Properties

Label 279.2.i.a.163.1
Level $279$
Weight $2$
Character 279.163
Analytic conductor $2.228$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [279,2,Mod(64,279)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(279, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("279.64"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 279 = 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 279.i (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.22782621639\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 163.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 279.163
Dual form 279.2.i.a.190.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.190983 - 0.587785i) q^{2} +(1.30902 + 0.951057i) q^{4} +2.61803 q^{5} +(-2.42705 - 1.76336i) q^{7} +(1.80902 - 1.31433i) q^{8} +(0.500000 - 1.53884i) q^{10} +(-0.618034 - 0.449028i) q^{11} +(1.50000 + 4.61653i) q^{13} +(-1.50000 + 1.08981i) q^{14} +(0.572949 + 1.76336i) q^{16} +(0.190983 - 0.138757i) q^{17} +(1.54508 - 4.75528i) q^{19} +(3.42705 + 2.48990i) q^{20} +(-0.381966 + 0.277515i) q^{22} +(-4.42705 + 3.21644i) q^{23} +1.85410 q^{25} +3.00000 q^{26} +(-1.50000 - 4.61653i) q^{28} +(2.66312 - 8.19624i) q^{29} +(-5.54508 - 0.502029i) q^{31} +5.61803 q^{32} +(-0.0450850 - 0.138757i) q^{34} +(-6.35410 - 4.61653i) q^{35} +0.236068 q^{37} +(-2.50000 - 1.81636i) q^{38} +(4.73607 - 3.44095i) q^{40} +(-2.00000 + 6.15537i) q^{41} +(-1.42705 + 4.39201i) q^{43} +(-0.381966 - 1.17557i) q^{44} +(1.04508 + 3.21644i) q^{46} +(1.04508 + 3.21644i) q^{47} +(0.618034 + 1.90211i) q^{49} +(0.354102 - 1.08981i) q^{50} +(-2.42705 + 7.46969i) q^{52} +(-10.2812 + 7.46969i) q^{53} +(-1.61803 - 1.17557i) q^{55} -6.70820 q^{56} +(-4.30902 - 3.13068i) q^{58} +(-2.92705 - 9.00854i) q^{59} -6.94427 q^{61} +(-1.35410 + 3.16344i) q^{62} +(-0.0729490 + 0.224514i) q^{64} +(3.92705 + 12.0862i) q^{65} -4.23607 q^{67} +0.381966 q^{68} +(-3.92705 + 2.85317i) q^{70} +(0.0729490 - 0.0530006i) q^{71} +(6.92705 + 5.03280i) q^{73} +(0.0450850 - 0.138757i) q^{74} +(6.54508 - 4.75528i) q^{76} +(0.708204 + 2.17963i) q^{77} +(1.50000 + 4.61653i) q^{80} +(3.23607 + 2.35114i) q^{82} +(1.26393 - 3.88998i) q^{83} +(0.500000 - 0.363271i) q^{85} +(2.30902 + 1.67760i) q^{86} -1.70820 q^{88} +(-5.16312 - 3.75123i) q^{89} +(4.50000 - 13.8496i) q^{91} -8.85410 q^{92} +2.09017 q^{94} +(4.04508 - 12.4495i) q^{95} +(4.28115 + 3.11044i) q^{97} +1.23607 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} + 3 q^{4} + 6 q^{5} - 3 q^{7} + 5 q^{8} + 2 q^{10} + 2 q^{11} + 6 q^{13} - 6 q^{14} + 9 q^{16} + 3 q^{17} - 5 q^{19} + 7 q^{20} - 6 q^{22} - 11 q^{23} - 6 q^{25} + 12 q^{26} - 6 q^{28} - 5 q^{29}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/279\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(218\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.190983 0.587785i 0.135045 0.415627i −0.860552 0.509363i \(-0.829881\pi\)
0.995597 + 0.0937362i \(0.0298810\pi\)
\(3\) 0 0
\(4\) 1.30902 + 0.951057i 0.654508 + 0.475528i
\(5\) 2.61803 1.17082 0.585410 0.810737i \(-0.300933\pi\)
0.585410 + 0.810737i \(0.300933\pi\)
\(6\) 0 0
\(7\) −2.42705 1.76336i −0.917339 0.666486i 0.0255212 0.999674i \(-0.491875\pi\)
−0.942860 + 0.333188i \(0.891875\pi\)
\(8\) 1.80902 1.31433i 0.639584 0.464685i
\(9\) 0 0
\(10\) 0.500000 1.53884i 0.158114 0.486624i
\(11\) −0.618034 0.449028i −0.186344 0.135387i 0.490702 0.871327i \(-0.336740\pi\)
−0.677046 + 0.735940i \(0.736740\pi\)
\(12\) 0 0
\(13\) 1.50000 + 4.61653i 0.416025 + 1.28039i 0.911331 + 0.411675i \(0.135056\pi\)
−0.495306 + 0.868719i \(0.664944\pi\)
\(14\) −1.50000 + 1.08981i −0.400892 + 0.291265i
\(15\) 0 0
\(16\) 0.572949 + 1.76336i 0.143237 + 0.440839i
\(17\) 0.190983 0.138757i 0.0463202 0.0336536i −0.564384 0.825512i \(-0.690886\pi\)
0.610704 + 0.791859i \(0.290886\pi\)
\(18\) 0 0
\(19\) 1.54508 4.75528i 0.354467 1.09094i −0.601851 0.798608i \(-0.705570\pi\)
0.956318 0.292328i \(-0.0944300\pi\)
\(20\) 3.42705 + 2.48990i 0.766312 + 0.556758i
\(21\) 0 0
\(22\) −0.381966 + 0.277515i −0.0814354 + 0.0591663i
\(23\) −4.42705 + 3.21644i −0.923104 + 0.670674i −0.944295 0.329101i \(-0.893254\pi\)
0.0211907 + 0.999775i \(0.493254\pi\)
