Properties

Label 2790.2.a.ba.1.1
Level $2790$
Weight $2$
Character 2790.1
Self dual yes
Analytic conductor $22.278$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2790 = 2 \cdot 3^{2} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2790.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(22.2782621639\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 930)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2790.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{8} +1.00000 q^{10} +4.00000 q^{11} +6.00000 q^{13} +1.00000 q^{16} -2.00000 q^{17} -4.00000 q^{19} +1.00000 q^{20} +4.00000 q^{22} +4.00000 q^{23} +1.00000 q^{25} +6.00000 q^{26} -2.00000 q^{29} -1.00000 q^{31} +1.00000 q^{32} -2.00000 q^{34} -2.00000 q^{37} -4.00000 q^{38} +1.00000 q^{40} +6.00000 q^{41} -4.00000 q^{43} +4.00000 q^{44} +4.00000 q^{46} -7.00000 q^{49} +1.00000 q^{50} +6.00000 q^{52} -2.00000 q^{53} +4.00000 q^{55} -2.00000 q^{58} +4.00000 q^{59} -6.00000 q^{61} -1.00000 q^{62} +1.00000 q^{64} +6.00000 q^{65} +16.0000 q^{67} -2.00000 q^{68} +12.0000 q^{71} -6.00000 q^{73} -2.00000 q^{74} -4.00000 q^{76} -16.0000 q^{79} +1.00000 q^{80} +6.00000 q^{82} +12.0000 q^{83} -2.00000 q^{85} -4.00000 q^{86} +4.00000 q^{88} +18.0000 q^{89} +4.00000 q^{92} -4.00000 q^{95} -14.0000 q^{97} -7.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 6.00000 1.17670
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) −4.00000 −0.648886
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 6.00000 0.832050
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) −2.00000 −0.262613
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) −1.00000 −0.127000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) 16.0000 1.95471 0.977356 0.211604i \(-0.0678686\pi\)
0.977356 + 0.211604i \(0.0678686\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 0 0
\(78\) 0 0
\(79\) −16.0000 −1.80014 −0.900070 0.435745i \(-0.856485\pi\)
−0.900070 + 0.435745i \(0.856485\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) 4.00000 0.426401
\(89\) 18.0000 1.90800 0.953998 0.299813i \(-0.0969242\pi\)
0.953998 + 0.299813i \(0.0969242\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.00000 0.417029
\(93\) 0 0
\(94\) 0 0
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) −7.00000 −0.707107
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −2.00000 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 6.00000 0.588348
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 4.00000 0.381385
\(111\) 0 0
\(112\) 0 0
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) −2.00000 −0.185695
\(117\) 0 0
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −6.00000 −0.543214
\(123\) 0 0
\(124\) −1.00000 −0.0898027
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 6.00000 0.526235
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 16.0000 1.38219
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 12.0000 1.00702
\(143\) 24.0000 2.00698
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) −6.00000 −0.496564
\(147\) 0 0
\(148\) −2.00000 −0.164399
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 0 0
\(157\) 18.0000 1.43656 0.718278 0.695756i \(-0.244931\pi\)
0.718278 + 0.695756i \(0.244931\pi\)
\(158\) −16.0000 −1.27289
\(159\) 0 0
\(160\) 1.00000 0.0790569
\(161\) 0 0
\(162\) 0 0
\(163\) −24.0000 −1.87983 −0.939913 0.341415i \(-0.889094\pi\)
−0.939913 + 0.341415i \(0.889094\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) −2.00000 −0.153393
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) 18.0000 1.34916
