) 9.00000 0.455150
\(392\) 0 0
\(393\) −5.00000 −0.252217
\(394\) −22.0000 −1.10834
\(395\) 10.0000 0.503155
\(396\) 8.00000 0.402015
\(397\) 15.0000 0.752828 0.376414 0.926451i \(-0.377157\pi\)
0.376414 + 0.926451i \(0.377157\pi\)
\(398\) 54.0000 2.70678
\(399\) 0 0
\(400\) 16.0000 0.800000
\(401\) −12.0000 −0.599251 −0.299626 0.954057i \(-0.596862\pi\)
−0.299626 + 0.954057i \(0.596862\pi\)
\(402\) −20.0000 −0.997509
\(403\) 0 0
\(404\) −22.0000 −1.09454
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) −32.0000 −1.58230 −0.791149 0.611623i \(-0.790517\pi\)
−0.791149 + 0.611623i \(0.790517\pi\)
\(410\) 4.00000 0.197546
\(411\) 18.0000 0.887875
\(412\) −16.0000 −0.788263
\(413\) 0 0
\(414\) −6.00000 −0.294884
\(415\) 3.00000 0.147264
\(416\) 32.0000 1.56893
\(417\) −12.0000 −0.587643
\(418\) 8.00000 0.391293
\(419\) 9.00000 0.439679 0.219839 0.975536i \(-0.429447\pi\)
0.219839 + 0.975536i \(0.429447\pi\)
\(420\) 0 0
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) 8.00000 0.389434
\(423\) 0 0
\(424\) 0 0
\(425\) 12.0000 0.582086
\(426\) −12.0000 −0.581402
\(427\) 0 0
\(428\) 20.0000 0.966736
\(429\) 16.0000 0.772487
\(430\) 14.0000 0.675140
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) 4.00000 0.192450
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 0 0
\(435\) 10.0000 0.479463
\(436\) −12.0000 −0.574696
\(437\) −3.00000 −0.143509
\(438\) 12.0000 0.573382
\(439\) −30.0000 −1.43182 −0.715911 0.698192i \(-0.753988\pi\)
−0.715911 + 0.698192i \(0.753988\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 24.0000 1.14156
\(443\) −21.0000 −0.997740 −0.498870 0.866677i \(-0.666252\pi\)
−0.498870 + 0.866677i \(0.666252\pi\)
\(444\) 12.0000 0.569495
\(445\) −14.0000 −0.663664
\(446\) −20.0000 −0.947027
\(447\) 9.00000 0.425685
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) −8.00000 −0.377124
\(451\) −8.00000 −0.376705
\(452\) −16.0000 −0.752577
\(453\) 10.0000 0.469841
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) 14.0000 0.654177
\(459\) 3.00000 0.140028
\(460\) 6.00000 0.279751
\(461\) −26.0000 −1.21094 −0.605470 0.795868i \(-0.707015\pi\)
−0.605470 + 0.795868i \(0.707015\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) −40.0000 −1.85695
\(465\) 0 0
\(466\) 18.0000 0.833834
\(467\) −36.0000 −1.66588 −0.832941 0.553362i \(-0.813345\pi\)
−0.832941 + 0.553362i \(0.813345\pi\)
\(468\) −8.00000 −0.369800
\(469\) 0 0
\(470\) 0 0
\(471\) 1.00000 0.0460776
\(472\) 0 0
\(473\) −28.0000 −1.28744
\(474\) 20.0000 0.918630
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) −12.0000 −0.549442
\(478\) 18.0000 0.823301
\(479\) −11.0000 −0.502603 −0.251301 0.967909i \(-0.580859\pi\)
−0.251301 + 0.967909i \(0.580859\pi\)
\(480\) −8.00000 −0.365148
\(481\) 24.0000 1.09431
\(482\) 56.0000 2.55073
\(483\) 0 0
\(484\) 10.0000 0.454545