\(24\) 0 0
\(25\) 1.85410 0.370820
\(26\) 3.00000 0.588348
\(27\) 0 0
\(28\) −1.50000 4.61653i −0.283473 0.872441i
\(29\) 2.66312 8.19624i 0.494529 1.52200i −0.323161 0.946344i \(-0.604746\pi\)
0.817690 0.575659i \(-0.195254\pi\)
\(30\) 0 0
\(31\) −5.54508 0.502029i −0.995927 0.0901670i
\(32\) 5.61803 0.993137
\(33\) 0 0
\(34\) −0.0450850 0.138757i −0.00773201 0.0237967i
\(35\) −6.35410 4.61653i −1.07404 0.780335i
\(36\) 0 0
\(37\) 0.236068 0.0388093 0.0194047 0.999812i \(-0.493823\pi\)
0.0194047 + 0.999812i \(0.493823\pi\)
\(38\) −2.50000 1.81636i −0.405554 0.294652i
\(39\) 0 0
\(40\) 4.73607 3.44095i 0.748838 0.544063i
\(41\) −2.00000 + 6.15537i −0.312348 + 0.961307i 0.664485 + 0.747302i \(0.268651\pi\)
−0.976833 + 0.214005i \(0.931349\pi\)
\(42\) 0 0
\(43\) −1.42705 + 4.39201i −0.217623 + 0.669775i 0.781334 + 0.624113i \(0.214540\pi\)
−0.998957 + 0.0456620i \(0.985460\pi\)
\(44\) −0.381966 1.17557i −0.0575835 0.177224i
\(45\) 0 0
\(46\) 1.04508 + 3.21644i 0.154089 + 0.474238i
\(47\) 1.04508 + 3.21644i 0.152441 + 0.469166i 0.997893 0.0648863i \(-0.0206685\pi\)
−0.845451 + 0.534052i \(0.820668\pi\)
\(48\) 0 0
\(49\) 0.618034 + 1.90211i 0.0882906 + 0.271730i
\(50\) 0.354102 1.08981i 0.0500776 0.154123i
\(51\) 0 0
\(52\) −2.42705 + 7.46969i −0.336571 + 1.03586i
\(53\) −10.2812 + 7.46969i −1.41222 + 1.02604i −0.419231 + 0.907880i \(0.637700\pi\)
−0.992994 + 0.118162i \(0.962300\pi\)
\(54\) 0 0
\(55\) −1.61803 1.17557i −0.218176 0.158514i
\(56\) −6.70820 −0.896421
\(57\) 0 0
\(58\) −4.30902 3.13068i −0.565802 0.411079i
\(59\) −2.92705 9.00854i −0.381070 1.17281i −0.939292 0.343120i \(-0.888516\pi\)
0.558222 0.829692i \(-0.311484\pi\)
\(60\) 0 0
\(61\) −6.94427 −0.889123 −0.444561 0.895748i \(-0.646640\pi\)
−0.444561 + 0.895748i \(0.646640\pi\)
\(62\) −1.35410 + 3.16344i −0.171971 + 0.401757i
\(63\) 0 0
\(64\) −0.0729490 + 0.224514i −0.00911863 + 0.0280642i
\(65\) 3.92705 + 12.0862i 0.487091 + 1.49911i
\(66\) 0 0
\(67\) −4.23607 −0.517518 −0.258759 0.965942i \(-0.583314\pi\)
−0.258759 + 0.965942i \(0.583314\pi\)
\(68\) 0.381966 0.0463202
\(69\) 0 0
\(70\) −3.92705 + 2.85317i −0.469372 + 0.341019i
\(71\) 0.0729490 0.0530006i 0.00865746 0.00629001i −0.583448 0.812150i \(-0.698297\pi\)
0.592106 + 0.805860i \(0.298297\pi\)
\(72\) 0 0
\(73\) 6.92705 + 5.03280i 0.810750 + 0.589044i 0.914048 0.405606i \(-0.132940\pi\)
−0.103298 + 0.994650i \(0.532940\pi\)
\(74\) 0.0450850 0.138757i 0.00524102 0.0161302i
\(75\) 0 0
\(76\) 6.54508 4.75528i 0.750773 0.545468i
\(77\) 0.708204 + 2.17963i 0.0807073 + 0.248392i
\(78\) 0 0
\(79\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(80\) 1.50000 + 4.61653i 0.167705 + 0.516143i
\(81\) 0 0
\(82\) 3.23607 + 2.35114i 0.357364 + 0.259640i
\(83\) 1.26393 3.88998i 0.138735 0.426981i −0.857418 0.514621i \(-0.827933\pi\)
0.996152 + 0.0876401i \(0.0279326\pi\)
\(84\) 0 0
\(85\) 0.500000 0.363271i 0.0542326 0.0394023i
\(86\) 2.30902 + 1.67760i 0.248988 + 0.180900i
\(87\) 0 0
\(88\) −1.70820 −0.182095
\(89\) −5.16312 3.75123i −0.547290 0.397629i 0.279496 0.960147i \(-0.409833\pi\)
−0.826785 + 0.562518i \(0.809833\pi\)
\(90\) 0 0
\(91\) 4.50000 13.8496i 0.471728 1.45183i
\(92\) −8.85410 −0.923104
\(93\) 0 0
\(94\) 2.09017 0.215585
\(95\) 4.04508 12.4495i 0.415017 1.27729i
\(96\) 0 0
\(97\) 4.28115 + 3.11044i 0.434685 + 0.315817i 0.783520 0.621367i \(-0.213422\pi\)
−0.348834 + 0.937184i \(0.613422\pi\)
\(98\) 1.23607 0.124862
\(99\) 0 0
\(100\) 2.42705 + 1.76336i 0.242705 + 0.176336i
\(101\) 3.85410 2.80017i 0.383497 0.278627i −0.379288 0.925279i \(-0.623831\pi\)
0.762786 + 0.646651i \(0.223831\pi\)
\(102\) 0 0
\(103\) −0.0450850 + 0.138757i −0.00444235 + 0.0136722i −0.953253 0.302173i \(-0.902288\pi\)
0.948811 + 0.315845i \(0.102288\pi\)
\(104\) 8.78115 + 6.37988i 0.861063 + 0.625599i
\(105\) 0 0
\(106\) 2.42705 + 7.46969i 0.235736 + 0.725521i
\(107\) 0.881966 0.640786i 0.0852629 0.0619471i −0.544337 0.838867i \(-0.683219\pi\)
0.629600 + 0.776919i \(0.283219\pi\)
\(108\) 0 0
\(109\) −2.60081 8.00448i −0.249113 0.766690i −0.994933 0.100543i \(-0.967942\pi\)
0.745820 0.666147i \(-0.232058\pi\)
\(110\) −1.00000 + 0.726543i −0.0953463 + 0.0692731i
