Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2790))\).
|
Total |
New |
Old |
Modular forms
| 211200 |
50054 |
161146 |
Cusp forms
| 203521 |
50054 |
153467 |
Eisenstein series
| 7679 |
0 |
7679 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2790))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label |
\(\chi\) |
Newforms |
Dimension |
\(\chi\) degree |
2790.2.a |
\(\chi_{2790}(1, \cdot)\) |
2790.2.a.a |
1 |
1 |
2790.2.a.b |
1 |
2790.2.a.c |
1 |
2790.2.a.d |
1 |
2790.2.a.e |
1 |
2790.2.a.f |
1 |
2790.2.a.g |
1 |
2790.2.a.h |
1 |
2790.2.a.i |
1 |
2790.2.a.j |
1 |
2790.2.a.k |
1 |
2790.2.a.l |
1 |
2790.2.a.m |
1 |
2790.2.a.n |
1 |
2790.2.a.o |
1 |
2790.2.a.p |
1 |
2790.2.a.q |
1 |
2790.2.a.r |
1 |
2790.2.a.s |
1 |
2790.2.a.t |
1 |
2790.2.a.u |
1 |
2790.2.a.v |
1 |
2790.2.a.w |
1 |
2790.2.a.x |
1 |
2790.2.a.y |
1 |
2790.2.a.z |
1 |
2790.2.a.ba |
1 |
2790.2.a.bb |
1 |
2790.2.a.bc |
1 |
2790.2.a.bd |
2 |
2790.2.a.be |
2 |
2790.2.a.bf |
2 |
2790.2.a.bg |
2 |
2790.2.a.bh |
2 |
2790.2.a.bi |
3 |
2790.2.a.bj |
4 |
2790.2.a.bk |
4 |
2790.2.d |
\(\chi_{2790}(559, \cdot)\) |
2790.2.d.a |
2 |
1 |
2790.2.d.b |
2 |
2790.2.d.c |
2 |
2790.2.d.d |
2 |
2790.2.d.e |
2 |
2790.2.d.f |
2 |
2790.2.d.g |
2 |
2790.2.d.h |
2 |
2790.2.d.i |
4 |
2790.2.d.j |
6 |
2790.2.d.k |
6 |
2790.2.d.l |
8 |
2790.2.d.m |
8 |
2790.2.d.n |
12 |
2790.2.d.o |
16 |
2790.2.e |
\(\chi_{2790}(2789, \cdot)\) |
2790.2.e.a |
32 |
1 |
2790.2.e.b |
32 |
2790.2.h |
\(\chi_{2790}(2231, \cdot)\) |
2790.2.h.a |
24 |
1 |
2790.2.h.b |
24 |
2790.2.i |
\(\chi_{2790}(811, \cdot)\) |
n/a |
104 |
2 |
2790.2.j |
\(\chi_{2790}(931, \cdot)\) |
n/a |
240 |
2 |
2790.2.k |
\(\chi_{2790}(211, \cdot)\) |
n/a |
256 |
2 |
2790.2.l |
\(\chi_{2790}(1141, \cdot)\) |
n/a |
256 |
2 |
2790.2.m |
\(\chi_{2790}(683, \cdot)\) |
n/a |
120 |
2 |
2790.2.n |
\(\chi_{2790}(433, \cdot)\) |
n/a |
160 |
2 |
2790.2.q |
\(\chi_{2790}(721, \cdot)\) |
n/a |
224 |
4 |
2790.2.r |
\(\chi_{2790}(1699, \cdot)\) |
n/a |
384 |
2 |
2790.2.s |
\(\chi_{2790}(1049, \cdot)\) |
n/a |
384 |
2 |
2790.2.x |
\(\chi_{2790}(161, \cdot)\) |
2790.2.x.a |
40 |
2 |
2790.2.x.b |
40 |
2790.2.y |
\(\chi_{2790}(371, \cdot)\) |
n/a |
256 |
2 |
2790.2.bd |
\(\chi_{2790}(2021, \cdot)\) |
n/a |
256 |
2 |
2790.2.bg |
\(\chi_{2790}(929, \cdot)\) |
n/a |
384 |
2 |
2790.2.bh |
\(\chi_{2790}(719, \cdot)\) |
n/a |
128 |
2 |
2790.2.bi |
\(\chi_{2790}(1489, \cdot)\) |
n/a |
360 |
2 |
2790.2.bj |
\(\chi_{2790}(1369, \cdot)\) |