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.00000 0.294884
\(185\) −2.00000 −0.147043
\(186\) 0 0
\(187\) −8.00000 −0.585018
\(188\) 0 0
\(189\) 0 0
\(190\) −4.00000 −0.290191
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 0 0
\(193\) −22.0000 −1.58359 −0.791797 0.610784i \(-0.790854\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(194\) −14.0000 −1.00514
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) −2.00000 −0.140720
\(203\) 0 0
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) 8.00000 0.557386
\(207\) 0 0
\(208\) 6.00000 0.416025
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) −2.00000 −0.137361
\(213\) 0 0
\(214\) −4.00000 −0.273434
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) 0 0
\(218\) 6.00000 0.406371
\(219\) 0 0
\(220\) 4.00000 0.269680
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 10.0000 0.665190
\(227\) −20.0000 −1.32745 −0.663723 0.747978i \(-0.731025\pi\)
−0.663723 + 0.747978i \(0.731025\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 4.00000 0.263752
\(231\) 0 0
\(232\) −2.00000 −0.131306
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 4.00000 0.260378
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 5.00000 0.321412
\(243\) 0 0
\(244\) −6.00000 −0.384111
\(245\) −7.00000 −0.447214
\(246\) 0 0
\(247\) −24.0000 −1.52708
\(248\) −1.00000 −0.0635001
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) −20.0000 −1.26239 −0.631194 0.775625i \(-0.717435\pi\)
−0.631194 + 0.775625i \(0.717435\pi\)
\(252\) 0 0
\(253\) 16.0000 1.00591
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −22.0000 −1.37232 −0.686161 0.727450i \(-0.740706\pi\)
−0.686161 + 0.727450i \(0.740706\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 6.00000 0.372104
\(261\) 0 0
\(262\) 4.00000 0.247121
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) −2.00000 −0.122859
\(266\) 0 0
\(267\) 0 0
\(268\) 16.0000 0.977356
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) 6.00000 0.360505 0.180253 0.983620i \(-0.442309\pi\)
0.180253 + 0.983620i \(0.442309\pi\)
\(278\) 8.00000 0.479808
\(279\) 0 0
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 12.0000 0.712069
\(285\) 0 0
\(286\) 24.0000 1.41915
\(287\) 0 0
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) −2.00000 −0.117444
\(291\) 0 0
\(292\) −6.00000 −0.351123
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) −10.0000 −0.579284
\(299\) 24.0000 1.38796
\(300\) 0 0
\(301\) 0 0
\(302\) 16.0000 0.920697
\(303\) 0 0
\(304\) −4.00000 −0.229416
\(305\) −6.00000 −0.343559
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1.00000 −0.0567962
\(311\) 28.0000 1.58773 0.793867 0.608091i \(-0.208065\pi\)
0.793867 + 0.608091i \(0.208065\pi\)
\(312\) 0 0
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 18.0000 1.01580
\(315\) 0 0
\(316\) −16.0000 −0.900070
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 0 0
\(319\) −8.00000 −0.447914
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) 0 0
\(323\) 8.00000 0.445132
\(324\) 0 0
\(325\) 6.00000 0.332820
\(326\) −24.0000 −1.32924
\(327\) 0 0
\(328\) 6.00000 0.331295
\(329\) 0 0
\(330\) 0 0
\(331\) 24.0000 1.31916 0.659580 0.751635i \(-0.270734\pi\)
0.659580 + 0.751635i \(0.270734\pi\)
\(332\) 12.0000 0.658586
\(333\) 0 0
\(334\) −12.0000 −0.656611
\(335\) 16.0000 0.874173
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 23.0000 1.25104
\(339\) 0 0
\(340\) −2.00000 −0.108465
\(341\) −4.00000 −0.216612
\(342\) 0 0
\(343\) 0 0
