Properties

Label 2793.2.a.bc.1.2
Level $2793$
Weight $2$
Character 2793.1
Self dual yes
Analytic conductor $22.302$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2793,2,Mod(1,2793)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2793.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2793, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2793 = 3 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2793.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.3022172845\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.1957.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.396339\) of defining polynomial
Character \(\chi\) \(=\) 2793.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.396339 q^{2} -1.00000 q^{3} -1.84292 q^{4} -0.842916 q^{5} +0.396339 q^{6} +1.52310 q^{8} +1.00000 q^{9} +0.334080 q^{10} -0.0359789 q^{11} +1.84292 q^{12} +1.96402 q^{13} +0.842916 q^{15} +3.08217 q^{16} +3.25351 q^{17} -0.396339 q^{18} +1.00000 q^{19} +1.55342 q^{20} +0.0142598 q^{22} +1.28384 q^{23} -1.52310 q^{24} -4.28949 q^{25} -0.778417 q^{26} -1.00000 q^{27} -7.06045 q^{29} -0.334080 q^{30} -3.61953 q^{31} -4.26777 q^{32} +0.0359789 q^{33} -1.28949 q^{34} -1.84292 q^{36} -2.16274 q^{37} -0.396339 q^{38} -1.96402 q^{39} -1.28384 q^{40} +0.130805 q^{41} -4.50884 q^{43} +0.0663061 q^{44} -0.842916 q^{45} -0.508836 q^{46} -7.98554 q^{47} -3.08217 q^{48} +1.70009 q^{50} -3.25351 q^{51} -3.61953 q^{52} +2.98169 q^{53} +0.396339 q^{54} +0.0303272 q^{55} -1.00000 q^{57} +2.79833 q^{58} +12.9799 q^{59} -1.55342 q^{60} +2.58759 q^{61} +1.43456 q^{62} -4.47286 q^{64} -1.65550 q^{65} -0.0142598 q^{66} +4.51905 q^{67} -5.99595 q^{68} -1.28384 q^{69} -2.64985 q^{71} +1.52310 q^{72} +6.21297 q^{73} +0.857176 q^{74} +4.28949 q^{75} -1.84292 q^{76} +0.778417 q^{78} +10.3728 q^{79} -2.59801 q^{80} +1.00000 q^{81} -0.0518429 q^{82} +10.2752 q^{83} -2.74244 q^{85} +1.78703 q^{86} +7.06045 q^{87} -0.0547993 q^{88} +8.37281 q^{89} +0.334080 q^{90} -2.36601 q^{92} +3.61953 q^{93} +3.16498 q^{94} -0.842916 q^{95} +4.26777 q^{96} -2.55162 q^{97} -0.0359789 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{5} - 3 q^{8} + 4 q^{9} - 3 q^{10} - 2 q^{11} + 6 q^{13} - 4 q^{15} - 4 q^{16} - 2 q^{17} + 4 q^{19} + 12 q^{20} - 6 q^{22} + 5 q^{23} + 3 q^{24} - 4 q^{25} - 6 q^{26} - 4 q^{27} - 4 q^{29}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.396339 −0.280254 −0.140127 0.990134i \(-0.544751\pi\)
−0.140127 + 0.990134i \(0.544751\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.84292 −0.921458
\(5\) −0.842916 −0.376963 −0.188482 0.982077i \(-0.560357\pi\)
−0.188482 + 0.982077i \(0.560357\pi\)
\(6\) 0.396339 0.161805
\(7\) 0 0
\(8\) 1.52310 0.538496
\(9\) 1.00000 0.333333
\(10\) 0.334080 0.105645
\(11\) −0.0359789 −0.0108480 −0.00542402 0.999985i \(-0.501727\pi\)
−0.00542402 + 0.999985i \(0.501727\pi\)
\(12\) 1.84292 0.532004
\(13\) 1.96402 0.544721 0.272361 0.962195i \(-0.412196\pi\)
0.272361 + 0.962195i \(0.412196\pi\)
\(14\) 0 0
\(15\) 0.842916 0.217640
\(16\) 3.08217 0.770543
\(17\) 3.25351 0.789093 0.394547 0.918876i \(-0.370902\pi\)
0.394547 + 0.918876i \(0.370902\pi\)
\(18\) −0.396339 −0.0934179
\(19\) 1.00000 0.229416
\(20\) 1.55342 0.347356
\(21\) 0 0
\(22\) 0.0142598 0.00304020
\(23\) 1.28384 0.267699 0.133850 0.991002i \(-0.457266\pi\)
0.133850 + 0.991002i \(0.457266\pi\)
\(24\) −1.52310 −0.310901
\(25\) −4.28949 −0.857899
\(26\) −0.778417 −0.152660
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −7.06045 −1.31109 −0.655546 0.755155i \(-0.727562\pi\)
−0.655546 + 0.755155i \(0.727562\pi\)
\(30\) −0.334080 −0.0609944
\(31\) −3.61953 −0.650086 −0.325043 0.945699i \(-0.605379\pi\)
−0.325043 + 0.945699i \(0.605379\pi\)
\(32\) −4.26777 −0.754443
\(33\) 0.0359789 0.00626312
\(34\) −1.28949 −0.221146
\(35\) 0 0
\(36\) −1.84292 −0.307153
\(37\) −2.16274 −0.355552 −0.177776 0.984071i \(-0.556890\pi\)
−0.177776 + 0.984071i \(0.556890\pi\)
\(38\) −0.396339 −0.0642946
\(39\) −1.96402 −0.314495
\(40\) −1.28384 −0.202993
\(41\) 0.130805 0.0204282 0.0102141 0.999948i \(-0.496749\pi\)
0.0102141 + 0.999948i \(0.496749\pi\)
\(42\) 0 0
\(43\) −4.50884 −0.687591 −0.343796 0.939045i \(-0.611713\pi\)
−0.343796 + 0.939045i \(0.611713\pi\)
\(44\) 0.0663061 0.00999601
\(45\) −0.842916 −0.125654
\(46\) −0.508836 −0.0750237
\(47\) −7.98554 −1.16481 −0.582405 0.812899i \(-0.697888\pi\)
−0.582405 + 0.812899i \(0.697888\pi\)
\(48\) −3.08217 −0.444873
\(49\) 0 0
\(50\) 1.70009 0.240429
\(51\) −3.25351 −0.455583
\(52\) −3.61953 −0.501938
\(53\) 2.98169 0.409567 0.204783 0.978807i \(-0.434351\pi\)
0.204783 + 0.978807i \(0.434351\pi\)
\(54\) 0.396339 0.0539348
\(55\) 0.0303272 0.00408931
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 2.79833 0.367439
\(59\) 12.9799 1.68984 0.844919 0.534895i \(-0.179649\pi\)
0.844919 + 0.534895i \(0.179649\pi\)
\(60\) −1.55342 −0.200546
\(61\) 2.58759 0.331307 0.165654 0.986184i \(-0.447027\pi\)
0.165654 + 0.986184i \(0.447027\pi\)