n/a |
160 |
2 |
2790.2.bo |
\(\chi_{2790}(119, \cdot)\) |
n/a |
384 |
2 |
2790.2.bp |
\(\chi_{2790}(439, \cdot)\) |
n/a |
384 |
2 |
2790.2.bq |
\(\chi_{2790}(491, \cdot)\) |
n/a |
256 |
2 |
2790.2.bt |
\(\chi_{2790}(1331, \cdot)\) |
n/a |
192 |
4 |
2790.2.bw |
\(\chi_{2790}(89, \cdot)\) |
n/a |
256 |
4 |
2790.2.bx |
\(\chi_{2790}(109, \cdot)\) |
n/a |
320 |
4 |
2790.2.ca |
\(\chi_{2790}(367, \cdot)\) |
n/a |
768 |
4 |
2790.2.cb |
\(\chi_{2790}(707, \cdot)\) |
n/a |
768 |
4 |
2790.2.ci |
\(\chi_{2790}(247, \cdot)\) |
n/a |
768 |
4 |
2790.2.cj |
\(\chi_{2790}(497, \cdot)\) |
n/a |
720 |
4 |
2790.2.ck |
\(\chi_{2790}(563, \cdot)\) |
n/a |
768 |
4 |
2790.2.cl |
\(\chi_{2790}(223, \cdot)\) |
n/a |
768 |
4 |
2790.2.cm |
\(\chi_{2790}(37, \cdot)\) |
n/a |
320 |
4 |
2790.2.cn |
\(\chi_{2790}(377, \cdot)\) |
n/a |
256 |
4 |
2790.2.cq |
\(\chi_{2790}(661, \cdot)\) |
n/a |
1024 |
8 |
2790.2.cr |
\(\chi_{2790}(121, \cdot)\) |
n/a |
1024 |
8 |
2790.2.cs |
\(\chi_{2790}(481, \cdot)\) |
n/a |
1024 |
8 |
2790.2.ct |
\(\chi_{2790}(361, \cdot)\) |
n/a |
416 |
8 |
2790.2.cw |
\(\chi_{2790}(523, \cdot)\) |
n/a |
640 |
8 |
2790.2.cx |
\(\chi_{2790}(233, \cdot)\) |
n/a |
512 |
8 |
2790.2.da |
\(\chi_{2790}(551, \cdot)\) |
n/a |
1024 |
8 |
2790.2.db |
\(\chi_{2790}(679, \cdot)\) |
n/a |
1536 |
8 |
2790.2.dc |
\(\chi_{2790}(569, \cdot)\) |
n/a |
1536 |
8 |
2790.2.dh |
\(\chi_{2790}(19, \cdot)\) |
n/a |
640 |
8 |
2790.2.di |
\(\chi_{2790}(349, \cdot)\) |
n/a |
1536 |
8 |
2790.2.dj |
\(\chi_{2790}(179, \cdot)\) |
n/a |
512 |
8 |
2790.2.dk |
\(\chi_{2790}(29, \cdot)\) |
n/a |
1536 |
8 |
2790.2.dn |
\(\chi_{2790}(11, \cdot)\) |
n/a |
1024 |
8 |
2790.2.ds |
\(\chi_{2790}(401, \cdot)\) |
n/a |
1024 |
8 |
2790.2.dt |
\(\chi_{2790}(251, \cdot)\) |
n/a |
320 |
8 |
2790.2.dy |
\(\chi_{2790}(239, \cdot)\) |
n/a |
1536 |
8 |
2790.2.dz |
\(\chi_{2790}(49, \cdot)\) |
n/a |
1536 |
8 |
2790.2.ec |
\(\chi_{2790}(107, \cdot)\) |
n/a |
1024 |
16 |
2790.2.ed |
\(\chi_{2790}(73, \cdot)\) |
n/a |
1280 |
16 |
2790.2.ee |
\(\chi_{2790}(13, \cdot)\) |
n/a |
3072 |
16 |
2790.2.ef |
\(\chi_{2790}(113, \cdot)\) |
n/a |
3072 |
16 |
2790.2.eg |
\(\chi_{2790}(47, \cdot)\) |
n/a |
3072 |
16 |
2790.2.eh |
\(\chi_{2790}(277, \cdot)\) |
n/a |
3072 |
16 |
2790.2.eo |
\(\chi_{2790}(173, \cdot)\) |
n/a |
3072 |
16 |
2790.2.ep |
\(\chi_{2790}(427, \cdot)\) |
n/a |
3072 |
16 |
"n/a" means that newforms for that character have not been added to the database yet