Learn more

Refine search


Results (1-50 of 60 matches)

Next   Download to        
Label Char Prim Dim $A$ Field CM Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2790.2.a.a 2790.a 1.a $1$ $22.278$ \(\Q\) None \(-1\) \(0\) \(-1\) \(-3\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-3q^{7}-q^{8}+q^{10}+\cdots\)
2790.2.a.b 2790.a 1.a $1$ $22.278$ \(\Q\) None \(-1\) \(0\) \(-1\) \(0\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}+2q^{11}+\cdots\)
2790.2.a.c 2790.a 1.a $1$ $22.278$ \(\Q\) None \(-1\) \(0\) \(-1\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}+4q^{11}+\cdots\)
2790.2.a.d 2790.a 1.a $1$ $22.278$ \(\Q\) None \(-1\) \(0\) \(1\) \(-5\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-5q^{7}-q^{8}-q^{10}+\cdots\)
2790.2.a.e 2790.a 1.a $1$ $22.278$ \(\Q\) None \(-1\) \(0\) \(1\) \(-4\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-4q^{7}-q^{8}-q^{10}+\cdots\)
2790.2.a.f 2790.a 1.a $1$ $22.278$ \(\Q\) None \(-1\) \(0\) \(1\) \(-2\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-2q^{7}-q^{8}-q^{10}+\cdots\)
2790.2.a.g 2790.a 1.a $1$ $22.278$ \(\Q\) None \(-1\) \(0\) \(1\) \(-1\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\)
2790.2.a.h 2790.a 1.a $1$ $22.278$ \(\Q\) None \(-1\) \(0\) \(1\) \(0\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-q^{8}-q^{10}-2q^{11}+\cdots\)
2790.2.a.i 2790.a 1.a $1$ $22.278$ \(\Q\) None \(-1\) \(0\) \(1\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-q^{8}-q^{10}+4q^{11}+\cdots\)
2790.2.a.j 2790.a 1.a $1$ $22.278$ \(\Q\) None \(-1\) \(0\) \(1\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-q^{8}-q^{10}+6q^{11}+\cdots\)
2790.2.a.k 2790.a 1.a $1$ $22.278$ \(\Q\) None \(-1\) \(0\) \(1\) \(2\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+2q^{7}-q^{8}-q^{10}+\cdots\)
2790.2.a.l 2790.a 1.a $1$ $22.278$ \(\Q\) None \(-1\) \(0\) \(1\) \(3\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+3q^{7}-q^{8}-q^{10}+\cdots\)
2790.2.a.m 2790.a 1.a $1$ $22.278$ \(\Q\) None \(-1\) \(0\) \(1\) \(4\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+4q^{7}-q^{8}-q^{10}+\cdots\)
2790.2.a.n 2790.a 1.a $1$ $22.278$ \(\Q\) None \(1\) \(0\) \(-1\) \(-5\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-5q^{7}+q^{8}-q^{10}+\cdots\)
2790.2.a.o 2790.a 1.a $1$ $22.278$ \(\Q\) None \(1\) \(0\) \(-1\) \(-4\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-4q^{7}+q^{8}-q^{10}+\cdots\)
2790.2.a.p 2790.a 1.a $1$ $22.278$ \(\Q\) None \(1\) \(0\) \(-1\) \(-2\) $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-2q^{7}+q^{8}-q^{10}+\cdots\)
2790.2.a.q 2790.a 1.a $1$ $22.278$ \(\Q\) None \(1\) \(0\) \(-1\) \(-1\) $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-q^{7}+q^{8}-q^{10}+\cdots\)
2790.2.a.r 2790.a 1.a $1$ $22.278$ \(\Q\) None \(1\) \(0\) \(-1\) \(-1\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-q^{7}+q^{8}-q^{10}+\cdots\)
2790.2.a.s 2790.a 1.a $1$ $22.278$ \(\Q\) None \(1\) \(0\) \(-1\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}+q^{8}-q^{10}-4q^{11}+\cdots\)
2790.2.a.t 2790.a 1.a $1$ $22.278$ \(\Q\) None \(1\) \(0\) \(-1\) \(2\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}+2q^{7}+q^{8}-q^{10}+\cdots\)
2790.2.a.u 2790.a 1.a $1$ $22.278$ \(\Q\) None \(1\) \(0\) \(-1\) \(3\) $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}+3q^{7}+q^{8}-q^{10}+\cdots\)
2790.2.a.v 2790.a 1.a $1$ $22.278$ \(\Q\) None \(1\) \(0\) \(-1\) \(4\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}+4q^{7}+q^{8}-q^{10}+\cdots\)
2790.2.a.w 2790.a 1.a $1$ $22.278$ \(\Q\) None \(1\) \(0\) \(-1\) \(4\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}+4q^{7}+q^{8}-q^{10}+\cdots\)
2790.2.a.x 2790.a 1.a $1$ $22.278$ \(\Q\) None \(1\) \(0\) \(1\) \(-3\) $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}-3q^{7}+q^{8}+q^{10}+\cdots\)
2790.2.a.y 2790.a 1.a $1$ $22.278$ \(\Q\) None \(1\) \(0\) \(1\) \(-3\) $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}-3q^{7}+q^{8}+q^{10}+\cdots\)