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) 4.00000 0.214731 0.107366 0.994220i \(-0.465758\pi\)
0.107366 + 0.994220i \(0.465758\pi\)
\(348\) 0 0
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.00000 0.213201
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) 12.0000 0.636894
\(356\) 18.0000 0.953998
\(357\) 0 0
\(358\) 4.00000 0.211407
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −6.00000 −0.315353
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) 16.0000 0.835193 0.417597 0.908633i \(-0.362873\pi\)
0.417597 + 0.908633i \(0.362873\pi\)
\(368\) 4.00000 0.208514
\(369\) 0 0
\(370\) −2.00000 −0.103975
\(371\) 0 0
\(372\) 0 0
\(373\) −38.0000 −1.96757 −0.983783 0.179364i \(-0.942596\pi\)
−0.983783 + 0.179364i \(0.942596\pi\)
\(374\) −8.00000 −0.413670
\(375\) 0 0
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) −4.00000 −0.205196
\(381\) 0 0
\(382\) −4.00000 −0.204658
\(383\) −4.00000 −0.204390 −0.102195 0.994764i \(-0.532587\pi\)
−0.102195 + 0.994764i \(0.532587\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −22.0000 −1.11977
\(387\) 0 0
\(388\) −14.0000 −0.710742
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) −7.00000 −0.353553
\(393\) 0 0
\(394\) −2.00000 −0.100759
\(395\) −16.0000 −0.805047
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 16.0000 0.802008
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −14.0000 −0.699127 −0.349563 0.936913i \(-0.613670\pi\)
−0.349563 + 0.936913i \(0.613670\pi\)
\(402\) 0 0
\(403\) −6.00000 −0.298881
\(404\) −2.00000 −0.0995037
\(405\) 0 0
\(406\) 0 0
\(407\) −8.00000 −0.396545
\(408\) 0 0
\(409\) −6.00000 −0.296681 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) 6.00000 0.296319
\(411\) 0 0
\(412\) 8.00000 0.394132
\(413\) 0 0
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 6.00000 0.294174
\(417\) 0 0
\(418\) −16.0000 −0.782586
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) 14.0000 0.682318 0.341159 0.940006i \(-0.389181\pi\)
0.341159 + 0.940006i \(0.389181\pi\)
\(422\) −4.00000 −0.194717
\(423\) 0 0
\(424\) −2.00000 −0.0971286
\(425\) −2.00000 −0.0970143
\(426\) 0 0
\(427\) 0 0
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) −4.00000 −0.192897
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.00000 0.287348
\(437\) −16.0000 −0.765384
\(438\) 0 0
\(439\) −32.0000 −1.52728 −0.763638 0.645644i \(-0.776589\pi\)
−0.763638 + 0.645644i \(0.776589\pi\)
\(440\) 4.00000 0.190693
\(441\) 0 0
\(442\) −12.0000 −0.570782
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 18.0000 0.853282
\(446\) −8.00000 −0.378811
\(447\) 0 0
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) 10.0000 0.470360
\(453\) 0 0
\(454\) −20.0000 −0.938647
\(455\) 0 0
\(456\) 0 0
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) 10.0000 0.467269
\(459\) 0 0
\(460\) 4.00000 0.186501
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 0 0
\(466\) −22.0000 −1.01913
\(467\) 4.00000 0.185098 0.0925490 0.995708i \(-0.470499\pi\)
0.0925490 + 0.995708i \(0.470499\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 4.00000 0.184115
\(473\) −16.0000 −0.735681
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −36.0000 −1.64488 −0.822441 0.568850i \(-0.807388\pi\)
−0.822441 + 0.568850i \(0.807388\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) −14.0000 −0.637683
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) −14.0000 −0.635707
\(486\) 0 0
\(487\) −40.0000 −1.81257 −0.906287 0.422664i \(-0.861095\pi\)
−0.906287 + 0.422664i \(0.861095\pi\)
\(488\) −6.00000 −0.271607
\(489\) 0 0