\(62\) 1.43456 0.182189
\(63\) 0 0
\(64\) −4.47286 −0.559107
\(65\) −1.65550 −0.205340
\(66\) −0.0142598 −0.00175526
\(67\) 4.51905 0.552090 0.276045 0.961145i \(-0.410976\pi\)
0.276045 + 0.961145i \(0.410976\pi\)
\(68\) −5.99595 −0.727116
\(69\) −1.28384 −0.154556
\(70\) 0 0
\(71\) −2.64985 −0.314480 −0.157240 0.987560i \(-0.550260\pi\)
−0.157240 + 0.987560i \(0.550260\pi\)
\(72\) 1.52310 0.179499
\(73\) 6.21297 0.727174 0.363587 0.931560i \(-0.381552\pi\)
0.363587 + 0.931560i \(0.381552\pi\)
\(74\) 0.857176 0.0996446
\(75\) 4.28949 0.495308
\(76\) −1.84292 −0.211397
\(77\) 0 0
\(78\) 0.778417 0.0881384
\(79\) 10.3728 1.16703 0.583516 0.812101i \(-0.301676\pi\)
0.583516 + 0.812101i \(0.301676\pi\)
\(80\) −2.59801 −0.290466
\(81\) 1.00000 0.111111
\(82\) −0.0518429 −0.00572509
\(83\) 10.2752 1.12785 0.563927 0.825825i \(-0.309290\pi\)
0.563927 + 0.825825i \(0.309290\pi\)
\(84\) 0 0
\(85\) −2.74244 −0.297459
\(86\) 1.78703 0.192700
\(87\) 7.06045 0.756960
\(88\) −0.0547993 −0.00584162
\(89\) 8.37281 0.887516 0.443758 0.896147i \(-0.353645\pi\)
0.443758 + 0.896147i \(0.353645\pi\)
\(90\) 0.334080 0.0352151
\(91\) 0 0
\(92\) −2.36601 −0.246674
\(93\) 3.61953 0.375327
\(94\) 3.16498 0.326442
\(95\) −0.842916 −0.0864813
\(96\) 4.26777 0.435578
\(97\) −2.55162 −0.259077 −0.129539 0.991574i \(-0.541350\pi\)
−0.129539 + 0.991574i \(0.541350\pi\)
\(98\) 0 0
\(99\) −0.0359789 −0.00361601
\(100\) 7.90517 0.790517
\(101\) 7.13017 0.709478 0.354739 0.934965i \(-0.384570\pi\)
0.354739 + 0.934965i \(0.384570\pi\)
\(102\) 1.28949 0.127679
\(103\) 2.90922 0.286654 0.143327 0.989675i \(-0.454220\pi\)
0.143327 + 0.989675i \(0.454220\pi\)
\(104\) 2.99139 0.293330
\(105\) 0 0
\(106\) −1.18176 −0.114783
\(107\) 8.60931 0.832294 0.416147 0.909297i \(-0.363380\pi\)
0.416147 + 0.909297i \(0.363380\pi\)
\(108\) 1.84292 0.177335
\(109\) 0.574938 0.0550691 0.0275346 0.999621i \(-0.491234\pi\)
0.0275346 + 0.999621i \(0.491234\pi\)
\(110\) −0.0120198 −0.00114605
\(111\) 2.16274 0.205278
\(112\) 0 0
\(113\) −15.2784 −1.43727 −0.718637 0.695385i \(-0.755234\pi\)
−0.718637 + 0.695385i \(0.755234\pi\)
\(114\) 0.396339 0.0371205
\(115\) −1.08217 −0.100913
\(116\) 13.0118 1.20812
\(117\) 1.96402 0.181574
\(118\) −5.14443 −0.473583
\(119\) 0 0
\(120\) 1.28384 0.117198
\(121\) −10.9987 −0.999882
\(122\) −1.02556 −0.0928501
\(123\) −0.130805 −0.0117943
\(124\) 6.67048 0.599027
\(125\) 7.83026 0.700360
\(126\) 0 0
\(127\) 1.02235 0.0907193 0.0453597 0.998971i \(-0.485557\pi\)
0.0453597 + 0.998971i \(0.485557\pi\)
\(128\) 10.3083 0.911135
\(129\) 4.50884 0.396981
\(130\) 0.656140 0.0575473
\(131\) −16.9821 −1.48374 −0.741868 0.670546i \(-0.766060\pi\)
−0.741868 + 0.670546i \(0.766060\pi\)
\(132\) −0.0663061 −0.00577120
\(133\) 0 0
\(134\) −1.79107 −0.154725
\(135\) 0.842916 0.0725466
\(136\) 4.95541 0.424923
\(137\) −2.24221 −0.191565 −0.0957825 0.995402i \(-0.530535\pi\)
−0.0957825 + 0.995402i \(0.530535\pi\)
\(138\) 0.508836 0.0433150
\(139\) 16.8301 1.42751 0.713753 0.700397i \(-0.246994\pi\)
0.713753 + 0.700397i \(0.246994\pi\)
\(140\) 0 0
\(141\) 7.98554 0.672504
\(142\) 1.05024 0.0881341
\(143\) −0.0706633 −0.00590916
\(144\) 3.08217 0.256848
\(145\) 5.95137 0.494234
\(146\) −2.46244 −0.203793
\(147\) 0 0
\(148\) 3.98574 0.327626
\(149\) 12.7320 1.04305 0.521524 0.853237i \(-0.325364\pi\)
0.521524 + 0.853237i \(0.325364\pi\)
\(150\) −1.70009 −0.138812
\(151\) −11.8268 −0.962455 −0.481228 0.876596i \(-0.659809\pi\)
−0.481228 + 0.876596i \(0.659809\pi\)
\(152\) 1.52310 0.123539
\(153\) 3.25351 0.263031
\(154\) 0 0
\(155\) 3.05096 0.245059
\(156\) 3.61953 0.289794
\(157\) 7.37686 0.588737 0.294369 0.955692i \(-0.404891\pi\)
0.294369 + 0.955692i \(0.404891\pi\)
\(158\) −4.11115 −0.327065
\(159\) −2.98169 −0.236464
\(160\) 3.59737 0.284397
\(161\) 0 0
\(162\) −0.396339 −0.0311393
\(163\) −18.0494 −1.41374 −0.706869 0.707344i \(-0.749893\pi\)
−0.706869 + 0.707344i \(0.749893\pi\)
\(164\) −0.241062 −0.0188238
\(165\) −0.0303272 −0.00236097
\(166\) −4.07247 −0.316085
\(167\) 22.6354 1.75158 0.875790 0.482693i \(-0.160341\pi\)
0.875790 + 0.482693i \(0.160341\pi\)
\(168\) 0 0
\(169\) −9.14262 −0.703279
\(170\) 1.08693 0.0833640
\(171\) 1.00000 0.0764719
\(172\) 8.30940 0.633586
\(173\) 6.88282 0.523291 0.261646 0.965164i \(-0.415735\pi\)
0.261646 + 0.965164i \(0.415735\pi\)
\(174\) −2.79833 −0.212141
\(175\) 0 0
\(176\) −0.110893 −0.00835888
\(177\) −12.9799 −0.975628
\(178\) −3.31847 −0.248730
\(179\) 0.620878 0.0464066 0.0232033 0.999731i \(-0.492614\pi\)
0.0232033 + 0.999731i \(0.492614\pi\)
\(180\) 1.55342 0.115785
\(181\) −9.31058 −0.692050 −0.346025 0.938225i \(-0.612469\pi\)
−0.346025 + 0.938225i \(0.612469\pi\)
\(182\) 0 0
\(183\) −2.58759 −0.191280
\(184\) 1.95541 0.144155
\(185\) 1.82300 0.134030
\(186\) −1.43456 −0.105187
\(187\) −0.117058 −0.00856012
\(188\) 14.7167 1.07332
\(189\) 0 0
\(190\) 0.334080 0.0242367
\(191\) 18.3384 1.32692 0.663459 0.748212i \(-0.269088\pi\)