\(485\) −12.0000 −0.544892
\(486\) −2.00000 −0.0907218
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) 0 0
\(489\) −19.0000 −0.859210
\(490\) 0 0
\(491\) −1.00000 −0.0451294 −0.0225647 0.999745i \(-0.507183\pi\)
−0.0225647 + 0.999745i \(0.507183\pi\)
\(492\) 4.00000 0.180334
\(493\) −30.0000 −1.35113
\(494\) −8.00000 −0.359937
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) 0 0
\(498\) 6.00000 0.268866
\(499\) 7.00000 0.313363 0.156682 0.987649i \(-0.449920\pi\)
0.156682 + 0.987649i \(0.449920\pi\)
\(500\) 18.0000 0.804984
\(501\) −2.00000 −0.0893534
\(502\) 46.0000 2.05308
\(503\) 3.00000 0.133763 0.0668817 0.997761i \(-0.478695\pi\)
0.0668817 + 0.997761i \(0.478695\pi\)
\(504\) 0 0
\(505\) 11.0000 0.489494
\(506\) −24.0000 −1.06693
\(507\) −3.00000 −0.133235
\(508\) 24.0000 1.06483
\(509\) −38.0000 −1.68432 −0.842160 0.539227i \(-0.818716\pi\)
−0.842160 + 0.539227i \(0.818716\pi\)
\(510\) −6.00000 −0.265684
\(511\) 0 0
\(512\) 32.0000 1.41421
\(513\) −1.00000 −0.0441511
\(514\) −4.00000 −0.176432
\(515\) 8.00000 0.352522
\(516\) 14.0000 0.616316
\(517\) 0 0
\(518\) 0 0
\(519\) 14.0000 0.614532
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 20.0000 0.875376
\(523\) −40.0000 −1.74908 −0.874539 0.484955i \(-0.838836\pi\)
−0.874539 + 0.484955i \(0.838836\pi\)
\(524\) 10.0000 0.436852
\(525\) 0 0
\(526\) −34.0000 −1.48247
\(527\) 0 0
\(528\) 16.0000 0.696311
\(529\) −14.0000 −0.608696
\(530\) 24.0000 1.04249
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) 8.00000 0.346518
\(534\) −28.0000 −1.21168
\(535\) −10.0000 −0.432338
\(536\) 0 0
\(537\) 16.0000 0.690451
\(538\) 36.0000 1.55207
\(539\) 0 0
\(540\) 2.00000 0.0860663
\(541\) 35.0000 1.50477 0.752384 0.658725i \(-0.228904\pi\)
0.752384 + 0.658725i \(0.228904\pi\)
\(542\) 46.0000 1.97587
\(543\) −14.0000 −0.600798
\(544\) 24.0000 1.02899
\(545\) 6.00000 0.257012
\(546\) 0 0
\(547\) −2.00000 −0.0855138 −0.0427569 0.999086i \(-0.513614\pi\)
−0.0427569 + 0.999086i \(0.513614\pi\)
\(548\) −36.0000 −1.53784
\(549\) −10.0000 −0.426790
\(550\) −32.0000 −1.36448
\(551\) 10.0000 0.426014
\(552\) 0 0
\(553\) 0 0
\(554\) 44.0000 1.86938
\(555\) −6.00000 −0.254686
\(556\) 24.0000 1.01783
\(557\) 7.00000 0.296600 0.148300 0.988942i \(-0.452620\pi\)
0.148300 + 0.988942i \(0.452620\pi\)
\(558\) 0 0
\(559\) 28.0000 1.18427
\(560\) 0 0
\(561\) 12.0000 0.506640
\(562\) 40.0000 1.68730
\(563\) −10.0000 −0.421450 −0.210725 0.977545i \(-0.567582\pi\)
−0.210725 + 0.977545i \(0.567582\pi\)
\(564\) 0 0
\(565\) 8.00000 0.336563
\(566\) −2.00000 −0.0840663
\(567\) 0 0
\(568\) 0 0
\(569\) −20.0000 −0.838444 −0.419222 0.907884i \(-0.637697\pi\)
−0.419222 + 0.907884i \(0.637697\pi\)
\(570\) 2.00000 0.0837708
\(571\) 5.00000 0.209243 0.104622 0.994512i \(-0.466637\pi\)
0.104622 + 0.994512i \(0.466637\pi\)
\(572\) −32.0000 −1.33799
