Properties

Label 2790.2.d.f
Level $2790$
Weight $2$
Character orbit 2790.d
Analytic conductor $22.278$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2790 = 2 \cdot 3^{2} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2790.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(22.2782621639\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 930)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - i q^{2} - q^{4} + ( - 2 i + 1) q^{5} + i q^{7} + i q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q - i q^{2} - q^{4} + ( - 2 i + 1) q^{5} + i q^{7} + i q^{8} + ( - i - 2) q^{10} + 3 q^{11} + 4 i q^{13} + q^{14} + q^{16} + q^{19} + (2 i - 1) q^{20} - 3 i q^{22} + 5 i q^{23} + ( - 4 i - 3) q^{25} + 4 q^{26} - i q^{28} + 2 q^{29} - q^{31} - i q^{32} + (i + 2) q^{35} + 4 i q^{37} - i q^{38} + (i + 2) q^{40} + 10 q^{41} + 5 i q^{43} - 3 q^{44} + 5 q^{46} + 8 i q^{47} + 6 q^{49} + (3 i - 4) q^{50} - 4 i q^{52} + 5 i q^{53} + ( - 6 i + 3) q^{55} - q^{56} - 2 i q^{58} - 6 q^{59} - 2 q^{61} + i q^{62} - q^{64} + (4 i + 8) q^{65} + 2 i q^{67} + ( - 2 i + 1) q^{70} + 5 q^{71} + 7 i q^{73} + 4 q^{74} - q^{76} + 3 i q^{77} - 3 q^{79} + ( - 2 i + 1) q^{80} - 10 i q^{82} - 2 i q^{83} + 5 q^{86} + 3 i q^{88} + q^{89} - 4 q^{91} - 5 i q^{92} + 8 q^{94} + ( - 2 i + 1) q^{95} - 10 i q^{97} - 6 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} + 2 q^{5} - 4 q^{10} + 6 q^{11} + 2 q^{14} + 2 q^{16} + 2 q^{19} - 2 q^{20} - 6 q^{25} + 8 q^{26} + 4 q^{29} - 2 q^{31} + 4 q^{35} + 4 q^{40} + 20 q^{41} - 6 q^{44} + 10 q^{46} + 12 q^{49} - 8 q^{50} + 6 q^{55} - 2 q^{56} - 12 q^{59} - 4 q^{61} - 2 q^{64} + 16 q^{65} + 2 q^{70} + 10 q^{71} + 8 q^{74} - 2 q^{76} - 6 q^{79} + 2 q^{80} + 10 q^{86} + 2 q^{89} - 8 q^{91} + 16 q^{94} + 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2790\mathbb{Z}\right)^\times\).

\(n\) \(1117\) \(1801\) \(2171\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
559.1
1.00000i
1.00000i
1.00000i 0 −1.00000 1.00000 2.00000i 0 1.00000i 1.00000i 0 −2.00000 1.00000i
559.2 1.00000i 0 −1.00000 1.00000 + 2.00000i 0 1.00000i 1.00000i 0 −2.00000 + 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2790.2.d.f 2
3.b odd 2 1 930.2.d.a 2
5.b even 2 1 inner 2790.2.d.f 2
15.d odd 2 1 930.2.d.a 2
15.e even 4 1 4650.2.a.p 1
15.e even 4 1 4650.2.a.bc 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
930.2.d.a 2 3.b odd 2 1
930.2.d.a 2 15.d odd 2 1
2790.2.d.f 2 1.a even 1 1 trivial
2790.2.d.f 2 5.b even 2 1 inner
4650.2.a.p 1 15.e even 4 1
4650.2.a.bc 1 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2790, [\chi])\):

\( T_{7}^{2} + 1 \) Copy content Toggle raw display
\( T_{11} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 2T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( (T - 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 16 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T - 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 25 \) Copy content Toggle raw display
$29$ \( (T - 2)^{2} \) Copy content Toggle raw display
$31$ \( (T + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 16 \) Copy content Toggle raw display
$41$ \( (T - 10)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 25 \) Copy content Toggle raw display
$47$ \( T^{2} + 64 \) Copy content Toggle raw display
$53$ \( T^{2} + 25 \) Copy content Toggle raw display
$59$ \( (T + 6)^{2} \) Copy content Toggle raw display
$61$ \( (T + 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 4 \) Copy content Toggle raw display
$71$ \( (T - 5)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 49 \) Copy content Toggle raw display
$79$ \( (T + 3)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 4 \) Copy content Toggle raw display
$89$ \( (T - 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 100 \) Copy content Toggle raw display
show more
show less