0.663459 + 0.748212i \(0.269088\pi\)
\(192\) 4.47286 0.322801
\(193\) −15.2004 −1.09415 −0.547074 0.837085i \(-0.684258\pi\)
−0.547074 + 0.837085i \(0.684258\pi\)
\(194\) 1.01130 0.0726074
\(195\) 1.65550 0.118553
\(196\) 0 0
\(197\) 7.77205 0.553736 0.276868 0.960908i \(-0.410704\pi\)
0.276868 + 0.960908i \(0.410704\pi\)
\(198\) 0.0142598 0.00101340
\(199\) 25.7262 1.82368 0.911840 0.410546i \(-0.134662\pi\)
0.911840 + 0.410546i \(0.134662\pi\)
\(200\) −6.53331 −0.461975
\(201\) −4.51905 −0.318749
\(202\) −2.82596 −0.198834
\(203\) 0 0
\(204\) 5.99595 0.419801
\(205\) −0.110257 −0.00770070
\(206\) −1.15304 −0.0803359
\(207\) 1.28384 0.0892331
\(208\) 6.05345 0.419731
\(209\) −0.0359789 −0.00248871
\(210\) 0 0
\(211\) 17.2470 1.18733 0.593667 0.804711i \(-0.297680\pi\)
0.593667 + 0.804711i \(0.297680\pi\)
\(212\) −5.49501 −0.377399
\(213\) 2.64985 0.181565
\(214\) −3.41220 −0.233253
\(215\) 3.80057 0.259197
\(216\) −1.52310 −0.103634
\(217\) 0 0
\(218\) −0.227870 −0.0154333
\(219\) −6.21297 −0.419834
\(220\) −0.0558904 −0.00376813
\(221\) 6.38997 0.429836
\(222\) −0.857176 −0.0575299
\(223\) 15.7257 1.05307 0.526537 0.850152i \(-0.323490\pi\)
0.526537 + 0.850152i \(0.323490\pi\)
\(224\) 0 0
\(225\) −4.28949 −0.285966
\(226\) 6.05544 0.402802
\(227\) −6.50362 −0.431660 −0.215830 0.976431i \(-0.569246\pi\)
−0.215830 + 0.976431i \(0.569246\pi\)
\(228\) 1.84292 0.122050
\(229\) 7.87261 0.520237 0.260118 0.965577i \(-0.416238\pi\)
0.260118 + 0.965577i \(0.416238\pi\)
\(230\) 0.428906 0.0282812
\(231\) 0 0
\(232\) −10.7537 −0.706018
\(233\) 22.2790 1.45954 0.729771 0.683691i \(-0.239626\pi\)
0.729771 + 0.683691i \(0.239626\pi\)
\(234\) −0.778417 −0.0508867
\(235\) 6.73113 0.439091
\(236\) −23.9208 −1.55711
\(237\) −10.3728 −0.673787
\(238\) 0 0
\(239\) 26.5221 1.71557 0.857784 0.514009i \(-0.171840\pi\)
0.857784 + 0.514009i \(0.171840\pi\)
\(240\) 2.59801 0.167701
\(241\) 11.0806 0.713762 0.356881 0.934150i \(-0.383840\pi\)
0.356881 + 0.934150i \(0.383840\pi\)
\(242\) 4.35921 0.280221
\(243\) −1.00000 −0.0641500
\(244\) −4.76872 −0.305286
\(245\) 0 0
\(246\) 0.0518429 0.00330538
\(247\) 1.96402 0.124968
\(248\) −5.51288 −0.350068
\(249\) −10.2752 −0.651166
\(250\) −3.10343 −0.196278
\(251\) 3.32163 0.209659 0.104830 0.994490i \(-0.466570\pi\)
0.104830 + 0.994490i \(0.466570\pi\)
\(252\) 0 0
\(253\) −0.0461912 −0.00290401
\(254\) −0.405199 −0.0254244
\(255\) 2.74244 0.171738
\(256\) 4.86013 0.303758
\(257\) 30.1189 1.87877 0.939383 0.342869i \(-0.111399\pi\)
0.939383 + 0.342869i \(0.111399\pi\)
\(258\) −1.78703 −0.111255
\(259\) 0 0
\(260\) 3.05096 0.189212
\(261\) −7.06045 −0.437031
\(262\) 6.73067 0.415822
\(263\) −25.5666 −1.57651 −0.788253 0.615351i \(-0.789014\pi\)
−0.788253 + 0.615351i \(0.789014\pi\)
\(264\) 0.0547993 0.00337266
\(265\) −2.51332 −0.154392
\(266\) 0 0
\(267\) −8.37281 −0.512408
\(268\) −8.32822 −0.508727
\(269\) −6.35130 −0.387245 −0.193623 0.981076i \(-0.562024\pi\)
−0.193623 + 0.981076i \(0.562024\pi\)
\(270\) −0.334080 −0.0203315
\(271\) 7.86174 0.477566 0.238783 0.971073i \(-0.423251\pi\)
0.238783 + 0.971073i \(0.423251\pi\)
\(272\) 10.0279 0.608030
\(273\) 0 0
\(274\) 0.888674 0.0536868
\(275\) 0.154331 0.00930652
\(276\) 2.36601 0.142417
\(277\) −5.87569 −0.353036 −0.176518 0.984297i \(-0.556483\pi\)
−0.176518 + 0.984297i \(0.556483\pi\)
\(278\) −6.67040 −0.400064
\(279\) −3.61953 −0.216695
\(280\) 0 0
\(281\) 16.7309 0.998084 0.499042 0.866578i \(-0.333685\pi\)
0.499042 + 0.866578i \(0.333685\pi\)
\(282\) −3.16498 −0.188472
\(283\) −20.8957 −1.24212 −0.621060 0.783763i \(-0.713298\pi\)
−0.621060 + 0.783763i \(0.713298\pi\)
\(284\) 4.88346 0.289780
\(285\) 0.842916 0.0499300
\(286\) 0.0280066 0.00165606
\(287\) 0 0
\(288\) −4.26777 −0.251481
\(289\) −6.41465 −0.377332
\(290\) −2.35876 −0.138511
\(291\) 2.55162 0.149578
\(292\) −11.4500 −0.670060
\(293\) −12.1831 −0.711744 −0.355872 0.934535i \(-0.615816\pi\)
−0.355872 + 0.934535i \(0.615816\pi\)
\(294\) 0 0
\(295\) −10.9409 −0.637007
\(296\) −3.29405 −0.191463
\(297\) 0.0359789 0.00208771
\(298\) −5.04619 −0.292318
\(299\) 2.52149 0.145822
\(300\) −7.90517 −0.456405
\(301\) 0 0
\(302\) 4.68744 0.269732
\(303\) −7.13017 −0.409617
\(304\) 3.08217 0.176775
\(305\) −2.18112 −0.124891
\(306\) −1.28949 −0.0737154
\(307\) −25.2971 −1.44378 −0.721890 0.692008i \(-0.756726\pi\)
−0.721890 + 0.692008i \(0.756726\pi\)
\(308\) 0 0
\(309\) −2.90922 −0.165500
\(310\) −1.20921 −0.0686786
\(311\) 9.88730 0.560657 0.280329 0.959904i \(-0.409557\pi\)
0.280329 + 0.959904i \(0.409557\pi\)
\(312\) −2.99139 −0.169354
\(313\) −1.37474 −0.0777050 −0.0388525 0.999245i \(-0.512370\pi\)
−0.0388525 + 0.999245i \(0.512370\pi\)
\(314\) −2.92373 −0.164996
\(315\) 0 0
\(316\) −19.1162 −1.07537
\(317\) 26.6902 1.49907 0.749535 0.661965i \(-0.230277\pi\)
0.749535 + 0.661965i \(0.230277\pi\)
\(318\) 1.18176 0.0662698
\(319\) 0.254027 0.0142228
\(320\) 3.77024 0.210763
\(321\) −8.60931 −0.480525
\(322\) 0 0
\(323\) 3.25351 0.181030