2790.2.a.z 2790.a 1.a $1$ $22.278$ \(\Q\) None \(1\) \(0\) \(1\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}-2q^{11}+\cdots\)
2790.2.a.ba 2790.a 1.a $1$ $22.278$ \(\Q\) None \(1\) \(0\) \(1\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}+4q^{11}+\cdots\)
2790.2.a.bb 2790.a 1.a $1$ $22.278$ \(\Q\) None \(1\) \(0\) \(1\) \(1\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+q^{7}+q^{8}+q^{10}+\cdots\)
2790.2.a.bc 2790.a 1.a $1$ $22.278$ \(\Q\) None \(1\) \(0\) \(1\) \(4\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+4q^{7}+q^{8}+q^{10}+\cdots\)
2790.2.a.bd 2790.a 1.a $2$ $22.278$ \(\Q(\sqrt{33}) \) None \(-2\) \(0\) \(-2\) \(1\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}+\beta q^{7}-q^{8}+q^{10}+\cdots\)
2790.2.a.be 2790.a 1.a $2$ $22.278$ \(\Q(\sqrt{17}) \) None \(-2\) \(0\) \(-2\) \(1\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}+\beta q^{7}-q^{8}+q^{10}+\cdots\)
2790.2.a.bf 2790.a 1.a $2$ $22.278$ \(\Q(\sqrt{65}) \) None \(-2\) \(0\) \(2\) \(-1\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-\beta q^{7}-q^{8}-q^{10}+\cdots\)
2790.2.a.bg 2790.a 1.a $2$ $22.278$ \(\Q(\sqrt{6}) \) None \(2\) \(0\) \(-2\) \(-4\) $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-2q^{7}+q^{8}-q^{10}+\cdots\)
2790.2.a.bh 2790.a 1.a $2$ $22.278$ \(\Q(\sqrt{3}) \) None \(2\) \(0\) \(2\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+2\beta q^{7}+q^{8}+q^{10}+\cdots\)
2790.2.a.bi 2790.a 1.a $3$ $22.278$ 3.3.148.1 None \(-3\) \(0\) \(-3\) \(0\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}+(\beta _{1}-\beta _{2})q^{7}-q^{8}+\cdots\)
2790.2.a.bj 2790.a 1.a $4$ $22.278$ 4.4.17428.1 None \(-4\) \(0\) \(-4\) \(5\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}+(1-\beta _{2})q^{7}-q^{8}+\cdots\)
2790.2.a.bk 2790.a 1.a $4$ $22.278$ 4.4.17428.1 None \(4\) \(0\) \(4\) \(5\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+(1-\beta _{2})q^{7}+q^{8}+\cdots\)
2790.2.d.a 2790.d 5.b $2$ $22.278$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-q^{4}+(-2+i)q^{5}+2iq^{7}+\cdots\)
2790.2.d.b 2790.d 5.b $2$ $22.278$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-q^{4}+(-2+i)q^{5}+2iq^{7}+\cdots\)
2790.2.d.c 2790.d 5.b $2$ $22.278$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}-q^{4}+(-2-i)q^{5}+2iq^{7}+\cdots\)
2790.2.d.d 2790.d 5.b $2$ $22.278$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-q^{4}+(-2-i)q^{5}+2iq^{7}+\cdots\)
2790.2.d.e 2790.d 5.b $2$ $22.278$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-q^{4}+(-1-2i)q^{5}+5iq^{7}+\cdots\)
2790.2.d.f 2790.d 5.b $2$ $22.278$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}-q^{4}+(1-2i)q^{5}+iq^{7}+iq^{8}+\cdots\)
2790.2.d.g 2790.d 5.b $2$ $22.278$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}-q^{4}+(1+2i)q^{5}+iq^{7}+iq^{8}+\cdots\)
2790.2.d.h 2790.d 5.b $2$ $22.278$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}-q^{4}+(2-i)q^{5}+2iq^{7}+iq^{8}+\cdots\)
2790.2.d.i 2790.d 5.b $4$ $22.278$ \(\Q(\zeta_{8})\) None \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\zeta_{8}q^{2}-q^{4}+(-2-\zeta_{8})q^{5}+(2\zeta_{8}+\cdots)q^{7}+\cdots\)
2790.2.d.j 2790.d 5.b $6$ $22.278$ 6.0.11669056.1 None \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{2}-q^{4}+(1-\beta _{1})q^{5}+2\beta _{3}q^{7}+\cdots\)
2790.2.d.k 2790.d 5.b $6$ $22.278$ 6.0.3534400.1 None \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{2}-q^{4}+(1-\beta _{4})q^{5}+(\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)
2790.2.d.l 2790.d 5.b $8$ $22.278$ 8.0.2058981376.2 None \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{2}-q^{4}+(1+\beta _{1}-\beta _{7})q^{5}+(\beta _{2}+\cdots)q^{7}+\cdots\)
2790.2.d.m 2790.d 5.b $8$ $22.278$ 8.0.619810816.2 None \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}-q^{4}+(\beta _{6}+\beta _{7})q^{5}+(\beta _{1}-2\beta _{2}+\cdots)q^{7}+\cdots\)
Next   Download to