\(573\) 17.0000 0.710185
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) −8.00000 −0.333333
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) −16.0000 −0.665512
\(579\) 16.0000 0.664937
\(580\) −20.0000 −0.830455
\(581\) 0 0
\(582\) −24.0000 −0.994832
\(583\) −48.0000 −1.98796
\(584\) 0 0
\(585\) 4.00000 0.165380
\(586\) 32.0000 1.32191
\(587\) −7.00000 −0.288921 −0.144460 0.989511i \(-0.546145\pi\)
−0.144460 + 0.989511i \(0.546145\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 24.0000 0.988064
\(591\) 11.0000 0.452480
\(592\) 24.0000 0.986394
\(593\) 39.0000 1.60154 0.800769 0.598973i \(-0.204424\pi\)
0.800769 + 0.598973i \(0.204424\pi\)
\(594\) −8.00000 −0.328244
\(595\) 0 0
\(596\) −18.0000 −0.737309
\(597\) −27.0000 −1.10504
\(598\) 24.0000 0.981433
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) 30.0000 1.22373 0.611863 0.790964i \(-0.290420\pi\)
0.611863 + 0.790964i \(0.290420\pi\)
\(602\) 0 0
\(603\) 10.0000 0.407231
\(604\) −20.0000 −0.813788
\(605\) −5.00000 −0.203279
\(606\) 22.0000 0.893689
\(607\) 22.0000 0.892952 0.446476 0.894795i \(-0.352679\pi\)
0.446476 + 0.894795i \(0.352679\pi\)
\(608\) −8.00000 −0.324443
\(609\) 0 0
\(610\) 20.0000 0.809776
\(611\) 0 0
\(612\) −6.00000 −0.242536
\(613\) 25.0000 1.00974 0.504870 0.863195i \(-0.331540\pi\)
0.504870 + 0.863195i \(0.331540\pi\)
\(614\) −44.0000 −1.77570
\(615\) −2.00000 −0.0806478
\(616\) 0 0
\(617\) 27.0000 1.08698 0.543490 0.839416i \(-0.317103\pi\)
0.543490 + 0.839416i \(0.317103\pi\)
\(618\) 16.0000 0.643614
\(619\) 35.0000 1.40677 0.703384 0.710810i \(-0.251671\pi\)
0.703384 + 0.710810i \(0.251671\pi\)
\(620\) 0 0
\(621\) 3.00000 0.120386
\(622\) −6.00000 −0.240578
\(623\) 0 0
\(624\) −16.0000 −0.640513
\(625\) 11.0000 0.440000
\(626\) −22.0000 −0.879297
\(627\) −4.00000 −0.159745
\(628\) −2.00000 −0.0798087
\(629\) 18.0000 0.717707
\(630\) 0 0
\(631\) 5.00000 0.199047 0.0995234 0.995035i \(-0.468268\pi\)
0.0995234 + 0.995035i \(0.468268\pi\)
\(632\) 0 0
\(633\) −4.00000 −0.158986
\(634\) 0 0
\(635\) −12.0000 −0.476205
\(636\) 24.0000 0.951662
\(637\) 0 0
\(638\) 80.0000 3.16723
\(639\) 6.00000 0.237356
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) −20.0000 −0.789337
\(643\) −11.0000 −0.433798 −0.216899 0.976194i \(-0.569594\pi\)
−0.216899 + 0.976194i \(0.569594\pi\)
\(644\) 0 0
\(645\) −7.00000 −0.275625
\(646\) −6.00000 −0.236067
\(647\) −23.0000 −0.904223 −0.452112 0.891961i \(-0.649329\pi\)
−0.452112 + 0.891961i \(0.649329\pi\)
\(648\) 0 0
\(649\) −48.0000 −1.88416
\(650\) 32.0000 1.25514
\(651\) 0 0
\(652\) 38.0000 1.48819
\(653\) −21.0000 −0.821794 −0.410897 0.911682i \(-0.634784\pi\)
−0.410897 + 0.911682i \(0.634784\pi\)
\(654\) 12.0000 0.469237
\(655\) −5.00000 −0.195366
\(656\) 8.00000 0.312348
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 8.00000 0.311400