\(111\) 0 0
\(112\) 1.71885 5.29007i 0.162416 0.499864i
\(113\) −1.50000 1.08981i −0.141108 0.102521i 0.514992 0.857195i \(-0.327795\pi\)
−0.656100 + 0.754674i \(0.727795\pi\)
\(114\) 0 0
\(115\) −11.5902 + 8.42075i −1.08079 + 0.785239i
\(116\) 11.2812 8.19624i 1.04743 0.761002i
\(117\) 0 0
\(118\) −5.85410 −0.538914
\(119\) −0.708204 −0.0649209
\(120\) 0 0
\(121\) −3.21885 9.90659i −0.292622 0.900599i
\(122\) −1.32624 + 4.08174i −0.120072 + 0.369543i
\(123\) 0 0
\(124\) −6.78115 5.93085i −0.608966 0.532606i
\(125\) −8.23607 −0.736656
\(126\) 0 0
\(127\) 3.16312 + 9.73508i 0.280681 + 0.863849i 0.987660 + 0.156614i \(0.0500577\pi\)
−0.706979 + 0.707235i \(0.749942\pi\)
\(128\) 9.20820 + 6.69015i 0.813898 + 0.591331i
\(129\) 0 0
\(130\) 7.85410 0.688850
\(131\) 0.0729490 + 0.0530006i 0.00637359 + 0.00463068i 0.590967 0.806695i \(-0.298746\pi\)
−0.584594 + 0.811326i \(0.698746\pi\)
\(132\) 0 0
\(133\) −12.1353 + 8.81678i −1.05226 + 0.764512i
\(134\) −0.809017 + 2.48990i −0.0698884 + 0.215094i
\(135\) 0 0
\(136\) 0.163119 0.502029i 0.0139873 0.0430486i
\(137\) 2.00000 + 6.15537i 0.170872 + 0.525888i 0.999421 0.0340275i \(-0.0108334\pi\)
−0.828549 + 0.559916i \(0.810833\pi\)
\(138\) 0 0
\(139\) 1.80902 + 5.56758i 0.153439 + 0.472236i 0.997999 0.0632239i \(-0.0201382\pi\)
−0.844561 + 0.535460i \(0.820138\pi\)
\(140\) −3.92705 12.0862i −0.331896 1.02147i
\(141\) 0 0
\(142\) −0.0172209 0.0530006i −0.00144515 0.00444771i
\(143\) 1.14590 3.52671i 0.0958248 0.294918i
\(144\) 0 0
\(145\) 6.97214 21.4580i 0.579004 1.78199i
\(146\) 4.28115 3.11044i 0.354311 0.257422i
\(147\) 0 0
\(148\) 0.309017 + 0.224514i 0.0254010 + 0.0184549i
\(149\) 17.0344 1.39552 0.697758 0.716334i \(-0.254181\pi\)
0.697758 + 0.716334i \(0.254181\pi\)
\(150\) 0 0
\(151\) 15.7812 + 11.4657i 1.28425 + 0.933064i 0.999673 0.0255888i \(-0.00814604\pi\)
0.284579 + 0.958652i \(0.408146\pi\)
\(152\) −3.45492 10.6331i −0.280231 0.862461i
\(153\) 0 0
\(154\) 1.41641 0.114137
\(155\) −14.5172 1.31433i −1.16605 0.105569i
\(156\) 0 0
\(157\) 3.00000 9.23305i 0.239426 0.736878i −0.757077 0.653325i \(-0.773373\pi\)
0.996503 0.0835524i \(-0.0266266\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 14.7082 1.16279
\(161\) 16.4164 1.29379
\(162\) 0 0
\(163\) 10.2812 7.46969i 0.805282 0.585072i −0.107177 0.994240i \(-0.534181\pi\)
0.912459 + 0.409168i \(0.134181\pi\)
\(164\) −8.47214 + 6.15537i −0.661563 + 0.480653i
\(165\) 0 0
\(166\) −2.04508 1.48584i −0.158729 0.115324i
\(167\) 2.85410 8.78402i 0.220857 0.679728i −0.777829 0.628476i \(-0.783679\pi\)
0.998686 0.0512518i \(-0.0163211\pi\)
\(168\) 0 0
\(169\) −8.54508 + 6.20837i −0.657314 + 0.477567i
\(170\) −0.118034 0.363271i −0.00905279 0.0278616i
\(171\) 0 0
\(172\) −6.04508 + 4.39201i −0.460933 + 0.334888i
\(173\) −0.281153 0.865300i −0.0213757 0.0657875i 0.939800 0.341726i \(-0.111011\pi\)
−0.961175 + 0.275938i \(0.911011\pi\)
\(174\) 0 0
\(175\) −4.50000 3.26944i −0.340168 0.247147i
\(176\) 0.437694 1.34708i 0.0329924 0.101540i
\(177\) 0 0
\(178\) −3.19098 + 2.31838i −0.239174 + 0.173770i
\(179\) 16.0172 + 11.6372i 1.19718 + 0.869805i 0.994005 0.109337i \(-0.0348728\pi\)
0.203179 + 0.979142i \(0.434873\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) −7.28115 5.29007i −0.539715 0.392126i
\(183\) 0 0
\(184\) −3.78115 + 11.6372i −0.278750 + 0.857905i
\(185\) 0.618034 0.0454388
\(186\) 0 0
\(187\) −0.180340 −0.0131878
\(188\) −1.69098 + 5.20431i −0.123328 + 0.379563i
\(189\) 0 0
\(190\) −6.54508 4.75528i −0.474830 0.344984i
\(191\) 16.0902 1.16424 0.582122 0.813102i \(-0.302223\pi\)
0.582122 + 0.813102i \(0.302223\pi\)
\(192\) 0 0
\(193\) 1.92705 + 1.40008i 0.138712 + 0.100780i 0.654977 0.755648i \(-0.272678\pi\)
−0.516265 + 0.856429i \(0.672678\pi\)
\(194\) 2.64590 1.92236i 0.189964 0.138017i
\(195\) 0 0
\(196\) −1.00000 + 3.07768i −0.0714286 + 0.219835i
\(197\) 13.2812 + 9.64932i 0.946243 + 0.687486i 0.949915 0.312507i \(-0.101169\pi\)
−0.00367232 + 0.999993i \(0.501169\pi\)
\(198\) 0 0
\(199\) −8.25329 25.4010i −0.585060 1.80063i −0.599029 0.800728i \(-0.704446\pi\)
0.0139686 0.999902i \(-0.495554\pi\)
\(200\) 3.35410 2.43690i 0.237171 0.172315i
\(201\) 0 0
