# Properties

 Label 2790.2.a.v Level $2790$ Weight $2$ Character orbit 2790.a Self dual yes Analytic conductor $22.278$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2790,2,Mod(1,2790)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2790, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2790.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2790 = 2 \cdot 3^{2} \cdot 5 \cdot 31$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2790.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$22.2782621639$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 930) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{4} - q^{5} + 4 q^{7} + q^{8}+O(q^{10})$$ q + q^2 + q^4 - q^5 + 4 * q^7 + q^8 $$q + q^{2} + q^{4} - q^{5} + 4 q^{7} + q^{8} - q^{10} - 2 q^{11} + 2 q^{13} + 4 q^{14} + q^{16} - q^{20} - 2 q^{22} + 6 q^{23} + q^{25} + 2 q^{26} + 4 q^{28} + q^{31} + q^{32} - 4 q^{35} - 2 q^{37} - q^{40} + 10 q^{41} - 4 q^{43} - 2 q^{44} + 6 q^{46} - 4 q^{47} + 9 q^{49} + q^{50} + 2 q^{52} - 6 q^{53} + 2 q^{55} + 4 q^{56} + 4 q^{59} + q^{62} + q^{64} - 2 q^{65} + 4 q^{67} - 4 q^{70} + 16 q^{71} + 4 q^{73} - 2 q^{74} - 8 q^{77} + 4 q^{79} - q^{80} + 10 q^{82} - 8 q^{83} - 4 q^{86} - 2 q^{88} - 6 q^{89} + 8 q^{91} + 6 q^{92} - 4 q^{94} + 14 q^{97} + 9 q^{98}+O(q^{100})$$ q + q^2 + q^4 - q^5 + 4 * q^7 + q^8 - q^10 - 2 * q^11 + 2 * q^13 + 4 * q^14 + q^16 - q^20 - 2 * q^22 + 6 * q^23 + q^25 + 2 * q^26 + 4 * q^28 + q^31 + q^32 - 4 * q^35 - 2 * q^37 - q^40 + 10 * q^41 - 4 * q^43 - 2 * q^44 + 6 * q^46 - 4 * q^47 + 9 * q^49 + q^50 + 2 * q^52 - 6 * q^53 + 2 * q^55 + 4 * q^56 + 4 * q^59 + q^62 + q^64 - 2 * q^65 + 4 * q^67 - 4 * q^70 + 16 * q^71 + 4 * q^73 - 2 * q^74 - 8 * q^77 + 4 * q^79 - q^80 + 10 * q^82 - 8 * q^83 - 4 * q^86 - 2 * q^88 - 6 * q^89 + 8 * q^91 + 6 * q^92 - 4 * q^94 + 14 * q^97 + 9 * q^98

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 0 1.00000 −1.00000 0 4.00000 1.00000 0 −1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$1$$
$$31$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2790.2.a.v 1
3.b odd 2 1 930.2.a.j 1
12.b even 2 1 7440.2.a.g 1
15.d odd 2 1 4650.2.a.x 1
15.e even 4 2 4650.2.d.h 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
930.2.a.j 1 3.b odd 2 1
2790.2.a.v 1 1.a even 1 1 trivial
4650.2.a.x 1 15.d odd 2 1
4650.2.d.h 2 15.e even 4 2
7440.2.a.g 1 12.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2790))$$:

 $$T_{7} - 4$$ T7 - 4 $$T_{11} + 2$$ T11 + 2 $$T_{13} - 2$$ T13 - 2 $$T_{17}$$ T17 $$T_{19}$$ T19

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T$$
$5$ $$T + 1$$
$7$ $$T - 4$$
$11$ $$T + 2$$
$13$ $$T - 2$$
$17$ $$T$$
$19$ $$T$$
$23$ $$T - 6$$
$29$ $$T$$
$31$ $$T - 1$$
$37$ $$T + 2$$
$41$ $$T - 10$$
$43$ $$T + 4$$
$47$ $$T + 4$$
$53$ $$T + 6$$
$59$ $$T - 4$$
$61$ $$T$$
$67$ $$T - 4$$
$71$ $$T - 16$$
$73$ $$T - 4$$
$79$ $$T - 4$$
$83$ $$T + 8$$
$89$ $$T + 6$$
$97$ $$T - 14$$