Properties

Label 2790.2.a.bi
Level $2790$
Weight $2$
Character orbit 2790.a
Self dual yes
Analytic conductor $22.278$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2790,2,Mod(1,2790)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2790.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2790, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2790 = 2 \cdot 3^{2} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2790.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,0,3,-3,0,0,-3,0,3,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.2782621639\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 310)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} - q^{5} + ( - \beta_{2} + \beta_1) q^{7} - q^{8} + q^{10} + ( - \beta_{2} - 2 \beta_1 + 1) q^{11} + (\beta_1 - 3) q^{13} + (\beta_{2} - \beta_1) q^{14} + q^{16} + (\beta_{2} - \beta_1) q^{17}+ \cdots + (4 \beta_1 - 5) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} - 3 q^{5} - 3 q^{8} + 3 q^{10} - 8 q^{13} + 3 q^{16} + 8 q^{19} - 3 q^{20} + 2 q^{23} + 3 q^{25} + 8 q^{26} + 2 q^{29} + 3 q^{31} - 3 q^{32} - 8 q^{37} - 8 q^{38} + 3 q^{40} + 2 q^{41}+ \cdots - 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + 2\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.311108
2.17009
−1.48119
−1.00000 0 1.00000 −1.00000 0 −4.42864 −1.00000 0 1.00000
1.2 −1.00000 0 1.00000 −1.00000 0 1.07838 −1.00000 0 1.00000
1.3 −1.00000 0 1.00000 −1.00000 0 3.35026 −1.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(31\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2790.2.a.bi 3
3.b odd 2 1 310.2.a.e 3
12.b even 2 1 2480.2.a.u 3
15.d odd 2 1 1550.2.a.k 3
15.e even 4 2 1550.2.b.j 6
24.f even 2 1 9920.2.a.bx 3
24.h odd 2 1 9920.2.a.bw 3
93.c even 2 1 9610.2.a.u 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
310.2.a.e 3 3.b odd 2 1
1550.2.a.k 3 15.d odd 2 1
1550.2.b.j 6 15.e even 4 2
2480.2.a.u 3 12.b even 2 1
2790.2.a.bi 3 1.a even 1 1 trivial
9610.2.a.u 3 93.c even 2 1
9920.2.a.bw 3 24.h odd 2 1
9920.2.a.bx 3 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2790))\):

\( T_{7}^{3} - 16T_{7} + 16 \) Copy content Toggle raw display
\( T_{11}^{3} - 28T_{11} + 52 \) Copy content Toggle raw display
\( T_{13}^{3} + 8T_{13}^{2} + 16T_{13} + 4 \) Copy content Toggle raw display
\( T_{17}^{3} - 16T_{17} - 16 \) Copy content Toggle raw display
\( T_{19}^{3} - 8T_{19}^{2} - 16T_{19} + 160 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( (T + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 16T + 16 \) Copy content Toggle raw display
$11$ \( T^{3} - 28T + 52 \) Copy content Toggle raw display
$13$ \( T^{3} + 8 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$17$ \( T^{3} - 16T - 16 \) Copy content Toggle raw display
$19$ \( T^{3} - 8 T^{2} + \cdots + 160 \) Copy content Toggle raw display
$23$ \( T^{3} - 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$29$ \( T^{3} - 2 T^{2} + \cdots + 260 \) Copy content Toggle raw display
$31$ \( (T - 1)^{3} \) Copy content Toggle raw display
$37$ \( T^{3} + 8 T^{2} + \cdots - 92 \) Copy content Toggle raw display
$41$ \( T^{3} - 2 T^{2} + \cdots - 232 \) Copy content Toggle raw display
$43$ \( T^{3} + 10 T^{2} + \cdots - 604 \) Copy content Toggle raw display
$47$ \( T^{3} + 20 T^{2} + \cdots - 208 \) Copy content Toggle raw display
$53$ \( T^{3} - 20 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$59$ \( T^{3} + 20 T^{2} + \cdots + 160 \) Copy content Toggle raw display
$61$ \( T^{3} + 18 T^{2} + \cdots + 100 \) Copy content Toggle raw display
$67$ \( T^{3} + 12 T^{2} + \cdots - 1184 \) Copy content Toggle raw display
$71$ \( T^{3} + 8 T^{2} + \cdots - 128 \) Copy content Toggle raw display
$73$ \( T^{3} + 20 T^{2} + \cdots - 464 \) Copy content Toggle raw display
$79$ \( T^{3} - 192T - 160 \) Copy content Toggle raw display
$83$ \( T^{3} + 10 T^{2} + \cdots - 124 \) Copy content Toggle raw display
$89$ \( T^{3} + 18 T^{2} + \cdots - 40 \) Copy content Toggle raw display
$97$ \( T^{3} + 10 T^{2} + \cdots - 8 \) Copy content Toggle raw display
show more
show less