\(324\) −1.84292 −0.102384
\(325\) −8.42465 −0.467316
\(326\) 7.15367 0.396205
\(327\) −0.574938 −0.0317942
\(328\) 0.199228 0.0110005
\(329\) 0 0
\(330\) 0.0120198 0.000661670 0
\(331\) −36.3735 −1.99927 −0.999635 0.0270266i \(-0.991396\pi\)
−0.999635 + 0.0270266i \(0.991396\pi\)
\(332\) −18.9364 −1.03927
\(333\) −2.16274 −0.118517
\(334\) −8.97128 −0.490886
\(335\) −3.80918 −0.208118
\(336\) 0 0
\(337\) 30.0191 1.63524 0.817622 0.575756i \(-0.195292\pi\)
0.817622 + 0.575756i \(0.195292\pi\)
\(338\) 3.62357 0.197096
\(339\) 15.2784 0.829811
\(340\) 5.05408 0.274096
\(341\) 0.130226 0.00705216
\(342\) −0.396339 −0.0214315
\(343\) 0 0
\(344\) −6.86739 −0.370265
\(345\) 1.08217 0.0582621
\(346\) −2.72793 −0.146654
\(347\) 28.2087 1.51432 0.757162 0.653227i \(-0.226585\pi\)
0.757162 + 0.653227i \(0.226585\pi\)
\(348\) −13.0118 −0.697507
\(349\) −4.32568 −0.231548 −0.115774 0.993276i \(-0.536935\pi\)
−0.115774 + 0.993276i \(0.536935\pi\)
\(350\) 0 0
\(351\) −1.96402 −0.104832
\(352\) 0.153550 0.00818423
\(353\) −20.2454 −1.07755 −0.538776 0.842449i \(-0.681113\pi\)
−0.538776 + 0.842449i \(0.681113\pi\)
\(354\) 5.14443 0.273423
\(355\) 2.23360 0.118547
\(356\) −15.4304 −0.817809
\(357\) 0 0
\(358\) −0.246078 −0.0130056
\(359\) 13.1598 0.694547 0.347273 0.937764i \(-0.387108\pi\)
0.347273 + 0.937764i \(0.387108\pi\)
\(360\) −1.28384 −0.0676644
\(361\) 1.00000 0.0526316
\(362\) 3.69014 0.193949
\(363\) 10.9987 0.577282
\(364\) 0 0
\(365\) −5.23701 −0.274118
\(366\) 1.02556 0.0536070
\(367\) 24.4005 1.27370 0.636848 0.770990i \(-0.280238\pi\)
0.636848 + 0.770990i \(0.280238\pi\)
\(368\) 3.95702 0.206274
\(369\) 0.130805 0.00680941
\(370\) −0.722527 −0.0375624
\(371\) 0 0
\(372\) −6.67048 −0.345848
\(373\) 2.46875 0.127827 0.0639136 0.997955i \(-0.479642\pi\)
0.0639136 + 0.997955i \(0.479642\pi\)
\(374\) 0.0463945 0.00239900
\(375\) −7.83026 −0.404353
\(376\) −12.1627 −0.627245
\(377\) −13.8669 −0.714180
\(378\) 0 0
\(379\) −18.7800 −0.964665 −0.482332 0.875988i \(-0.660210\pi\)
−0.482332 + 0.875988i \(0.660210\pi\)
\(380\) 1.55342 0.0796889
\(381\) −1.02235 −0.0523768
\(382\) −7.26821 −0.371874
\(383\) 31.6289 1.61616 0.808081 0.589072i \(-0.200507\pi\)
0.808081 + 0.589072i \(0.200507\pi\)
\(384\) −10.3083 −0.526044
\(385\) 0 0
\(386\) 6.02449 0.306639
\(387\) −4.50884 −0.229197
\(388\) 4.70241 0.238729
\(389\) −4.33747 −0.219918 −0.109959 0.993936i \(-0.535072\pi\)
−0.109959 + 0.993936i \(0.535072\pi\)
\(390\) −0.656140 −0.0332249
\(391\) 4.17700 0.211240
\(392\) 0 0
\(393\) 16.9821 0.856635
\(394\) −3.08036 −0.155186
\(395\) −8.74341 −0.439929
\(396\) 0.0663061 0.00333200
\(397\) 1.36556 0.0685353 0.0342676 0.999413i \(-0.489090\pi\)
0.0342676 + 0.999413i \(0.489090\pi\)
\(398\) −10.1963 −0.511093
\(399\) 0 0
\(400\) −13.2209 −0.661047
\(401\) 22.6605 1.13161 0.565806 0.824539i \(-0.308565\pi\)
0.565806 + 0.824539i \(0.308565\pi\)
\(402\) 1.79107 0.0893306
\(403\) −7.10882 −0.354116
\(404\) −13.1403 −0.653754
\(405\) −0.842916 −0.0418848
\(406\) 0 0
\(407\) 0.0778128 0.00385704
\(408\) −4.95541 −0.245330
\(409\) −26.7833 −1.32435 −0.662174 0.749350i \(-0.730366\pi\)
−0.662174 + 0.749350i \(0.730366\pi\)
\(410\) 0.0436992 0.00215815
\(411\) 2.24221 0.110600
\(412\) −5.36145 −0.264140
\(413\) 0 0
\(414\) −0.508836 −0.0250079
\(415\) −8.66116 −0.425159
\(416\) −8.38200 −0.410961
\(417\) −16.8301 −0.824171
\(418\) 0.0142598 0.000697471 0
\(419\) 29.9706 1.46416 0.732081 0.681218i \(-0.238549\pi\)
0.732081 + 0.681218i \(0.238549\pi\)
\(420\) 0 0
\(421\) −28.9616 −1.41150 −0.705750 0.708460i \(-0.749390\pi\)
−0.705750 + 0.708460i \(0.749390\pi\)
\(422\) −6.83566 −0.332755
\(423\) −7.98554 −0.388270
\(424\) 4.54140 0.220550
\(425\) −13.9559 −0.676962
\(426\) −1.05024 −0.0508842
\(427\) 0 0
\(428\) −15.8662 −0.766924
\(429\) 0.0706633 0.00341166
\(430\) −1.50631 −0.0726408
\(431\) 20.8757 1.00555 0.502774 0.864418i \(-0.332313\pi\)
0.502774 + 0.864418i \(0.332313\pi\)
\(432\) −3.08217 −0.148291
\(433\) −7.01266 −0.337007 −0.168503 0.985701i \(-0.553893\pi\)
−0.168503 + 0.985701i \(0.553893\pi\)
\(434\) 0 0
\(435\) −5.95137 −0.285346
\(436\) −1.05956 −0.0507439
\(437\) 1.28384 0.0614145
\(438\) 2.46244 0.117660
\(439\) −1.74807 −0.0834307 −0.0417153 0.999130i \(-0.513282\pi\)
−0.0417153 + 0.999130i \(0.513282\pi\)
\(440\) 0.0461912 0.00220208
\(441\) 0 0
\(442\) −2.53259 −0.120463
\(443\) −18.8810 −0.897064 −0.448532 0.893767i \(-0.648053\pi\)
−0.448532 + 0.893767i \(0.648053\pi\)
\(444\) −3.98574 −0.189155
\(445\) −7.05758 −0.334561
\(446\) −6.23271 −0.295128
\(447\) −12.7320 −0.602204
\(448\) 0 0
\(449\) 19.9572 0.941839 0.470920 0.882176i \(-0.343922\pi\)
0.470920 + 0.882176i \(0.343922\pi\)
\(450\) 1.70009 0.0801431
\(451\) −0.00470620 −0.000221606 0
\(452\) 28.1569 1.32439
\(453\) 11.8268 0.555674
\(454\) 2.57763 0.120974
\(455\) 0 0
\(456\) −1.52310 −0.0713255
\(457\) −21.5575 −1.00842 −0.504208 0.863582i \(-0.668215\pi\)
−0.504208 + 0.863582i \(0.668215\pi\)