\(661\) −40.0000 −1.55582 −0.777910 0.628376i \(-0.783720\pi\)
−0.777910 + 0.628376i \(0.783720\pi\)
\(662\) −44.0000 −1.71011
\(663\) −12.0000 −0.466041
\(664\) 0 0
\(665\) 0 0
\(666\) −12.0000 −0.464991
\(667\) −30.0000 −1.16160
\(668\) 4.00000 0.154765
\(669\) 10.0000 0.386622
\(670\) −20.0000 −0.772667
\(671\) −40.0000 −1.54418
\(672\) 0 0
\(673\) 16.0000 0.616755 0.308377 0.951264i \(-0.400214\pi\)
0.308377 + 0.951264i \(0.400214\pi\)
\(674\) −16.0000 −0.616297
\(675\) 4.00000 0.153960
\(676\) 6.00000 0.230769
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) 16.0000 0.614476
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 2.00000 0.0764719
\(685\) 18.0000 0.687745
\(686\) 0 0
\(687\) −7.00000 −0.267067
\(688\) 28.0000 1.06749
\(689\) 48.0000 1.82865
\(690\) −6.00000 −0.228416
\(691\) −41.0000 −1.55971 −0.779857 0.625958i \(-0.784708\pi\)
−0.779857 + 0.625958i \(0.784708\pi\)
\(692\) −28.0000 −1.06440
\(693\) 0 0
\(694\) 58.0000 2.20165
\(695\) −12.0000 −0.455186
\(696\) 0 0
\(697\) 6.00000 0.227266
\(698\) −26.0000 −0.984115
\(699\) −9.00000 −0.340411
\(700\) 0 0
\(701\) −21.0000 −0.793159 −0.396580 0.918000i \(-0.629803\pi\)
−0.396580 + 0.918000i \(0.629803\pi\)
\(702\) 8.00000 0.301941
\(703\) −6.00000 −0.226294
\(704\) −32.0000 −1.20605
\(705\) 0 0
\(706\) 52.0000 1.95705
\(707\) 0 0
\(708\) 24.0000 0.901975
\(709\) 21.0000 0.788672 0.394336 0.918966i \(-0.370975\pi\)
0.394336 + 0.918966i \(0.370975\pi\)
\(710\) −12.0000 −0.450352
\(711\) −10.0000 −0.375029
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 16.0000 0.598366
\(716\) −32.0000 −1.19590
\(717\) −9.00000 −0.336111
\(718\) 40.0000 1.49279
\(719\) −21.0000 −0.783168 −0.391584 0.920142i \(-0.628073\pi\)
−0.391584 + 0.920142i \(0.628073\pi\)
\(720\) 4.00000 0.149071
\(721\) 0 0
\(722\) 2.00000 0.0744323
\(723\) −28.0000 −1.04133
\(724\) 28.0000 1.04061
\(725\) −40.0000 −1.48556
\(726\) −10.0000 −0.371135
\(727\) −47.0000 −1.74313 −0.871567 0.490277i \(-0.836896\pi\)
−0.871567 + 0.490277i \(0.836896\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 12.0000 0.444140
\(731\) 21.0000 0.776713
\(732\) 20.0000 0.739221
\(733\) 30.0000 1.10808 0.554038 0.832492i \(-0.313086\pi\)
0.554038 + 0.832492i \(0.313086\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 24.0000 0.884652
\(737\) 40.0000 1.47342
\(738\) −4.00000 −0.147242
\(739\) 51.0000 1.87607 0.938033 0.346547i \(-0.112646\pi\)
0.938033 + 0.346547i \(0.112646\pi\)
\(740\) 12.0000 0.441129
\(741\) 4.00000 0.146944
\(742\) 0 0
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) 9.00000 0.329734
\(746\) 64.0000 2.34321
\(747\) −3.00000 −0.109764
\(748\) −24.0000 −0.877527
\(749\) 0 0
\(750\) −18.0000 −0.657267
\(751\) −14.0000 −0.510867 −0.255434 0.966827i \(-0.582218\pi\)
−0.255434 + 0.966827i \(0.582218\pi\)
\(752\) 0 0
\(753\) −23.0000 −0.838167