\(490\) −7.00000 −0.316228
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) −24.0000 −1.07981
\(495\) 0 0
\(496\) −1.00000 −0.0449013
\(497\) 0 0
\(498\) 0 0
\(499\) 16.0000 0.716258 0.358129 0.933672i \(-0.383415\pi\)
0.358129 + 0.933672i \(0.383415\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) −20.0000 −0.892644
\(503\) −32.0000 −1.42681 −0.713405 0.700752i \(-0.752848\pi\)
−0.713405 + 0.700752i \(0.752848\pi\)
\(504\) 0 0
\(505\) −2.00000 −0.0889988
\(506\) 16.0000 0.711287
\(507\) 0 0
\(508\) −8.00000 −0.354943
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −22.0000 −0.970378
\(515\) 8.00000 0.352522
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 6.00000 0.263117
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 4.00000 0.174741
\(525\) 0 0
\(526\) 12.0000 0.523225
\(527\) 2.00000 0.0871214
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) −2.00000 −0.0868744
\(531\) 0 0
\(532\) 0 0
\(533\) 36.0000 1.55933
\(534\) 0 0
\(535\) −4.00000 −0.172935
\(536\) 16.0000 0.691095
\(537\) 0 0
\(538\) −18.0000 −0.776035
\(539\) −28.0000 −1.20605
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) −8.00000 −0.343629
\(543\) 0 0
\(544\) −2.00000 −0.0857493
\(545\) 6.00000 0.257012
\(546\) 0 0
\(547\) 16.0000 0.684111 0.342055 0.939680i \(-0.388877\pi\)
0.342055 + 0.939680i \(0.388877\pi\)
\(548\) −18.0000 −0.768922
\(549\) 0 0
\(550\) 4.00000 0.170561
\(551\) 8.00000 0.340811
\(552\) 0 0
\(553\) 0 0
\(554\) 6.00000 0.254916
\(555\) 0 0
\(556\) 8.00000 0.339276
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) −10.0000 −0.421825
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 0 0
\(565\) 10.0000 0.420703
\(566\) 0 0
\(567\) 0 0
\(568\) 12.0000 0.503509
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 40.0000 1.67395 0.836974 0.547243i \(-0.184323\pi\)
0.836974 + 0.547243i \(0.184323\pi\)
\(572\) 24.0000 1.00349
\(573\) 0 0
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) −30.0000 −1.24892 −0.624458 0.781058i \(-0.714680\pi\)
−0.624458 + 0.781058i \(0.714680\pi\)
\(578\) −13.0000 −0.540729
\(579\) 0 0
\(580\) −2.00000 −0.0830455
\(581\) 0 0
\(582\) 0 0
\(583\) −8.00000 −0.331326
\(584\) −6.00000 −0.248282
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) −4.00000 −0.165098 −0.0825488 0.996587i \(-0.526306\pi\)
−0.0825488 + 0.996587i \(0.526306\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 4.00000 0.164677
\(591\) 0 0
\(592\) −2.00000 −0.0821995
\(593\) −14.0000 −0.574911 −0.287456 0.957794i \(-0.592809\pi\)
−0.287456 + 0.957794i \(0.592809\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −10.0000 −0.409616
\(597\) 0 0
\(598\) 24.0000 0.981433
\(599\) 4.00000 0.163436 0.0817178 0.996656i \(-0.473959\pi\)
0.0817178 + 0.996656i \(0.473959\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 16.0000 0.651031
\(605\) 5.00000 0.203279
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) −6.00000 −0.242933
\(611\) 0 0
\(612\) 0 0
\(613\) −26.0000 −1.05013 −0.525065 0.851062i \(-0.675959\pi\)
−0.525065 + 0.851062i \(0.675959\pi\)
\(614\) −16.0000 −0.645707
\(615\) 0 0
\(616\) 0 0
\(617\) −46.0000 −1.85189 −0.925945 0.377658i \(-0.876729\pi\)
−0.925945 + 0.377658i \(0.876729\pi\)
\(618\) 0 0
\(619\) 32.0000 1.28619 0.643094 0.765787i \(-0.277650\pi\)
0.643094 + 0.765787i \(0.277650\pi\)
\(620\) −1.00000 −0.0401610
\(621\) 0 0
\(622\) 28.0000 1.12270
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 26.0000 1.03917
\(627\) 0 0
\(628\) 18.0000 0.718278
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −16.0000 −0.636446