\(458\) −3.12022 −0.145798
\(459\) −3.25351 −0.151861
\(460\) 1.99435 0.0929870
\(461\) −27.9766 −1.30300 −0.651500 0.758649i \(-0.725860\pi\)
−0.651500 + 0.758649i \(0.725860\pi\)
\(462\) 0 0
\(463\) 38.8491 1.80547 0.902736 0.430195i \(-0.141555\pi\)
0.902736 + 0.430195i \(0.141555\pi\)
\(464\) −21.7615 −1.01025
\(465\) −3.05096 −0.141485
\(466\) −8.83001 −0.409042
\(467\) −8.63931 −0.399780 −0.199890 0.979818i \(-0.564058\pi\)
−0.199890 + 0.979818i \(0.564058\pi\)
\(468\) −3.61953 −0.167313
\(469\) 0 0
\(470\) −2.66781 −0.123057
\(471\) −7.37686 −0.339908
\(472\) 19.7696 0.909970
\(473\) 0.162223 0.00745902
\(474\) 4.11115 0.188831
\(475\) −4.28949 −0.196815
\(476\) 0 0
\(477\) 2.98169 0.136522
\(478\) −10.5117 −0.480794
\(479\) 14.8403 0.678069 0.339035 0.940774i \(-0.389900\pi\)
0.339035 + 0.940774i \(0.389900\pi\)
\(480\) −3.59737 −0.164197
\(481\) −4.24766 −0.193677
\(482\) −4.39166 −0.200034
\(483\) 0 0
\(484\) 20.2697 0.921349
\(485\) 2.15080 0.0976626
\(486\) 0.396339 0.0179783
\(487\) 17.9043 0.811319 0.405660 0.914024i \(-0.367042\pi\)
0.405660 + 0.914024i \(0.367042\pi\)
\(488\) 3.94115 0.178408
\(489\) 18.0494 0.816222
\(490\) 0 0
\(491\) 19.1867 0.865883 0.432942 0.901422i \(-0.357476\pi\)
0.432942 + 0.901422i \(0.357476\pi\)
\(492\) 0.241062 0.0108679
\(493\) −22.9713 −1.03457
\(494\) −0.778417 −0.0350226
\(495\) 0.0303272 0.00136310
\(496\) −11.1560 −0.500919
\(497\) 0 0
\(498\) 4.07247 0.182492
\(499\) 24.5843 1.10054 0.550272 0.834985i \(-0.314524\pi\)
0.550272 + 0.834985i \(0.314524\pi\)
\(500\) −14.4305 −0.645352
\(501\) −22.6354 −1.01127
\(502\) −1.31649 −0.0587578
\(503\) 16.7355 0.746199 0.373099 0.927791i \(-0.378295\pi\)
0.373099 + 0.927791i \(0.378295\pi\)
\(504\) 0 0
\(505\) −6.01013 −0.267447
\(506\) 0.0183073 0.000813861 0
\(507\) 9.14262 0.406038
\(508\) −1.88411 −0.0835940
\(509\) −23.5184 −1.04243 −0.521217 0.853424i \(-0.674522\pi\)
−0.521217 + 0.853424i \(0.674522\pi\)
\(510\) −1.08693 −0.0481302
\(511\) 0 0
\(512\) −22.5429 −0.996264
\(513\) −1.00000 −0.0441511
\(514\) −11.9373 −0.526531
\(515\) −2.45223 −0.108058
\(516\) −8.30940 −0.365801
\(517\) 0.287311 0.0126359
\(518\) 0 0
\(519\) −6.88282 −0.302122
\(520\) −2.52149 −0.110575
\(521\) 6.05480 0.265266 0.132633 0.991165i \(-0.457657\pi\)
0.132633 + 0.991165i \(0.457657\pi\)
\(522\) 2.79833 0.122480
\(523\) 37.2755 1.62995 0.814973 0.579499i \(-0.196752\pi\)
0.814973 + 0.579499i \(0.196752\pi\)
\(524\) 31.2966 1.36720
\(525\) 0 0
\(526\) 10.1330 0.441822
\(527\) −11.7762 −0.512978
\(528\) 0.110893 0.00482600
\(529\) −21.3518 −0.928337
\(530\) 0.996124 0.0432689
\(531\) 12.9799 0.563279
\(532\) 0 0
\(533\) 0.256903 0.0111277
\(534\) 3.31847 0.143604
\(535\) −7.25693 −0.313744
\(536\) 6.88294 0.297298
\(537\) −0.620878 −0.0267928
\(538\) 2.51726 0.108527
\(539\) 0 0
\(540\) −1.55342 −0.0668487
\(541\) −4.52599 −0.194588 −0.0972938 0.995256i \(-0.531019\pi\)
−0.0972938 + 0.995256i \(0.531019\pi\)
\(542\) −3.11591 −0.133840
\(543\) 9.31058 0.399555
\(544\) −13.8853 −0.595326
\(545\) −0.484625 −0.0207590
\(546\) 0 0
\(547\) 11.7047 0.500456 0.250228 0.968187i \(-0.419494\pi\)
0.250228 + 0.968187i \(0.419494\pi\)
\(548\) 4.13221 0.176519
\(549\) 2.58759 0.110436
\(550\) −0.0611674 −0.00260819
\(551\) −7.06045 −0.300785
\(552\) −1.95541 −0.0832279
\(553\) 0 0
\(554\) 2.32876 0.0989396
\(555\) −1.82300 −0.0773822
\(556\) −31.0164 −1.31539
\(557\) 15.2693 0.646979 0.323490 0.946232i \(-0.395144\pi\)
0.323490 + 0.946232i \(0.395144\pi\)
\(558\) 1.43456 0.0607297
\(559\) −8.85545 −0.374546
\(560\) 0 0
\(561\) 0.117058 0.00494218
\(562\) −6.63111 −0.279717
\(563\) −30.5738 −1.28853 −0.644267 0.764801i \(-0.722837\pi\)
−0.644267 + 0.764801i \(0.722837\pi\)
\(564\) −14.7167 −0.619684
\(565\) 12.8784 0.541800
\(566\) 8.28177 0.348109
\(567\) 0 0
\(568\) −4.03598 −0.169346
\(569\) −8.64529 −0.362429 −0.181215 0.983444i \(-0.558003\pi\)
−0.181215 + 0.983444i \(0.558003\pi\)
\(570\) −0.334080 −0.0139931
\(571\) 1.17580 0.0492056 0.0246028 0.999697i \(-0.492168\pi\)
0.0246028 + 0.999697i \(0.492168\pi\)
\(572\) 0.130226 0.00544504
\(573\) −18.3384 −0.766097
\(574\) 0 0
\(575\) −5.50703 −0.229659
\(576\) −4.47286 −0.186369
\(577\) −12.3411 −0.513768 −0.256884 0.966442i \(-0.582696\pi\)
−0.256884 + 0.966442i \(0.582696\pi\)
\(578\) 2.54237 0.105749
\(579\) 15.2004 0.631706
\(580\) −10.9679 −0.455416
\(581\) 0 0
\(582\) −1.01130 −0.0419199
\(583\) −0.107278 −0.00444300
\(584\) 9.46295 0.391580
\(585\) −1.65550 −0.0684467
\(586\) 4.82863 0.199469
\(587\) 19.9966 0.825350 0.412675 0.910878i \(-0.364595\pi\)
0.412675 + 0.910878i \(0.364595\pi\)
\(588\) 0 0
\(589\) −3.61953 −0.149140
\(590\) 4.33632 0.178523
\(591\) −7.77205 −0.319699
\(592\) −6.66592 −0.273968
\(593\) 11.1740 0.458863 0.229431 0.973325i \(-0.426313\pi\)
0.229431 + 0.973325i \(0.426313\pi\)
\(594\) −0.0142598 −0.000585087 0
\(595\) 0 0
\(596\) −23.4640 −0.961125
\(597\) −25.7262 −1.05290
\(598\) −0.999364 −0.0408670