\(754\) −80.0000 −2.91343
\(755\) 10.0000 0.363937
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 24.0000 0.871719
\(759\) 12.0000 0.435572
\(760\) 0 0
\(761\) 21.0000 0.761249 0.380625 0.924730i \(-0.375709\pi\)
0.380625 + 0.924730i \(0.375709\pi\)
\(762\) −24.0000 −0.869428
\(763\) 0 0
\(764\) −34.0000 −1.23008
\(765\) 3.00000 0.108465
\(766\) −24.0000 −0.867155
\(767\) 48.0000 1.73318
\(768\) −16.0000 −0.577350
\(769\) 37.0000 1.33425 0.667127 0.744944i \(-0.267524\pi\)
0.667127 + 0.744944i \(0.267524\pi\)
\(770\) 0 0
\(771\) 2.00000 0.0720282
\(772\) −32.0000 −1.15171
\(773\) 28.0000 1.00709 0.503545 0.863969i \(-0.332029\pi\)
0.503545 + 0.863969i \(0.332029\pi\)
\(774\) −14.0000 −0.503220
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) −2.00000 −0.0716574
\(780\) −8.00000 −0.286446
\(781\) 24.0000 0.858788
\(782\) 18.0000 0.643679
\(783\) −10.0000 −0.357371
\(784\) 0 0
\(785\) 1.00000 0.0356915
\(786\) −10.0000 −0.356688
\(787\) −46.0000 −1.63972 −0.819861 0.572562i \(-0.805950\pi\)
−0.819861 + 0.572562i \(0.805950\pi\)
\(788\) −22.0000 −0.783718
\(789\) 17.0000 0.605216
\(790\) 20.0000 0.711568
\(791\) 0 0
\(792\) 0 0
\(793\) 40.0000 1.42044
\(794\) 30.0000 1.06466
\(795\) −12.0000 −0.425596
\(796\) 54.0000 1.91398
\(797\) −4.00000 −0.141687 −0.0708436 0.997487i \(-0.522569\pi\)
−0.0708436 + 0.997487i \(0.522569\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 32.0000 1.13137
\(801\) 14.0000 0.494666
\(802\) −24.0000 −0.847469
\(803\) −24.0000 −0.846942
\(804\) −20.0000 −0.705346
\(805\) 0 0
\(806\) 0 0
\(807\) −18.0000 −0.633630
\(808\) 0 0
\(809\) −27.0000 −0.949269 −0.474635 0.880183i \(-0.657420\pi\)
−0.474635 + 0.880183i \(0.657420\pi\)
\(810\) −2.00000 −0.0702728
\(811\) −32.0000 −1.12367 −0.561836 0.827249i \(-0.689905\pi\)
−0.561836 + 0.827249i \(0.689905\pi\)
\(812\) 0 0
\(813\) −23.0000 −0.806645
\(814\) −48.0000 −1.68240
\(815\) −19.0000 −0.665541
\(816\) −12.0000 −0.420084
\(817\) −7.00000 −0.244899
\(818\) −64.0000 −2.23771
\(819\) 0 0
\(820\) 4.00000 0.139686
\(821\) −10.0000 −0.349002 −0.174501 0.984657i \(-0.555831\pi\)
−0.174501 + 0.984657i \(0.555831\pi\)
\(822\) 36.0000 1.25564
\(823\) −24.0000 −0.836587 −0.418294 0.908312i \(-0.637372\pi\)
−0.418294 + 0.908312i \(0.637372\pi\)
\(824\) 0 0
\(825\) 16.0000 0.557048
\(826\) 0 0
\(827\) −6.00000 −0.208640 −0.104320 0.994544i \(-0.533267\pi\)
−0.104320 + 0.994544i \(0.533267\pi\)
\(828\) −6.00000 −0.208514
\(829\) 52.0000 1.80603 0.903017 0.429604i \(-0.141347\pi\)
0.903017 + 0.429604i \(0.141347\pi\)
\(830\) 6.00000 0.208263
\(831\) −22.0000 −0.763172
\(832\) 32.0000 1.10940
\(833\) 0 0
\(834\) −24.0000 −0.831052
\(835\) −2.00000 −0.0692129
\(836\) 8.00000 0.276686
\(837\) 0 0
\(838\) 18.0000 0.621800
\(839\) 56.0000 1.93333 0.966667 0.256036i \(-0.0824164\pi\)