\(202\) −0.909830 2.80017i −0.0640154 0.197019i
\(203\) −20.9164 + 15.1967i −1.46804 + 1.06660i
\(204\) 0 0
\(205\) −5.23607 + 16.1150i −0.365703 + 1.12552i
\(206\) 0.0729490 + 0.0530006i 0.00508260 + 0.00369272i
\(207\) 0 0
\(208\) −7.28115 + 5.29007i −0.504857 + 0.366800i
\(209\) −3.09017 + 2.24514i −0.213752 + 0.155300i
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) −20.5623 −1.41222
\(213\) 0 0
\(214\) −0.208204 0.640786i −0.0142325 0.0438032i
\(215\) −3.73607 + 11.4984i −0.254798 + 0.784187i
\(216\) 0 0
\(217\) 12.5729 + 10.9964i 0.853507 + 0.746485i
\(218\) −5.20163 −0.352299
\(219\) 0 0
\(220\) −1.00000 3.07768i −0.0674200 0.207497i
\(221\) 0.927051 + 0.673542i 0.0623602 + 0.0453073i
\(222\) 0 0
\(223\) 0.708204 0.0474248 0.0237124 0.999719i \(-0.492451\pi\)
0.0237124 + 0.999719i \(0.492451\pi\)
\(224\) −13.6353 9.90659i −0.911044 0.661912i
\(225\) 0 0
\(226\) −0.927051 + 0.673542i −0.0616665 + 0.0448033i
\(227\) 6.40983 19.7274i 0.425435 1.30936i −0.477141 0.878827i \(-0.658327\pi\)
0.902577 0.430529i \(-0.141673\pi\)
\(228\) 0 0
\(229\) −2.23607 + 6.88191i −0.147764 + 0.454769i −0.997356 0.0726703i \(-0.976848\pi\)
0.849592 + 0.527440i \(0.176848\pi\)
\(230\) 2.73607 + 8.42075i 0.180411 + 0.555248i
\(231\) 0 0
\(232\) −5.95492 18.3273i −0.390959 1.20325i
\(233\) −5.80902 17.8783i −0.380561 1.17125i −0.939649 0.342139i \(-0.888849\pi\)
0.559088 0.829108i \(-0.311151\pi\)
\(234\) 0 0
\(235\) 2.73607 + 8.42075i 0.178481 + 0.549309i
\(236\) 4.73607 14.5761i 0.308292 0.948824i
\(237\) 0 0
\(238\) −0.135255 + 0.416272i −0.00876727 + 0.0269829i
\(239\) −10.8541 + 7.88597i −0.702093 + 0.510101i −0.880613 0.473836i \(-0.842869\pi\)
0.178520 + 0.983936i \(0.442869\pi\)
\(240\) 0 0
\(241\) 6.89919 + 5.01255i 0.444416 + 0.322887i 0.787387 0.616459i \(-0.211433\pi\)
−0.342971 + 0.939346i \(0.611433\pi\)
\(242\) −6.43769 −0.413831
\(243\) 0 0
\(244\) −9.09017 6.60440i −0.581938 0.422803i
\(245\) 1.61803 + 4.97980i 0.103372 + 0.318148i
\(246\) 0 0
\(247\) 24.2705 1.54430
\(248\) −10.6910 + 6.37988i −0.678878 + 0.405123i
\(249\) 0 0
\(250\) −1.57295 + 4.84104i −0.0994820 + 0.306174i
\(251\) −0.291796 0.898056i −0.0184180 0.0566848i 0.941425 0.337222i \(-0.109487\pi\)
−0.959843 + 0.280537i \(0.909487\pi\)
\(252\) 0 0
\(253\) 4.18034 0.262816
\(254\) 6.32624 0.396943
\(255\) 0 0
\(256\) 5.30902 3.85723i 0.331814 0.241077i
\(257\) 1.14590 0.832544i 0.0714792 0.0519326i −0.551472 0.834194i \(-0.685934\pi\)
0.622951 + 0.782261i \(0.285934\pi\)
\(258\) 0 0
\(259\) −0.572949 0.416272i −0.0356013 0.0258659i
\(260\) −6.35410 + 19.5559i −0.394065 + 1.21281i
\(261\) 0 0
\(262\) 0.0450850 0.0327561i 0.00278536 0.00202368i
\(263\) 3.33688 + 10.2699i 0.205761 + 0.633267i 0.999681 + 0.0252452i \(0.00803665\pi\)
−0.793920 + 0.608022i \(0.791963\pi\)
\(264\) 0 0
\(265\) −26.9164 + 19.5559i −1.65346 + 1.20131i
\(266\) 2.86475 + 8.81678i 0.175649 + 0.540591i
\(267\) 0 0
\(268\) −5.54508 4.02874i −0.338720 0.246094i
\(269\) 0.427051 1.31433i 0.0260378 0.0801360i −0.937193 0.348811i \(-0.886586\pi\)
0.963231 + 0.268675i \(0.0865856\pi\)
\(270\) 0 0
\(271\) −7.73607 + 5.62058i −0.469933 + 0.341426i −0.797415 0.603431i \(-0.793800\pi\)
0.327482 + 0.944857i \(0.393800\pi\)
\(272\) 0.354102 + 0.257270i 0.0214706 + 0.0155993i
\(273\) 0 0
\(274\) 4.00000 0.241649
\(275\) −1.14590 0.832544i −0.0691003 0.0502043i
\(276\) 0 0
\(277\) 4.11803 12.6740i 0.247429 0.761507i −0.747799 0.663925i \(-0.768889\pi\)
0.995228 0.0975818i \(-0.0311108\pi\)
\(278\) 3.61803 0.216995
\(279\) 0 0
\(280\) −17.5623 −1.04955
\(281\) −5.88197 + 18.1028i −0.350889 + 1.07992i 0.607466 + 0.794345i \(0.292186\pi\)
−0.958355 + 0.285579i \(0.907814\pi\)
\(282\) 0 0
\(283\) −5.30902 3.85723i −0.315588 0.229288i 0.418702 0.908124i \(-0.362485\pi\)
−0.734291 + 0.678835i \(0.762485\pi\)
\(284\) 0.145898 0.00865746
\(285\) 0 0
\(286\) −1.85410 1.34708i −0.109635 0.0796547i
\(287\) 15.7082 11.4127i 0.927226 0.673669i
\(288\) 0 0
\(289\) −5.23607 + 16.1150i −0.308004 + 0.947939i
\(290\) −11.2812 8.19624i −0.662452 0.481300i
\(291\) 0 0
\(292\) 4.28115 + 13.1760i 0.250536 + 0.771069i
\(293\) −6.66312 + 4.84104i −0.389264 + 0.282817i −0.765154 0.643848i \(-0.777337\pi\)