\(633\) 0 0
\(634\) −2.00000 −0.0794301
\(635\) −8.00000 −0.317470
\(636\) 0 0
\(637\) −42.0000 −1.66410
\(638\) −8.00000 −0.316723
\(639\) 0 0
\(640\) 1.00000 0.0395285
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 0 0
\(643\) −20.0000 −0.788723 −0.394362 0.918955i \(-0.629034\pi\)
−0.394362 + 0.918955i \(0.629034\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 8.00000 0.314756
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 0 0
\(649\) 16.0000 0.628055
\(650\) 6.00000 0.235339
\(651\) 0 0
\(652\) −24.0000 −0.939913
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 0 0
\(655\) 4.00000 0.156293
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) 0 0
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) −34.0000 −1.32245 −0.661223 0.750189i \(-0.729962\pi\)
−0.661223 + 0.750189i \(0.729962\pi\)
\(662\) 24.0000 0.932786
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 0 0
\(667\) −8.00000 −0.309761
\(668\) −12.0000 −0.464294
\(669\) 0 0
\(670\) 16.0000 0.618134
\(671\) −24.0000 −0.926510
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 2.00000 0.0770371
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) −42.0000 −1.61419 −0.807096 0.590421i \(-0.798962\pi\)
−0.807096 + 0.590421i \(0.798962\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −2.00000 −0.0766965
\(681\) 0 0
\(682\) −4.00000 −0.153168
\(683\) 36.0000 1.37750 0.688751 0.724998i \(-0.258159\pi\)
0.688751 + 0.724998i \(0.258159\pi\)
\(684\) 0 0
\(685\) −18.0000 −0.687745
\(686\) 0 0
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) 14.0000 0.532200
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 8.00000 0.303457
\(696\) 0 0
\(697\) −12.0000 −0.454532
\(698\) −2.00000 −0.0757011
\(699\) 0 0
\(700\) 0 0
\(701\) 38.0000 1.43524 0.717620 0.696435i \(-0.245231\pi\)
0.717620 + 0.696435i \(0.245231\pi\)
\(702\) 0 0
\(703\) 8.00000 0.301726
\(704\) 4.00000 0.150756
\(705\) 0 0
\(706\) 6.00000 0.225813
\(707\) 0 0
\(708\) 0 0
\(709\) −46.0000 −1.72757 −0.863783 0.503864i \(-0.831911\pi\)
−0.863783 + 0.503864i \(0.831911\pi\)
\(710\) 12.0000 0.450352
\(711\) 0 0
\(712\) 18.0000 0.674579
\(713\) −4.00000 −0.149801
\(714\) 0 0
\(715\) 24.0000 0.897549
\(716\) 4.00000 0.149487
\(717\) 0 0
\(718\) 20.0000 0.746393
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −3.00000 −0.111648
\(723\) 0 0
\(724\) −6.00000 −0.222988
\(725\) −2.00000 −0.0742781
\(726\) 0 0
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −6.00000 −0.222070
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) 2.00000 0.0738717 0.0369358 0.999318i \(-0.488240\pi\)
0.0369358 + 0.999318i \(0.488240\pi\)
\(734\) 16.0000 0.590571
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) 64.0000 2.35747
\(738\) 0 0
\(739\) −16.0000 −0.588570 −0.294285 0.955718i \(-0.595081\pi\)
−0.294285 + 0.955718i \(0.595081\pi\)
\(740\) −2.00000 −0.0735215
\(741\) 0 0
\(742\) 0 0
\(743\) −12.0000 −0.440237 −0.220119 0.975473i \(-0.570644\pi\)
−0.220119 + 0.975473i \(0.570644\pi\)
\(744\) 0 0
\(745\) −10.0000 −0.366372
\(746\) −38.0000 −1.39128
\(747\) 0 0
\(748\) −8.00000 −0.292509
\(749\) 0 0
\(750\) 0 0
\(751\) −24.0000 −0.875772 −0.437886 0.899030i \(-0.644273\pi\)
−0.437886 + 0.899030i \(0.644273\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −12.0000 −0.437014
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) −18.0000 −0.654221 −0.327111 0.944986i \(-0.606075\pi\)
−0.327111 + 0.944986i \(0.606075\pi\)
\(758\) −20.0000 −0.726433
\(759\) 0 0
\(760\) −4.00000 −0.145095