0.966667 + 0.256036i \(0.0824164\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) 16.0000 0.551396
\(843\) −20.0000 −0.688837
\(844\) 8.00000 0.275371
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) 0 0
\(848\) 48.0000 1.64833
\(849\) 1.00000 0.0343199
\(850\) 24.0000 0.823193
\(851\) 18.0000 0.617032
\(852\) −12.0000 −0.411113
\(853\) 37.0000 1.26686 0.633428 0.773802i \(-0.281647\pi\)
0.633428 + 0.773802i \(0.281647\pi\)
\(854\) 0 0
\(855\) −1.00000 −0.0341993
\(856\) 0 0
\(857\) −40.0000 −1.36637 −0.683187 0.730243i \(-0.739407\pi\)
−0.683187 + 0.730243i \(0.739407\pi\)
\(858\) 32.0000 1.09246
\(859\) −17.0000 −0.580033 −0.290016 0.957022i \(-0.593661\pi\)
−0.290016 + 0.957022i \(0.593661\pi\)
\(860\) 14.0000 0.477396
\(861\) 0 0
\(862\) −24.0000 −0.817443
\(863\) −12.0000 −0.408485 −0.204242 0.978920i \(-0.565473\pi\)
−0.204242 + 0.978920i \(0.565473\pi\)
\(864\) 8.00000 0.272166
\(865\) 14.0000 0.476014
\(866\) 28.0000 0.951479
\(867\) 8.00000 0.271694
\(868\) 0 0
\(869\) −40.0000 −1.35691
\(870\) 20.0000 0.678064
\(871\) −40.0000 −1.35535
\(872\) 0 0
\(873\) 12.0000 0.406138
\(874\) −6.00000 −0.202953
\(875\) 0 0
\(876\) 12.0000 0.405442
\(877\) −32.0000 −1.08056 −0.540282 0.841484i \(-0.681682\pi\)
−0.540282 + 0.841484i \(0.681682\pi\)
\(878\) −60.0000 −2.02490
\(879\) −16.0000 −0.539667
\(880\) 16.0000 0.539360
\(881\) −15.0000 −0.505363 −0.252681 0.967550i \(-0.581312\pi\)
−0.252681 + 0.967550i \(0.581312\pi\)
\(882\) 0 0
\(883\) 47.0000 1.58168 0.790838 0.612026i \(-0.209645\pi\)
0.790838 + 0.612026i \(0.209645\pi\)
\(884\) 24.0000 0.807207
\(885\) −12.0000 −0.403376
\(886\) −42.0000 −1.41102
\(887\) −14.0000 −0.470074 −0.235037 0.971986i \(-0.575521\pi\)
−0.235037 + 0.971986i \(0.575521\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −28.0000 −0.938562
\(891\) 4.00000 0.134005
\(892\) −20.0000 −0.669650
\(893\) 0 0
\(894\) 18.0000 0.602010
\(895\) 16.0000 0.534821
\(896\) 0 0
\(897\) −12.0000 −0.400668
\(898\) 12.0000 0.400445
\(899\) 0 0
\(900\) −8.00000 −0.266667
\(901\) 36.0000 1.19933
\(902\) −16.0000 −0.532742
\(903\) 0 0
\(904\) 0 0
\(905\) −14.0000 −0.465376
\(906\) 20.0000 0.664455
\(907\) 20.0000 0.664089 0.332045 0.943264i \(-0.392262\pi\)
0.332045 + 0.943264i \(0.392262\pi\)
\(908\) 0 0
\(909\) −11.0000 −0.364847
\(910\) 0 0
\(911\) −42.0000 −1.39152 −0.695761 0.718273i \(-0.744933\pi\)
−0.695761 + 0.718273i \(0.744933\pi\)
\(912\) 4.00000 0.132453
\(913\) −12.0000 −0.397142
\(914\) 44.0000 1.45539
\(915\) −10.0000 −0.330590
\(916\) 14.0000 0.462573
\(917\) 0 0
\(918\) 6.00000 0.198030
\(919\) −7.00000 −0.230909 −0.115454 0.993313i \(-0.536832\pi\)
−0.115454 + 0.993313i \(0.536832\pi\)
\(920\) 0 0
\(921\) 22.0000 0.724925
\(922\) −52.0000 −1.71253
\(923\) −24.0000 −0.789970
\(924\) 0 0
\(925\) 24.0000 0.789115
\(926\) 8.00000 0.262896