0.375890 + 0.926664i \(0.377337\pi\)
\(294\) 0 0
\(295\) −7.66312 23.5847i −0.446164 1.37315i
\(296\) 0.427051 0.310271i 0.0248218 0.0180341i
\(297\) 0 0
\(298\) 3.25329 10.0126i 0.188458 0.580014i
\(299\) −21.4894 15.6129i −1.24276 0.902919i
\(300\) 0 0
\(301\) 11.2082 8.14324i 0.646030 0.469368i
\(302\) 9.75329 7.08618i 0.561239 0.407764i
\(303\) 0 0
\(304\) 9.27051 0.531700
\(305\) −18.1803 −1.04100
\(306\) 0 0
\(307\) 1.88197 + 5.79210i 0.107409 + 0.330572i 0.990288 0.139028i \(-0.0443979\pi\)
−0.882879 + 0.469601i \(0.844398\pi\)
\(308\) −1.14590 + 3.52671i −0.0652936 + 0.200953i
\(309\) 0 0
\(310\) −3.54508 + 8.28199i −0.201347 + 0.470386i
\(311\) −16.4721 −0.934049 −0.467025 0.884244i \(-0.654674\pi\)
−0.467025 + 0.884244i \(0.654674\pi\)
\(312\) 0 0
\(313\) 0.381966 + 1.17557i 0.0215900 + 0.0664472i 0.961271 0.275605i \(-0.0888781\pi\)
−0.939681 + 0.342052i \(0.888878\pi\)
\(314\) −4.85410 3.52671i −0.273933 0.199024i
\(315\) 0 0
\(316\) 0 0
\(317\) 20.9443 + 15.2169i 1.17635 + 0.854666i 0.991755 0.128149i \(-0.0409035\pi\)
0.184593 + 0.982815i \(0.440903\pi\)
\(318\) 0 0
\(319\) −5.32624 + 3.86974i −0.298212 + 0.216664i
\(320\) −0.190983 + 0.587785i −0.0106763 + 0.0328582i
\(321\) 0 0
\(322\) 3.13525 9.64932i 0.174721 0.537736i
\(323\) −0.364745 1.12257i −0.0202950 0.0624615i
\(324\) 0 0
\(325\) 2.78115 + 8.55951i 0.154271 + 0.474796i
\(326\) −2.42705 7.46969i −0.134422 0.413708i
\(327\) 0 0
\(328\) 4.47214 + 13.7638i 0.246932 + 0.759980i
\(329\) 3.13525 9.64932i 0.172852 0.531984i
\(330\) 0 0
\(331\) 3.48278 10.7189i 0.191431 0.589164i −0.808569 0.588402i \(-0.799757\pi\)
1.00000 0.000762014i \(-0.000242557\pi\)
\(332\) 5.35410 3.88998i 0.293845 0.213491i
\(333\) 0 0
\(334\) −4.61803 3.35520i −0.252688 0.183588i
\(335\) −11.0902 −0.605921
\(336\) 0 0
\(337\) −15.3541 11.1554i −0.836391 0.607674i 0.0849690 0.996384i \(-0.472921\pi\)
−0.921360 + 0.388710i \(0.872921\pi\)
\(338\) 2.01722 + 6.20837i 0.109722 + 0.337691i
\(339\) 0 0
\(340\) 1.00000 0.0542326
\(341\) 3.20163 + 2.80017i 0.173378 + 0.151638i
\(342\) 0 0
\(343\) −4.63525 + 14.2658i −0.250280 + 0.770283i
\(344\) 3.19098 + 9.82084i 0.172046 + 0.529504i
\(345\) 0 0
\(346\) −0.562306 −0.0302298
\(347\) −8.12461 −0.436152 −0.218076 0.975932i \(-0.569978\pi\)
−0.218076 + 0.975932i \(0.569978\pi\)
\(348\) 0 0
\(349\) 13.5172 9.82084i 0.723560 0.525697i −0.163959 0.986467i \(-0.552427\pi\)
0.887520 + 0.460770i \(0.152427\pi\)
\(350\) −2.78115 + 2.02063i −0.148659 + 0.108007i
\(351\) 0 0
\(352\) −3.47214 2.52265i −0.185065 0.134458i
\(353\) 10.0066 30.7971i 0.532596 1.63916i −0.216190 0.976351i \(-0.569363\pi\)
0.748786 0.662812i \(-0.230637\pi\)
\(354\) 0 0
\(355\) 0.190983 0.138757i 0.0101363 0.00736447i
\(356\) −3.19098 9.82084i −0.169122 0.520503i
\(357\) 0 0
\(358\) 9.89919 7.19218i 0.523188 0.380119i
\(359\) 7.82624 + 24.0867i 0.413053 + 1.27125i 0.913981 + 0.405757i \(0.132992\pi\)
−0.500928 + 0.865489i \(0.667008\pi\)
\(360\) 0 0
\(361\) −4.85410 3.52671i −0.255479 0.185616i
\(362\) 3.24671 9.99235i 0.170643 0.525186i
\(363\) 0 0
\(364\) 19.0623 13.8496i 0.999136 0.725915i
\(365\) 18.1353 + 13.1760i 0.949243 + 0.689665i
\(366\) 0 0
\(367\) −36.2705 −1.89331 −0.946653 0.322256i \(-0.895559\pi\)
−0.946653 + 0.322256i \(0.895559\pi\)
\(368\) −8.20820 5.96361i −0.427882 0.310875i
\(369\) 0 0
\(370\) 0.118034 0.363271i 0.00613629 0.0188856i
\(371\) 38.1246 1.97933
\(372\) 0 0
\(373\) −0.347524 −0.0179941 −0.00899706 0.999960i \(-0.502864\pi\)
−0.00899706 + 0.999960i \(0.502864\pi\)
\(374\) −0.0344419 + 0.106001i −0.00178095 + 0.00548119i
\(375\) 0 0
\(376\) 6.11803 + 4.44501i 0.315514 + 0.229234i
\(377\) 41.8328 2.15450
\(378\) 0 0
\(379\) 14.8992 + 10.8249i 0.765320 + 0.556037i 0.900537 0.434779i \(-0.143173\pi\)
−0.135218 + 0.990816i \(0.543173\pi\)
\(380\) 17.1353 12.4495i 0.879020 0.638645i
\(381\) 0 0
\(382\) 3.07295 9.45756i 0.157226 0.483891i
\(383\) −13.6353 9.90659i −0.696729 0.506203i 0.182136 0.983273i \(-0.441699\pi\)
−0.878865 + 0.477070i \(0.841699\pi\)
\(384\) 0 0
\(385\) 1.85410 + 5.70634i 0.0944938 + 0.290822i
\(386\) 1.19098 0.865300i 0.0606194 0.0440426i