\(599\) −24.0539 −0.982815 −0.491407 0.870930i \(-0.663517\pi\)
−0.491407 + 0.870930i \(0.663517\pi\)
\(600\) 6.53331 0.266721
\(601\) 32.2158 1.31411 0.657054 0.753843i \(-0.271802\pi\)
0.657054 + 0.753843i \(0.271802\pi\)
\(602\) 0 0
\(603\) 4.51905 0.184030
\(604\) 21.7959 0.886862
\(605\) 9.27098 0.376919
\(606\) 2.82596 0.114797
\(607\) −2.25724 −0.0916184 −0.0458092 0.998950i \(-0.514587\pi\)
−0.0458092 + 0.998950i \(0.514587\pi\)
\(608\) −4.26777 −0.173081
\(609\) 0 0
\(610\) 0.864463 0.0350011
\(611\) −15.6838 −0.634497
\(612\) −5.99595 −0.242372
\(613\) 12.8871 0.520506 0.260253 0.965540i \(-0.416194\pi\)
0.260253 + 0.965540i \(0.416194\pi\)
\(614\) 10.0262 0.404624
\(615\) 0.110257 0.00444600
\(616\) 0 0
\(617\) 25.0627 1.00899 0.504493 0.863416i \(-0.331679\pi\)
0.504493 + 0.863416i \(0.331679\pi\)
\(618\) 1.15304 0.0463819
\(619\) −16.8365 −0.676718 −0.338359 0.941017i \(-0.609872\pi\)
−0.338359 + 0.941017i \(0.609872\pi\)
\(620\) −5.62265 −0.225811
\(621\) −1.28384 −0.0515188
\(622\) −3.91872 −0.157126
\(623\) 0 0
\(624\) −6.05345 −0.242332
\(625\) 14.8472 0.593889
\(626\) 0.544863 0.0217771
\(627\) 0.0359789 0.00143686
\(628\) −13.5949 −0.542497
\(629\) −7.03649 −0.280563
\(630\) 0 0
\(631\) −25.8497 −1.02906 −0.514530 0.857472i \(-0.672034\pi\)
−0.514530 + 0.857472i \(0.672034\pi\)
\(632\) 15.7988 0.628442
\(633\) −17.2470 −0.685508
\(634\) −10.5784 −0.420120
\(635\) −0.861759 −0.0341979
\(636\) 5.49501 0.217891
\(637\) 0 0
\(638\) −0.100681 −0.00398599
\(639\) −2.64985 −0.104827
\(640\) −8.68904 −0.343464
\(641\) 49.3339 1.94857 0.974286 0.225313i \(-0.0723404\pi\)
0.974286 + 0.225313i \(0.0723404\pi\)
\(642\) 3.41220 0.134669
\(643\) −2.55951 −0.100937 −0.0504686 0.998726i \(-0.516071\pi\)
−0.0504686 + 0.998726i \(0.516071\pi\)
\(644\) 0 0
\(645\) −3.80057 −0.149647
\(646\) −1.28949 −0.0507344
\(647\) −35.1832 −1.38319 −0.691597 0.722283i \(-0.743093\pi\)
−0.691597 + 0.722283i \(0.743093\pi\)
\(648\) 1.52310 0.0598328
\(649\) −0.467002 −0.0183314
\(650\) 3.33902 0.130967
\(651\) 0 0
\(652\) 33.2635 1.30270
\(653\) −28.0240 −1.09666 −0.548332 0.836261i \(-0.684737\pi\)
−0.548332 + 0.836261i \(0.684737\pi\)
\(654\) 0.227870 0.00891043
\(655\) 14.3145 0.559314
\(656\) 0.403162 0.0157408
\(657\) 6.21297 0.242391
\(658\) 0 0
\(659\) 30.0543 1.17075 0.585374 0.810763i \(-0.300948\pi\)
0.585374 + 0.810763i \(0.300948\pi\)
\(660\) 0.0558904 0.00217553
\(661\) 8.39909 0.326687 0.163343 0.986569i \(-0.447772\pi\)
0.163343 + 0.986569i \(0.447772\pi\)
\(662\) 14.4162 0.560303
\(663\) −6.38997 −0.248166
\(664\) 15.6502 0.607344
\(665\) 0 0
\(666\) 0.857176 0.0332149
\(667\) −9.06450 −0.350979
\(668\) −41.7151 −1.61401
\(669\) −15.7257 −0.607992
\(670\) 1.50972 0.0583257
\(671\) −0.0930988 −0.00359404
\(672\) 0 0
\(673\) 12.5476 0.483673 0.241837 0.970317i \(-0.422250\pi\)
0.241837 + 0.970317i \(0.422250\pi\)
\(674\) −11.8977 −0.458283
\(675\) 4.28949 0.165103
\(676\) 16.8491 0.648042
\(677\) −15.1655 −0.582858 −0.291429 0.956592i \(-0.594131\pi\)
−0.291429 + 0.956592i \(0.594131\pi\)
\(678\) −6.05544 −0.232558
\(679\) 0 0
\(680\) −4.17700 −0.160180
\(681\) 6.50362 0.249219
\(682\) −0.0516138 −0.00197639
\(683\) 29.7816 1.13956 0.569781 0.821796i \(-0.307028\pi\)
0.569781 + 0.821796i \(0.307028\pi\)
\(684\) −1.84292 −0.0704656
\(685\) 1.88999 0.0722130
\(686\) 0 0
\(687\) −7.87261 −0.300359
\(688\) −13.8970 −0.529818
\(689\) 5.85611 0.223100
\(690\) −0.428906 −0.0163282
\(691\) −27.9518 −1.06334 −0.531668 0.846953i \(-0.678435\pi\)
−0.531668 + 0.846953i \(0.678435\pi\)
\(692\) −12.6845 −0.482191
\(693\) 0 0
\(694\) −11.1802 −0.424395
\(695\) −14.1863 −0.538118
\(696\) 10.7537 0.407620
\(697\) 0.425575 0.0161198
\(698\) 1.71443 0.0648922
\(699\) −22.2790 −0.842667
\(700\) 0 0
\(701\) −3.66534 −0.138438 −0.0692190 0.997601i \(-0.522051\pi\)
−0.0692190 + 0.997601i \(0.522051\pi\)
\(702\) 0.778417 0.0293795
\(703\) −2.16274 −0.0815691
\(704\) 0.160928 0.00606522
\(705\) −6.73113 −0.253509
\(706\) 8.02402 0.301988
\(707\) 0 0
\(708\) 23.9208 0.899000
\(709\) −16.9617 −0.637010 −0.318505 0.947921i \(-0.603181\pi\)
−0.318505 + 0.947921i \(0.603181\pi\)
\(710\) −0.885263 −0.0332233
\(711\) 10.3728 0.389011
\(712\) 12.7526 0.477924
\(713\) −4.64690 −0.174028
\(714\) 0 0
\(715\) 0.0595632 0.00222754
\(716\) −1.14423 −0.0427617
\(717\) −26.5221 −0.990484
\(718\) −5.21573 −0.194649
\(719\) −37.9567 −1.41555 −0.707773 0.706440i \(-0.750300\pi\)
−0.707773 + 0.706440i \(0.750300\pi\)
\(720\) −2.59801 −0.0968221
\(721\) 0 0
\(722\) −0.396339 −0.0147502
\(723\) −11.0806 −0.412091
\(724\) 17.1586 0.637695
\(725\) 30.2858 1.12478
\(726\) −4.35921 −0.161785
\(727\) 32.1265 1.19150 0.595752 0.803168i \(-0.296854\pi\)
0.595752 + 0.803168i \(0.296854\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 2.07563 0.0768225
\(731\) −14.6696 −0.542573
\(732\) 4.76872 0.176257
\(733\) 14.6218 0.540070 0.270035 0.962850i \(-0.412965\pi\)
0.270035 + 0.962850i \(0.412965\pi\)
