Properties

Label 2790.2.d.k
Level $2790$
Weight $2$
Character orbit 2790.d
Analytic conductor $22.278$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2790,2,Mod(559,2790)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2790.559"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2790, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2790 = 2 \cdot 3^{2} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2790.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6,6,0,0,0,0,2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.2782621639\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3534400.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 3x^{4} + 16x^{3} + x^{2} - 12x + 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 930)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{5} q^{2} - q^{4} + ( - \beta_{4} + 1) q^{5} + ( - \beta_{5} - \beta_{4} + \cdots + \beta_1) q^{7} + \beta_{5} q^{8} + ( - \beta_{5} + \beta_1) q^{10} + (2 \beta_{4} - \beta_{3} + \beta_{2} + \cdots - 1) q^{11}+ \cdots + (6 \beta_{5} - \beta_{4} + \cdots - 3 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} + 6 q^{5} + 2 q^{10} - 2 q^{11} - 2 q^{14} + 6 q^{16} - 2 q^{19} - 6 q^{20} - 4 q^{25} - 24 q^{26} + 12 q^{29} + 6 q^{31} + 4 q^{34} - 32 q^{35} - 2 q^{40} - 12 q^{41} + 2 q^{44} - 2 q^{46}+ \cdots - 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 3x^{4} + 16x^{3} + x^{2} - 12x + 40 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 4\nu^{5} - 70\nu^{4} + 183\nu^{3} + 120\nu^{2} - 966\nu + 240 ) / 445 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 13\nu^{5} - 5\nu^{4} - 184\nu^{3} + 390\nu^{2} + 643\nu - 1000 ) / 445 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -3\nu^{5} + 8\nu^{4} - 26\nu^{3} - \nu^{2} + 57\nu - 180 ) / 89 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -9\nu^{5} + 24\nu^{4} + 11\nu^{3} - 92\nu^{2} - 7\nu - 6 ) / 178 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{5} - \beta_{4} + 2\beta_{3} + \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{5} - 4\beta_{4} + 2\beta_{3} + \beta_{2} + 2\beta _1 - 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 14\beta_{5} - 14\beta_{4} + 9\beta_{3} - 3\beta_{2} - 10\beta _1 - 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{5} - 32\beta_{4} + 6\beta_{3} - 17\beta_{2} - 25\beta _1 - 42 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2790\mathbb{Z}\right)^\times\).

\(n\) \(1117\) \(1801\) \(2171\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
559.1
2.19082 + 1.44755i
−1.81837 0.301352i
0.627553 1.14620i
2.19082 1.44755i
−1.81837 + 0.301352i
0.627553 + 1.14620i
1.00000i 0 −1.00000 −0.447553 + 2.19082i 0 3.38164i 1.00000i 0 2.19082 + 0.447553i
559.2 1.00000i 0 −1.00000 1.30135 1.81837i 0 4.63675i 1.00000i 0 −1.81837 1.30135i
559.3 1.00000i 0 −1.00000 2.14620 + 0.627553i 0 0.255105i 1.00000i 0 0.627553 2.14620i
559.4 1.00000i 0 −1.00000 −0.447553 2.19082i 0 3.38164i 1.00000i 0 2.19082 0.447553i
559.5 1.00000i 0 −1.00000 1.30135 + 1.81837i 0 4.63675i 1.00000i 0 −1.81837 + 1.30135i
559.6 1.00000i 0 −1.00000 2.14620 0.627553i 0 0.255105i 1.00000i 0 0.627553 + 2.14620i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 559.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2790.2.d.k 6
3.b odd 2 1 930.2.d.h 6
5.b even 2 1 inner 2790.2.d.k 6
15.d odd 2 1 930.2.d.h 6
15.e even 4 1 4650.2.a.ck 3
15.e even 4 1 4650.2.a.cn 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
930.2.d.h 6 3.b odd 2 1
930.2.d.h 6 15.d odd 2 1
2790.2.d.k 6 1.a even 1 1 trivial
2790.2.d.k 6 5.b even 2 1 inner
4650.2.a.ck 3 15.e even 4 1
4650.2.a.cn 3 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2790, [\chi])\):

\( T_{7}^{6} + 33T_{7}^{4} + 248T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{11}^{3} + T_{11}^{2} - 35T_{11} - 67 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 6 T^{5} + \cdots + 125 \) Copy content Toggle raw display
$7$ \( T^{6} + 33 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( (T^{3} + T^{2} - 35 T - 67)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + 62 T^{4} + \cdots + 1600 \) Copy content Toggle raw display
$17$ \( T^{6} + 42 T^{4} + \cdots + 400 \) Copy content Toggle raw display
$19$ \( (T^{3} + T^{2} - 45 T - 85)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 41 T^{4} + \cdots + 1600 \) Copy content Toggle raw display
$29$ \( (T^{3} - 6 T^{2} - 16 T + 16)^{2} \) Copy content Toggle raw display
$31$ \( (T - 1)^{6} \) Copy content Toggle raw display
$37$ \( T^{6} \) Copy content Toggle raw display
$41$ \( (T^{3} + 6 T^{2} + \cdots - 472)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + 33 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$47$ \( T^{6} + 106 T^{4} + \cdots + 1600 \) Copy content Toggle raw display
$53$ \( T^{6} + 161 T^{4} + \cdots + 8464 \) Copy content Toggle raw display
$59$ \( (T^{3} - 2 T^{2} - 44 T - 40)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} - 16 T^{2} + \cdots - 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 114 T^{4} + \cdots + 11236 \) Copy content Toggle raw display
$71$ \( (T^{3} + 9 T^{2} - 75 T - 43)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 233 T^{4} + \cdots + 26896 \) Copy content Toggle raw display
$79$ \( (T^{3} + 11 T^{2} + \cdots - 1175)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 166 T^{4} + \cdots + 62500 \) Copy content Toggle raw display
$89$ \( (T^{3} - 29 T^{2} + \cdots - 736)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 138 T^{4} + \cdots + 100 \) Copy content Toggle raw display
show more
show less