\(761\) −22.0000 −0.797499 −0.398750 0.917060i \(-0.630556\pi\)
−0.398750 + 0.917060i \(0.630556\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −4.00000 −0.144715
\(765\) 0 0
\(766\) −4.00000 −0.144526
\(767\) 24.0000 0.866590
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −22.0000 −0.791797
\(773\) −50.0000 −1.79838 −0.899188 0.437564i \(-0.855842\pi\)
−0.899188 + 0.437564i \(0.855842\pi\)
\(774\) 0 0
\(775\) −1.00000 −0.0359211
\(776\) −14.0000 −0.502571
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) 48.0000 1.71758
\(782\) −8.00000 −0.286079
\(783\) 0 0
\(784\) −7.00000 −0.250000
\(785\) 18.0000 0.642448
\(786\) 0 0
\(787\) 28.0000 0.998092 0.499046 0.866575i \(-0.333684\pi\)
0.499046 + 0.866575i \(0.333684\pi\)
\(788\) −2.00000 −0.0712470
\(789\) 0 0
\(790\) −16.0000 −0.569254
\(791\) 0 0
\(792\) 0 0
\(793\) −36.0000 −1.27840
\(794\) −14.0000 −0.496841
\(795\) 0 0
\(796\) 16.0000 0.567105
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) −14.0000 −0.494357
\(803\) −24.0000 −0.846942
\(804\) 0 0
\(805\) 0 0
\(806\) −6.00000 −0.211341
\(807\) 0 0
\(808\) −2.00000 −0.0703598
\(809\) 10.0000 0.351581 0.175791 0.984428i \(-0.443752\pi\)
0.175791 + 0.984428i \(0.443752\pi\)
\(810\) 0 0
\(811\) 12.0000 0.421377 0.210688 0.977553i \(-0.432429\pi\)
0.210688 + 0.977553i \(0.432429\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −8.00000 −0.280400
\(815\) −24.0000 −0.840683
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) −6.00000 −0.209785
\(819\) 0 0
\(820\) 6.00000 0.209529
\(821\) 22.0000 0.767805 0.383903 0.923374i \(-0.374580\pi\)
0.383903 + 0.923374i \(0.374580\pi\)
\(822\) 0 0
\(823\) 40.0000 1.39431 0.697156 0.716919i \(-0.254448\pi\)
0.697156 + 0.716919i \(0.254448\pi\)
\(824\) 8.00000 0.278693
\(825\) 0 0
\(826\) 0 0
\(827\) −52.0000 −1.80822 −0.904109 0.427303i \(-0.859464\pi\)
−0.904109 + 0.427303i \(0.859464\pi\)
\(828\) 0 0
\(829\) 50.0000 1.73657 0.868286 0.496064i \(-0.165222\pi\)
0.868286 + 0.496064i \(0.165222\pi\)
\(830\) 12.0000 0.416526
\(831\) 0 0
\(832\) 6.00000 0.208013
\(833\) 14.0000 0.485071
\(834\) 0 0
\(835\) −12.0000 −0.415277
\(836\) −16.0000 −0.553372
\(837\) 0 0
\(838\) 12.0000 0.414533
\(839\) −28.0000 −0.966667 −0.483334 0.875436i \(-0.660574\pi\)
−0.483334 + 0.875436i \(0.660574\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 14.0000 0.482472
\(843\) 0 0
\(844\) −4.00000 −0.137686
\(845\) 23.0000 0.791224
\(846\) 0 0
\(847\) 0 0
\(848\) −2.00000 −0.0686803
\(849\) 0 0
\(850\) −2.00000 −0.0685994
\(851\) −8.00000 −0.274236
\(852\) 0 0
\(853\) 58.0000 1.98588 0.992941 0.118609i \(-0.0378434\pi\)
0.992941 + 0.118609i \(0.0378434\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −4.00000 −0.136717
\(857\) −54.0000 −1.84460 −0.922302 0.386469i \(-0.873695\pi\)
−0.922302 + 0.386469i \(0.873695\pi\)
\(858\) 0 0
\(859\) 48.0000 1.63774 0.818869 0.573980i \(-0.194601\pi\)
0.818869 + 0.573980i \(0.194601\pi\)
\(860\) −4.00000 −0.136399
\(861\) 0 0
\(862\) 12.0000 0.408722
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) 14.0000 0.476014
\(866\) 2.00000 0.0679628
\(867\) 0 0
\(868\) 0 0
\(869\) −64.0000 −2.17105
\(870\) 0 0
\(871\) 96.0000 3.25284
\(872\) 6.00000 0.203186
\(873\) 0 0
\(874\) −16.0000 −0.541208
\(875\) 0 0
\(876\) 0 0
\(877\) −38.0000 −1.28317 −0.641584 0.767052i \(-0.721723\pi\)
−0.641584 + 0.767052i \(0.721723\pi\)
\(878\) −32.0000 −1.07995
\(879\) 0 0
\(880\) 4.00000 0.134840
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 0 0
\(883\) 52.0000 1.74994 0.874970 0.484178i \(-0.160881\pi\)