\(734\) −9.67086 −0.356958
\(735\) 0 0
\(736\) −5.47914 −0.201964
\(737\) −0.162590 −0.00598909
\(738\) −0.0518429 −0.00190836
\(739\) 28.9192 1.06381 0.531904 0.846804i \(-0.321477\pi\)
0.531904 + 0.846804i \(0.321477\pi\)
\(740\) −3.35964 −0.123503
\(741\) −1.96402 −0.0721501
\(742\) 0 0
\(743\) 20.8522 0.764992 0.382496 0.923957i \(-0.375065\pi\)
0.382496 + 0.923957i \(0.375065\pi\)
\(744\) 5.51288 0.202112
\(745\) −10.7320 −0.393191
\(746\) −0.978461 −0.0358240
\(747\) 10.2752 0.375951
\(748\) 0.215728 0.00788779
\(749\) 0 0
\(750\) 3.10343 0.113321
\(751\) −32.9923 −1.20391 −0.601954 0.798531i \(-0.705611\pi\)
−0.601954 + 0.798531i \(0.705611\pi\)
\(752\) −24.6128 −0.897536
\(753\) −3.32163 −0.121047
\(754\) 5.49598 0.200152
\(755\) 9.96904 0.362810
\(756\) 0 0
\(757\) 14.8974 0.541455 0.270728 0.962656i \(-0.412736\pi\)
0.270728 + 0.962656i \(0.412736\pi\)
\(758\) 7.44325 0.270351
\(759\) 0.0461912 0.00167663
\(760\) −1.28384 −0.0465698
\(761\) −11.5744 −0.419570 −0.209785 0.977748i \(-0.567276\pi\)
−0.209785 + 0.977748i \(0.567276\pi\)
\(762\) 0.405199 0.0146788
\(763\) 0 0
\(764\) −33.7961 −1.22270
\(765\) −2.74244 −0.0991531
\(766\) −12.5358 −0.452935
\(767\) 25.4928 0.920491
\(768\) −4.86013 −0.175375
\(769\) −52.4315 −1.89073 −0.945365 0.326015i \(-0.894294\pi\)
−0.945365 + 0.326015i \(0.894294\pi\)
\(770\) 0 0
\(771\) −30.1189 −1.08471
\(772\) 28.0130 1.00821
\(773\) 43.3738 1.56005 0.780023 0.625751i \(-0.215207\pi\)
0.780023 + 0.625751i \(0.215207\pi\)
\(774\) 1.78703 0.0642333
\(775\) 15.5259 0.557708
\(776\) −3.88635 −0.139512
\(777\) 0 0
\(778\) 1.71911 0.0616329
\(779\) 0.130805 0.00468656
\(780\) −3.05096 −0.109242
\(781\) 0.0953388 0.00341149
\(782\) −1.65550 −0.0592007
\(783\) 7.06045 0.252320
\(784\) 0 0
\(785\) −6.21807 −0.221932
\(786\) −6.73067 −0.240075
\(787\) 21.3855 0.762312 0.381156 0.924511i \(-0.375526\pi\)
0.381156 + 0.924511i \(0.375526\pi\)
\(788\) −14.3232 −0.510244
\(789\) 25.5666 0.910196
\(790\) 3.46535 0.123292
\(791\) 0 0
\(792\) −0.0547993 −0.00194721
\(793\) 5.08209 0.180470
\(794\) −0.541222 −0.0192073
\(795\) 2.51332 0.0891381
\(796\) −47.4112 −1.68044
\(797\) −44.1477 −1.56379 −0.781897 0.623408i \(-0.785748\pi\)
−0.781897 + 0.623408i \(0.785748\pi\)
\(798\) 0 0
\(799\) −25.9811 −0.919144
\(800\) 18.3066 0.647236
\(801\) 8.37281 0.295839
\(802\) −8.98123 −0.317138
\(803\) −0.223536 −0.00788841
\(804\) 8.32822 0.293714
\(805\) 0 0
\(806\) 2.81750 0.0992422
\(807\) 6.35130 0.223576
\(808\) 10.8599 0.382051
\(809\) −23.8993 −0.840253 −0.420127 0.907465i \(-0.638014\pi\)
−0.420127 + 0.907465i \(0.638014\pi\)
\(810\) 0.334080 0.0117384
\(811\) −45.1710 −1.58617 −0.793083 0.609113i \(-0.791526\pi\)
−0.793083 + 0.609113i \(0.791526\pi\)
\(812\) 0 0
\(813\) −7.86174 −0.275723
\(814\) −0.0308402 −0.00108095
\(815\) 15.2141 0.532928
\(816\) −10.0279 −0.351046
\(817\) −4.50884 −0.157744
\(818\) 10.6152 0.371153
\(819\) 0 0
\(820\) 0.203195 0.00709587
\(821\) −21.6062 −0.754060 −0.377030 0.926201i \(-0.623055\pi\)
−0.377030 + 0.926201i \(0.623055\pi\)
\(822\) −0.888674 −0.0309961
\(823\) −7.31764 −0.255077 −0.127538 0.991834i \(-0.540708\pi\)
−0.127538 + 0.991834i \(0.540708\pi\)
\(824\) 4.43102 0.154362
\(825\) −0.154331 −0.00537312
\(826\) 0 0
\(827\) 46.0507 1.60134 0.800669 0.599106i \(-0.204477\pi\)
0.800669 + 0.599106i \(0.204477\pi\)
\(828\) −2.36601 −0.0822246
\(829\) 32.0446 1.11296 0.556478 0.830862i \(-0.312152\pi\)
0.556478 + 0.830862i \(0.312152\pi\)
\(830\) 3.43275 0.119152
\(831\) 5.87569 0.203825
\(832\) −8.78479 −0.304558
\(833\) 0 0
\(834\) 6.67040 0.230977
\(835\) −19.0797 −0.660281
\(836\) 0.0663061 0.00229324
\(837\) 3.61953 0.125109
\(838\) −11.8785 −0.410337
\(839\) 12.5994 0.434980 0.217490 0.976063i \(-0.430213\pi\)
0.217490 + 0.976063i \(0.430213\pi\)
\(840\) 0 0
\(841\) 20.8500 0.718964
\(842\) 11.4786 0.395578
\(843\) −16.7309 −0.576244
\(844\) −31.7848 −1.09408
\(845\) 7.70646 0.265110
\(846\) 3.16498 0.108814
\(847\) 0 0
\(848\) 9.19008 0.315589
\(849\) 20.8957 0.717139
\(850\) 5.53127 0.189721
\(851\) −2.77661 −0.0951810
\(852\) −4.88346 −0.167304
\(853\) −37.1154 −1.27081 −0.635403 0.772181i \(-0.719166\pi\)
−0.635403 + 0.772181i \(0.719166\pi\)
\(854\) 0 0
\(855\) −0.842916 −0.0288271
\(856\) 13.1128 0.448187
\(857\) 50.4223 1.72239 0.861197 0.508271i \(-0.169715\pi\)
0.861197 + 0.508271i \(0.169715\pi\)
\(858\) −0.0280066 −0.000956129 0
\(859\) 9.84495 0.335905 0.167953 0.985795i \(-0.446284\pi\)
0.167953 + 0.985795i \(0.446284\pi\)
\(860\) −7.00413 −0.238839
\(861\) 0 0
\(862\) −8.27386 −0.281809
\(863\) 32.7221 1.11387 0.556937 0.830555i \(-0.311976\pi\)
0.556937 + 0.830555i \(0.311976\pi\)
\(864\) 4.26777 0.145193
\(865\) −5.80164 −0.197262
\(866\) 2.77939 0.0944474
\(867\) 6.41465 0.217853
\(868\) 0 0
\(869\) −0.373202 −0.0126600
\(870\) 2.35876 0.0799693
\(871\) 8.87551 0.300735
\(872\) 0.875686 0.0296545
\(873\) −2.55162 −0.0863591
\(874\) −0.508836 −0.0172116
\(875\) 0 0