\(387\) 0 0
\(388\) 2.64590 + 8.14324i 0.134325 + 0.413410i
\(389\) −23.5172 + 17.0863i −1.19237 + 0.866308i −0.993513 0.113721i \(-0.963723\pi\)
−0.198858 + 0.980028i \(0.563723\pi\)
\(390\) 0 0
\(391\) −0.399187 + 1.22857i −0.0201878 + 0.0621315i
\(392\) 3.61803 + 2.62866i 0.182738 + 0.132767i
\(393\) 0 0
\(394\) 8.20820 5.96361i 0.413523 0.300442i
\(395\) 0 0
\(396\) 0 0
\(397\) 16.2918 0.817662 0.408831 0.912610i \(-0.365937\pi\)
0.408831 + 0.912610i \(0.365937\pi\)
\(398\) −16.5066 −0.827400
\(399\) 0 0
\(400\) 1.06231 + 3.26944i 0.0531153 + 0.163472i
\(401\) 9.21885 28.3727i 0.460367 1.41686i −0.404349 0.914605i \(-0.632502\pi\)
0.864717 0.502260i \(-0.167498\pi\)
\(402\) 0 0
\(403\) −6.00000 26.3521i −0.298881 1.31269i
\(404\) 7.70820 0.383497
\(405\) 0 0
\(406\) 4.93769 + 15.1967i 0.245054 + 0.754198i
\(407\) −0.145898 0.106001i −0.00723190 0.00525428i
\(408\) 0 0
\(409\) −6.18034 −0.305598 −0.152799 0.988257i \(-0.548829\pi\)
−0.152799 + 0.988257i \(0.548829\pi\)
\(410\) 8.47214 + 6.15537i 0.418409 + 0.303992i
\(411\) 0 0
\(412\) −0.190983 + 0.138757i −0.00940906 + 0.00683608i
\(413\) −8.78115 + 27.0256i −0.432092 + 1.32984i
\(414\) 0 0
\(415\) 3.30902 10.1841i 0.162433 0.499918i
\(416\) 8.42705 + 25.9358i 0.413170 + 1.27161i
\(417\) 0 0
\(418\) 0.729490 + 2.24514i 0.0356805 + 0.109813i
\(419\) −1.38197 4.25325i −0.0675135 0.207785i 0.911608 0.411060i \(-0.134841\pi\)
−0.979122 + 0.203275i \(0.934841\pi\)
\(420\) 0 0
\(421\) 4.56231 + 14.0413i 0.222353 + 0.684333i 0.998549 + 0.0538414i \(0.0171466\pi\)
−0.776196 + 0.630491i \(0.782853\pi\)
\(422\) −1.52786 + 4.70228i −0.0743753 + 0.228904i
\(423\) 0 0
\(424\) −8.78115 + 27.0256i −0.426450 + 1.31248i
\(425\) 0.354102 0.257270i 0.0171765 0.0124794i
\(426\) 0 0
\(427\) 16.8541 + 12.2452i 0.815627 + 0.592588i
\(428\) 1.76393 0.0852629
\(429\) 0 0
\(430\) 6.04508 + 4.39201i 0.291520 + 0.211802i
\(431\) −9.03444 27.8052i −0.435174 1.33933i −0.892908 0.450238i \(-0.851339\pi\)
0.457735 0.889089i \(-0.348661\pi\)
\(432\) 0 0
\(433\) 0.583592 0.0280456 0.0140228 0.999902i \(-0.495536\pi\)
0.0140228 + 0.999902i \(0.495536\pi\)
\(434\) 8.86475 5.29007i 0.425521 0.253931i
\(435\) 0 0
\(436\) 4.20820 12.9515i 0.201536 0.620265i
\(437\) 8.45492 + 26.0216i 0.404453 + 1.24478i
\(438\) 0 0
\(439\) 41.8328 1.99657 0.998286 0.0585295i \(-0.0186412\pi\)
0.998286 + 0.0585295i \(0.0186412\pi\)
\(440\) −4.47214 −0.213201
\(441\) 0 0
\(442\) 0.572949 0.416272i 0.0272524 0.0198000i
\(443\) −33.2705 + 24.1724i −1.58073 + 1.14847i −0.664877 + 0.746953i \(0.731516\pi\)
−0.915853 + 0.401514i \(0.868484\pi\)
\(444\) 0 0
\(445\) −13.5172 9.82084i −0.640778 0.465552i
\(446\) 0.135255 0.416272i 0.00640451 0.0197110i
\(447\) 0 0
\(448\) 0.572949 0.416272i 0.0270693 0.0196670i
\(449\) −7.43769 22.8909i −0.351006 1.08029i −0.958289 0.285801i \(-0.907740\pi\)
0.607283 0.794486i \(-0.292260\pi\)
\(450\) 0 0
\(451\) 4.00000 2.90617i 0.188353 0.136846i
\(452\) −0.927051 2.85317i −0.0436048 0.134202i
\(453\) 0 0
\(454\) −10.3713 7.53521i −0.486750 0.353645i
\(455\) 11.7812 36.2587i 0.552309 1.69983i
\(456\) 0 0
\(457\) 12.7361 9.25330i 0.595768 0.432851i −0.248606 0.968605i \(-0.579972\pi\)
0.844374 + 0.535754i \(0.179972\pi\)
\(458\) 3.61803 + 2.62866i 0.169060 + 0.122829i
\(459\) 0 0
\(460\) −23.1803 −1.08079
\(461\) 8.69098 + 6.31437i 0.404779 + 0.294089i 0.771485 0.636248i \(-0.219514\pi\)
−0.366705 + 0.930337i \(0.619514\pi\)
\(462\) 0 0
\(463\) −9.61803 + 29.6013i −0.446988 + 1.37569i 0.433301 + 0.901249i \(0.357349\pi\)
−0.880289 + 0.474438i \(0.842651\pi\)
\(464\) 15.9787 0.741793
\(465\) 0 0
\(466\) −11.6180 −0.538195
\(467\) 10.1287 31.1729i 0.468699 1.44251i −0.385571 0.922678i \(-0.625995\pi\)
0.854270 0.519830i \(-0.174005\pi\)
\(468\) 0 0
\(469\) 10.2812 + 7.46969i 0.474740 + 0.344918i
\(470\) 5.47214 0.252411
\(471\) 0 0
\(472\) −17.1353 12.4495i −0.788714 0.573034i
\(473\) 2.85410 2.07363i 0.131232 0.0953454i
\(474\) 0 0
\(475\) 2.86475 8.81678i 0.131444 0.404542i
\(476\) −0.927051 0.673542i −0.0424913 0.0308717i
\(477\) 0 0
\(478\) 2.56231 + 7.88597i 0.117197 + 0.360696i
\(479\) −7.23607 + 5.25731i −0.330624 + 0.240213i −0.740696 0.671841i \(-0.765504\pi\)