0.874970 + 0.484178i \(0.160881\pi\)
\(884\) −12.0000 −0.403604
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) 24.0000 0.805841 0.402921 0.915235i \(-0.367995\pi\)
0.402921 + 0.915235i \(0.367995\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 18.0000 0.603361
\(891\) 0 0
\(892\) −8.00000 −0.267860
\(893\) 0 0
\(894\) 0 0
\(895\) 4.00000 0.133705
\(896\) 0 0
\(897\) 0 0
\(898\) 18.0000 0.600668
\(899\) 2.00000 0.0667037
\(900\) 0 0
\(901\) 4.00000 0.133259
\(902\) 24.0000 0.799113
\(903\) 0 0
\(904\) 10.0000 0.332595
\(905\) −6.00000 −0.199447
\(906\) 0 0
\(907\) −56.0000 −1.85945 −0.929725 0.368255i \(-0.879955\pi\)
−0.929725 + 0.368255i \(0.879955\pi\)
\(908\) −20.0000 −0.663723
\(909\) 0 0
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) 48.0000 1.58857
\(914\) −22.0000 −0.727695
\(915\) 0 0
\(916\) 10.0000 0.330409
\(917\) 0 0
\(918\) 0 0
\(919\) −32.0000 −1.05558 −0.527791 0.849374i \(-0.676980\pi\)
−0.527791 + 0.849374i \(0.676980\pi\)
\(920\) 4.00000 0.131876
\(921\) 0 0
\(922\) 14.0000 0.461065
\(923\) 72.0000 2.36991
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) −24.0000 −0.788689
\(927\) 0 0
\(928\) −2.00000 −0.0656532
\(929\) 42.0000 1.37798 0.688988 0.724773i \(-0.258055\pi\)
0.688988 + 0.724773i \(0.258055\pi\)
\(930\) 0 0
\(931\) 28.0000 0.917663
\(932\) −22.0000 −0.720634
\(933\) 0 0
\(934\) 4.00000 0.130884
\(935\) −8.00000 −0.261628
\(936\) 0 0
\(937\) 10.0000 0.326686 0.163343 0.986569i \(-0.447772\pi\)
0.163343 + 0.986569i \(0.447772\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) 24.0000 0.781548
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) −16.0000 −0.520205
\(947\) 44.0000 1.42981 0.714904 0.699223i \(-0.246470\pi\)
0.714904 + 0.699223i \(0.246470\pi\)
\(948\) 0 0
\(949\) −36.0000 −1.16861
\(950\) −4.00000 −0.129777
\(951\) 0 0
\(952\) 0 0
\(953\) 30.0000 0.971795 0.485898 0.874016i \(-0.338493\pi\)
0.485898 + 0.874016i \(0.338493\pi\)
\(954\) 0 0
\(955\) −4.00000 −0.129437
\(956\) 0 0
\(957\) 0 0
\(958\) −36.0000 −1.16311
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) −12.0000 −0.386896
\(963\) 0 0
\(964\) −14.0000 −0.450910
\(965\) −22.0000 −0.708205
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) 5.00000 0.160706
\(969\) 0 0
\(970\) −14.0000 −0.449513
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −40.0000 −1.28168
\(975\) 0 0
\(976\) −6.00000 −0.192055
\(977\) −22.0000 −0.703842 −0.351921 0.936030i \(-0.614471\pi\)
−0.351921 + 0.936030i \(0.614471\pi\)
\(978\) 0 0
\(979\) 72.0000 2.30113
\(980\) −7.00000 −0.223607
\(981\) 0 0
\(982\) −20.0000 −0.638226
\(983\) 4.00000 0.127580 0.0637901 0.997963i \(-0.479681\pi\)
0.0637901 + 0.997963i \(0.479681\pi\)
\(984\) 0 0
\(985\) −2.00000 −0.0637253
\(986\) 4.00000 0.127386
\(987\) 0 0
\(988\) −24.0000 −0.763542
\(989\) −16.0000 −0.508770
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) −1.00000 −0.0317500
\(993\) 0 0
\(994\) 0 0
\(995\) 16.0000 0.507234
\(996\) 0 0
\(997\) 26.0000 0.823428 0.411714 0.911313i \(-0.364930\pi\)
0.411714 + 0.911313i \(0.364930\pi\)
\(998\) 16.0000 0.506471
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2790.2.a.ba.1.1 1
3.2 odd 2 930.2.a.b.1.1 1
12.11 even 2 7440.2.a.q.1.1 1
15.2 even 4 4650.2.d.o.3349.1 2
15.8 even 4 4650.2.d.o.3349.2 2
15.14 odd 2 4650.2.a.bp.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
930.2.a.b.1.1 1 3.2 odd 2
2790.2.a.ba.1.1 1 1.1 even 1 trivial
4650.2.a.bp.1.1 1 15.14 odd 2
4650.2.d.o.3349.1 2 15.2 even 4
4650.2.d.o.3349.2 2 15.8 even 4
7440.2.a.q.1.1 1 12.11 even 2