\(876\) 11.4500 0.386859
\(877\) 6.87671 0.232210 0.116105 0.993237i \(-0.462959\pi\)
0.116105 + 0.993237i \(0.462959\pi\)
\(878\) 0.692826 0.0233818
\(879\) 12.1831 0.410926
\(880\) 0.0934735 0.00315099
\(881\) −40.9688 −1.38027 −0.690137 0.723679i \(-0.742450\pi\)
−0.690137 + 0.723679i \(0.742450\pi\)
\(882\) 0 0
\(883\) 3.64432 0.122641 0.0613206 0.998118i \(-0.480469\pi\)
0.0613206 + 0.998118i \(0.480469\pi\)
\(884\) −11.7762 −0.396076
\(885\) 10.9409 0.367776
\(886\) 7.48327 0.251405
\(887\) 6.28855 0.211149 0.105574 0.994411i \(-0.466332\pi\)
0.105574 + 0.994411i \(0.466332\pi\)
\(888\) 3.29405 0.110541
\(889\) 0 0
\(890\) 2.79719 0.0937620
\(891\) −0.0359789 −0.00120534
\(892\) −28.9812 −0.970363
\(893\) −7.98554 −0.267226
\(894\) 5.04619 0.168770
\(895\) −0.523348 −0.0174936
\(896\) 0 0
\(897\) −2.52149 −0.0841901
\(898\) −7.90982 −0.263954
\(899\) 25.5555 0.852323
\(900\) 7.90517 0.263506
\(901\) 9.70098 0.323186
\(902\) 0.00186525 6.21060e−5 0
\(903\) 0 0
\(904\) −23.2705 −0.773966
\(905\) 7.84803 0.260877
\(906\) −4.68744 −0.155730
\(907\) −51.6667 −1.71556 −0.857782 0.514013i \(-0.828158\pi\)
−0.857782 + 0.514013i \(0.828158\pi\)
\(908\) 11.9856 0.397757
\(909\) 7.13017 0.236493
\(910\) 0 0
\(911\) −48.0342 −1.59144 −0.795722 0.605662i \(-0.792909\pi\)
−0.795722 + 0.605662i \(0.792909\pi\)
\(912\) −3.08217 −0.102061
\(913\) −0.369691 −0.0122350
\(914\) 8.54406 0.282612
\(915\) 2.18112 0.0721057
\(916\) −14.5086 −0.479376
\(917\) 0 0
\(918\) 1.28949 0.0425596
\(919\) 23.7545 0.783589 0.391794 0.920053i \(-0.371854\pi\)
0.391794 + 0.920053i \(0.371854\pi\)
\(920\) −1.64825 −0.0543411
\(921\) 25.2971 0.833566
\(922\) 11.0882 0.365171
\(923\) −5.20437 −0.171304
\(924\) 0 0
\(925\) 9.27704 0.305027
\(926\) −15.3974 −0.505990
\(927\) 2.90922 0.0955514
\(928\) 30.1324 0.989145
\(929\) −5.72639 −0.187877 −0.0939384 0.995578i \(-0.529946\pi\)
−0.0939384 + 0.995578i \(0.529946\pi\)
\(930\) 1.20921 0.0396516
\(931\) 0 0
\(932\) −41.0582 −1.34491
\(933\) −9.88730 −0.323696
\(934\) 3.42409 0.112040
\(935\) 0.0986699 0.00322685
\(936\) 2.99139 0.0977767
\(937\) −24.1920 −0.790319 −0.395159 0.918613i \(-0.629311\pi\)
−0.395159 + 0.918613i \(0.629311\pi\)
\(938\) 0 0
\(939\) 1.37474 0.0448630
\(940\) −12.4049 −0.404604
\(941\) 6.15731 0.200723 0.100361 0.994951i \(-0.468000\pi\)
0.100361 + 0.994951i \(0.468000\pi\)
\(942\) 2.92373 0.0952604
\(943\) 0.167932 0.00546863
\(944\) 40.0062 1.30209
\(945\) 0 0
\(946\) −0.0642952 −0.00209042
\(947\) −25.4531 −0.827113 −0.413557 0.910478i \(-0.635714\pi\)
−0.413557 + 0.910478i \(0.635714\pi\)
\(948\) 19.1162 0.620866
\(949\) 12.2024 0.396107
\(950\) 1.70009 0.0551582
\(951\) −26.6902 −0.865489
\(952\) 0 0
\(953\) 11.3961 0.369157 0.184579 0.982818i \(-0.440908\pi\)
0.184579 + 0.982818i \(0.440908\pi\)
\(954\) −1.18176 −0.0382609
\(955\) −15.4577 −0.500200
\(956\) −48.8779 −1.58082
\(957\) −0.254027 −0.00821153
\(958\) −5.88177 −0.190031
\(959\) 0 0
\(960\) −3.77024 −0.121684
\(961\) −17.8990 −0.577388
\(962\) 1.68351 0.0542786
\(963\) 8.60931 0.277431
\(964\) −20.4205 −0.657702
\(965\) 12.8126 0.412453
\(966\) 0 0
\(967\) 45.9401 1.47733 0.738667 0.674071i \(-0.235456\pi\)
0.738667 + 0.674071i \(0.235456\pi\)
\(968\) −16.7521 −0.538432
\(969\) −3.25351 −0.104518
\(970\) −0.852444 −0.0273703
\(971\) −0.694382 −0.0222838 −0.0111419 0.999938i \(-0.503547\pi\)
−0.0111419 + 0.999938i \(0.503547\pi\)
\(972\) 1.84292 0.0591116
\(973\) 0 0
\(974\) −7.09615 −0.227375
\(975\) 8.42465 0.269805
\(976\) 7.97541 0.255286
\(977\) −36.7435 −1.17553 −0.587765 0.809032i \(-0.699992\pi\)
−0.587765 + 0.809032i \(0.699992\pi\)
\(978\) −7.15367 −0.228749
\(979\) −0.301244 −0.00962781
\(980\) 0 0
\(981\) 0.574938 0.0183564
\(982\) −7.60443 −0.242667
\(983\) −13.3577 −0.426045 −0.213022 0.977047i \(-0.568331\pi\)
−0.213022 + 0.977047i \(0.568331\pi\)
\(984\) −0.199228 −0.00635115
\(985\) −6.55118 −0.208738
\(986\) 9.10440 0.289943
\(987\) 0 0
\(988\) −3.61953 −0.115152
\(989\) −5.78863 −0.184068
\(990\) −0.0120198 −0.000382015 0
\(991\) 40.3269 1.28103 0.640514 0.767947i \(-0.278722\pi\)
0.640514 + 0.767947i \(0.278722\pi\)
\(992\) 15.4473 0.490453
\(993\) 36.3735 1.15428
\(994\) 0 0
\(995\) −21.6850 −0.687460
\(996\) 18.9364 0.600022
\(997\) −7.89474 −0.250029 −0.125014 0.992155i \(-0.539898\pi\)
−0.125014 + 0.992155i \(0.539898\pi\)
\(998\) −9.74371 −0.308432
\(999\) 2.16274 0.0684259
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2793.2.a.bc.1.2 4
3.2 odd 2 8379.2.a.br.1.3 4
7.2 even 3 399.2.j.d.172.3 yes 8
7.4 even 3 399.2.j.d.58.3 8
7.6 odd 2 2793.2.a.bd.1.2 4
21.2 odd 6 1197.2.j.k.172.2 8
21.11 odd 6 1197.2.j.k.856.2 8
21.20 even 2 8379.2.a.bt.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.d.58.3 8 7.4 even 3
399.2.j.d.172.3 yes 8 7.2 even 3
1197.2.j.k.172.2 8 21.2 odd 6
1197.2.j.k.856.2 8 21.11 odd 6
2793.2.a.bc.1.2 4 1.1 even 1 trivial
2793.2.a.bd.1.2 4 7.6 odd 2
8379.2.a.br.1.3 4 3.2 odd 2
8379.2.a.bt.1.3 4 21.20 even 2