0.410071 + 0.912054i \(0.365504\pi\)
\(480\) 0 0
\(481\) 0.354102 + 1.08981i 0.0161457 + 0.0496912i
\(482\) 4.26393 3.09793i 0.194217 0.141107i
\(483\) 0 0
\(484\) 5.20820 16.0292i 0.236737 0.728600i
\(485\) 11.2082 + 8.14324i 0.508938 + 0.369765i
\(486\) 0 0
\(487\) −18.5451 + 13.4738i −0.840358 + 0.610556i −0.922471 0.386067i \(-0.873833\pi\)
0.0821126 + 0.996623i \(0.473833\pi\)
\(488\) −12.5623 + 9.12705i −0.568669 + 0.413162i
\(489\) 0 0
\(490\) 3.23607 0.146191
\(491\) 27.5967 1.24542 0.622712 0.782451i \(-0.286031\pi\)
0.622712 + 0.782451i \(0.286031\pi\)
\(492\) 0 0
\(493\) −0.628677 1.93487i −0.0283142 0.0871421i
\(494\) 4.63525 14.2658i 0.208550 0.641851i
\(495\) 0 0
\(496\) −2.29180 10.0656i −0.102905 0.451959i
\(497\) −0.270510 −0.0121340
\(498\) 0 0
\(499\) 1.28115 + 3.94298i 0.0573523 + 0.176512i 0.975629 0.219427i \(-0.0704189\pi\)
−0.918277 + 0.395940i \(0.870419\pi\)
\(500\) −10.7812 7.83297i −0.482148 0.350301i
\(501\) 0 0
\(502\) −0.583592 −0.0260470
\(503\) 10.6353 + 7.72696i 0.474203 + 0.344528i 0.799077 0.601229i \(-0.205322\pi\)
−0.324874 + 0.945757i \(0.605322\pi\)
\(504\) 0 0
\(505\) 10.0902 7.33094i 0.449007 0.326222i
\(506\) 0.798374 2.45714i 0.0354920 0.109233i
\(507\) 0 0
\(508\) −5.11803 + 15.7517i −0.227076 + 0.698868i
\(509\) 0.590170 + 1.81636i 0.0261588 + 0.0805086i 0.963284 0.268486i \(-0.0865232\pi\)
−0.937125 + 0.348994i \(0.886523\pi\)
\(510\) 0 0
\(511\) −7.93769 24.4297i −0.351143 1.08071i
\(512\) 5.78115 + 17.7926i 0.255493 + 0.786327i
\(513\) 0 0
\(514\) −0.270510 0.832544i −0.0119317 0.0367219i
\(515\) −0.118034 + 0.363271i −0.00520120 + 0.0160076i
\(516\) 0 0
\(517\) 0.798374 2.45714i 0.0351124 0.108065i
\(518\) −0.354102 + 0.257270i −0.0155583 + 0.0113038i
\(519\) 0 0
\(520\) 22.9894 + 16.7027i 1.00815 + 0.732464i
\(521\) −31.0689 −1.36115 −0.680576 0.732677i \(-0.738271\pi\)
−0.680576 + 0.732677i \(0.738271\pi\)
\(522\) 0 0
\(523\) −27.6074 20.0579i −1.20719 0.877073i −0.212215 0.977223i \(-0.568068\pi\)
−0.994972 + 0.100150i \(0.968068\pi\)
\(524\) 0.0450850 + 0.138757i 0.00196955 + 0.00606164i
\(525\) 0 0
\(526\) 6.67376 0.290990
\(527\) −1.12868 + 0.673542i −0.0491659 + 0.0293399i
\(528\) 0 0
\(529\) 2.14590 6.60440i 0.0932999 0.287148i
\(530\) 6.35410 + 19.5559i 0.276005 + 0.849455i
\(531\) 0 0
\(532\) −24.2705 −1.05226
\(533\) −31.4164 −1.36080
\(534\) 0 0
\(535\) 2.30902 1.67760i 0.0998275 0.0725289i
\(536\) −7.66312 + 5.56758i −0.330996 + 0.240483i
\(537\) 0 0
\(538\) −0.690983 0.502029i −0.0297904 0.0216440i
\(539\) 0.472136 1.45309i 0.0203363 0.0625888i
\(540\) 0 0
\(541\) −17.7984 + 12.9313i −0.765212 + 0.555959i −0.900504 0.434847i \(-0.856803\pi\)
0.135293 + 0.990806i \(0.456803\pi\)
\(542\) 1.82624 + 5.62058i 0.0784436 + 0.241425i
\(543\) 0 0
\(544\) 1.07295 0.779543i 0.0460023 0.0334226i
\(545\) −6.80902 20.9560i −0.291666 0.897656i
\(546\) 0 0
\(547\) 19.1803 + 13.9353i 0.820092 + 0.595832i 0.916739 0.399487i \(-0.130812\pi\)
−0.0966468 + 0.995319i \(0.530812\pi\)
\(548\) −3.23607 + 9.95959i −0.138238 + 0.425453i
\(549\) 0 0
\(550\) −0.708204 + 0.514540i −0.0301979 + 0.0219401i
\(551\) −34.8607 25.3278i −1.48511 1.07900i
\(552\) 0 0
\(553\) 0 0
\(554\) −6.66312 4.84104i −0.283089 0.205676i
\(555\) 0 0
\(556\) −2.92705 + 9.00854i −0.124135 + 0.382047i
\(557\) −35.8885 −1.52065 −0.760323 0.649545i \(-0.774959\pi\)
−0.760323 + 0.649545i \(0.774959\pi\)
\(558\) 0 0
\(559\) −22.4164 −0.948113
\(560\) 4.50000 13.8496i 0.190160 0.585251i
\(561\) 0 0
\(562\) 9.51722 + 6.91467i 0.401460 + 0.291678i
\(563\) 8.56231 0.360858 0.180429 0.983588i \(-0.442251\pi\)
0.180429 + 0.983588i \(0.442251\pi\)
\(564\) 0 0
\(565\) −3.92705 2.85317i −0.165212 0.120034i
\(566\) −3.28115 + 2.38390i −0.137917 + 0.100203i
\(567\) 0 0
\(568\) 0.0623059 0.191758i 0.00261430 0.00804598i
\(569\) 12.5623 + 9.12705i 0.526639 + 0.382626i 0.819099 0.573652i \(-0.194474\pi\)
−0.292460 + 0.956278i \(0.594474\pi\)
\(570\) 0 0
\(571\) 2.16312 + 6.65740i 0.0905237 + 0.278603i 0.986061 0.166383i \(-0.0532087\pi\)
−0.895538 + 0.444986i \(0.853209\pi\)
\(572\) 4.85410 3.52671i 0.202960 0.147459i
\(573\) 0 0
\(574\) −3.70820 11.4127i −0.154777 0.476356i