\(927\) −8.00000 −0.262754
\(928\) −80.0000 −2.62613
\(929\) 55.0000 1.80449 0.902246 0.431222i \(-0.141918\pi\)
0.902246 + 0.431222i \(0.141918\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 18.0000 0.589610
\(933\) 3.00000 0.0982156
\(934\) −72.0000 −2.35591
\(935\) 12.0000 0.392442
\(936\) 0 0
\(937\) −57.0000 −1.86211 −0.931054 0.364880i \(-0.881110\pi\)
−0.931054 + 0.364880i \(0.881110\pi\)
\(938\) 0 0
\(939\) 11.0000 0.358971
\(940\) 0 0
\(941\) −20.0000 −0.651981 −0.325991 0.945373i \(-0.605698\pi\)
−0.325991 + 0.945373i \(0.605698\pi\)
\(942\) 2.00000 0.0651635
\(943\) 6.00000 0.195387
\(944\) 48.0000 1.56227
\(945\) 0 0
\(946\) −56.0000 −1.82072
\(947\) −28.0000 −0.909878 −0.454939 0.890523i \(-0.650339\pi\)
−0.454939 + 0.890523i \(0.650339\pi\)
\(948\) 20.0000 0.649570
\(949\) 24.0000 0.779073
\(950\) −8.00000 −0.259554
\(951\) 0 0
\(952\) 0 0
\(953\) −34.0000 −1.10137 −0.550684 0.834714i \(-0.685633\pi\)
−0.550684 + 0.834714i \(0.685633\pi\)
\(954\) −24.0000 −0.777029
\(955\) 17.0000 0.550107
\(956\) 18.0000 0.582162
\(957\) −40.0000 −1.29302
\(958\) −22.0000 −0.710788
\(959\) 0 0
\(960\) −8.00000 −0.258199
\(961\) −31.0000 −1.00000
\(962\) 48.0000 1.54758
\(963\) 10.0000 0.322245
\(964\) 56.0000 1.80364
\(965\) 16.0000 0.515058
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) 3.00000 0.0963739
\(970\) −24.0000 −0.770594
\(971\) −48.0000 −1.54039 −0.770197 0.637806i \(-0.779842\pi\)
−0.770197 + 0.637806i \(0.779842\pi\)
\(972\) −2.00000 −0.0641500
\(973\) 0 0
\(974\) −64.0000 −2.05069
\(975\) −16.0000 −0.512410
\(976\) 40.0000 1.28037
\(977\) −42.0000 −1.34370 −0.671850 0.740688i \(-0.734500\pi\)
−0.671850 + 0.740688i \(0.734500\pi\)
\(978\) −38.0000 −1.21511
\(979\) 56.0000 1.78977
\(980\) 0 0
\(981\) −6.00000 −0.191565
\(982\) −2.00000 −0.0638226
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 0 0
\(985\) 11.0000 0.350489
\(986\) −60.0000 −1.91079
\(987\) 0 0
\(988\) −8.00000 −0.254514
\(989\) 21.0000 0.667761
\(990\) −8.00000 −0.254257
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) 22.0000 0.698149
\(994\) 0 0
\(995\) −27.0000 −0.855958
\(996\) 6.00000 0.190117
\(997\) −25.0000 −0.791758 −0.395879 0.918303i \(-0.629560\pi\)
−0.395879 + 0.918303i \(0.629560\pi\)
\(998\) 14.0000 0.443162
\(999\) 6.00000 0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2793.2.a.k.1.1 1
3.2 odd 2 8379.2.a.c.1.1 1
7.3 odd 6 399.2.j.a.58.1 2
7.5 odd 6 399.2.j.a.172.1 yes 2
7.6 odd 2 2793.2.a.l.1.1 1
21.5 even 6 1197.2.j.b.172.1 2
21.17 even 6 1197.2.j.b.856.1 2
21.20 even 2 8379.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.a.58.1 2 7.3 odd 6
399.2.j.a.172.1 yes 2 7.5 odd 6
1197.2.j.b.172.1 2 21.5 even 6
1197.2.j.b.856.1 2 21.17 even 6
2793.2.a.k.1.1 1 1.1 even 1 trivial
2793.2.a.l.1.1 1 7.6 odd 2
8379.2.a.b.1.1 1 21.20 even 2
8379.2.a.c.1.1 1 3.2 odd 2