\(575\) −8.20820 + 5.96361i −0.342306 + 0.248700i
\(576\) 0 0
\(577\) 12.0451 37.0710i 0.501443 1.54328i −0.305225 0.952280i \(-0.598732\pi\)
0.806669 0.591004i \(-0.201268\pi\)
\(578\) 8.47214 + 6.15537i 0.352394 + 0.256030i
\(579\) 0 0
\(580\) 29.5344 21.4580i 1.22635 0.890996i
\(581\) −9.92705 + 7.21242i −0.411843 + 0.299222i
\(582\) 0 0
\(583\) 9.70820 0.402073
\(584\) 19.1459 0.792263
\(585\) 0 0
\(586\) 1.57295 + 4.84104i 0.0649779 + 0.199981i
\(587\) −11.1287 + 34.2505i −0.459330 + 1.41367i 0.406646 + 0.913586i \(0.366698\pi\)
−0.865976 + 0.500086i \(0.833302\pi\)
\(588\) 0 0
\(589\) −10.9549 + 25.5928i −0.451389 + 1.05453i
\(590\) −15.3262 −0.630971
\(591\) 0 0
\(592\) 0.135255 + 0.416272i 0.00555894 + 0.0171087i
\(593\) 4.94427 + 3.59222i 0.203037 + 0.147515i 0.684658 0.728865i \(-0.259952\pi\)
−0.481621 + 0.876380i \(0.659952\pi\)
\(594\) 0 0
\(595\) −1.85410 −0.0760108
\(596\) 22.2984 + 16.2007i 0.913377 + 0.663607i
\(597\) 0 0
\(598\) −13.2812 + 9.64932i −0.543107 + 0.394590i
\(599\) −9.20820 + 28.3399i −0.376237 + 1.15794i 0.566403 + 0.824128i \(0.308334\pi\)
−0.942640 + 0.333810i \(0.891666\pi\)
\(600\) 0 0
\(601\) 6.79837 20.9232i 0.277311 0.853477i −0.711287 0.702902i \(-0.751887\pi\)
0.988599 0.150575i \(-0.0481126\pi\)
\(602\) −2.64590 8.14324i −0.107839 0.331894i
\(603\) 0 0
\(604\) 9.75329 + 30.0175i 0.396856 + 1.22140i
\(605\) −8.42705 25.9358i −0.342608 1.05444i
\(606\) 0 0
\(607\) −7.85410 24.1724i −0.318788 0.981129i −0.974167 0.225829i \(-0.927491\pi\)
0.655379 0.755300i \(-0.272509\pi\)
\(608\) 8.68034 26.7153i 0.352034 1.08345i
\(609\) 0 0
\(610\) −3.47214 + 10.6861i −0.140583 + 0.432669i
\(611\) −13.2812 + 9.64932i −0.537298 + 0.390370i
\(612\) 0 0
\(613\) −20.2705 14.7274i −0.818718 0.594834i 0.0976269 0.995223i \(-0.468875\pi\)
−0.916345 + 0.400390i \(0.868875\pi\)
\(614\) 3.76393 0.151900
\(615\) 0 0
\(616\) 4.14590 + 3.01217i 0.167043 + 0.121364i
\(617\) 4.39919 + 13.5393i 0.177105 + 0.545072i 0.999723 0.0235215i \(-0.00748780\pi\)
−0.822619 + 0.568593i \(0.807488\pi\)
\(618\) 0 0
\(619\) −40.0000 −1.60774 −0.803868 0.594808i \(-0.797228\pi\)
−0.803868 + 0.594808i \(0.797228\pi\)
\(620\) −17.7533 15.5272i −0.712989 0.623586i
\(621\) 0 0
\(622\) −3.14590 + 9.68208i −0.126139 + 0.388216i
\(623\) 5.91641 + 18.2088i 0.237036 + 0.729521i
\(624\) 0 0
\(625\) −30.8328 −1.23331
\(626\) 0.763932 0.0305329
\(627\) 0 0
\(628\) 12.7082 9.23305i 0.507113 0.368439i
\(629\) 0.0450850 0.0327561i 0.00179766 0.00130607i
\(630\) 0 0
\(631\) 7.06231 + 5.13107i 0.281146 + 0.204264i 0.719417 0.694578i \(-0.244409\pi\)
−0.438271 + 0.898843i \(0.644409\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 12.9443 9.40456i 0.514083 0.373503i
\(635\) 8.28115 + 25.4868i 0.328628 + 1.01141i
\(636\) 0 0
\(637\) −7.85410 + 5.70634i −0.311191 + 0.226093i
\(638\) 1.25735 + 3.86974i 0.0497791 + 0.153204i
\(639\) 0 0
\(640\) 24.1074 + 17.5150i 0.952928 + 0.692343i
\(641\) 12.6976 39.0791i 0.501523 1.54353i −0.305014 0.952348i \(-0.598661\pi\)
0.806538 0.591183i \(-0.201339\pi\)
\(642\) 0 0
\(643\) −6.59017 + 4.78804i −0.259891 + 0.188822i −0.710099 0.704102i \(-0.751350\pi\)
0.450208 + 0.892924i \(0.351350\pi\)
\(644\) 21.4894 + 15.6129i 0.846799 + 0.615236i
\(645\) 0 0
\(646\) −0.729490 −0.0287014
\(647\) −24.1803 17.5680i −0.950627 0.690671i 0.000327889 1.00000i \(-0.499896\pi\)
−0.950955 + 0.309329i \(0.899896\pi\)
\(648\) 0 0
\(649\) −2.23607 + 6.88191i −0.0877733 + 0.270139i
\(650\) 5.56231 0.218172
\(651\) 0 0
\(652\) 20.5623 0.805282
\(653\) −12.2533 + 37.7117i −0.479508 + 1.47577i 0.360272 + 0.932847i \(0.382684\pi\)
−0.839780 + 0.542927i \(0.817316\pi\)
\(654\) 0 0
\(655\) 0.190983 + 0.138757i 0.00746232 + 0.00542170i
\(656\) −12.0000 −0.468521
\(657\) 0 0
\(658\) −5.07295 3.68571i −0.197764 0.143684i
\(659\) 18.3541 13.3350i 0.714974 0.519459i −0.169800 0.985478i \(-0.554312\pi\)
0.884775 + 0.466019i \(0.154312\pi\)
\(660\) 0 0
\(661\) −5.13525 + 15.8047i −0.199738 + 0.614731i 0.800150 + 0.599800i \(0.204753\pi\)
−0.999889 + 0.0149316i \(0.995247\pi\)
\(662\) −5.63525 4.09425i −0.219020 0.159128i
\(663\) 0 0
\(664\) −2.82624 8.69827i −0.109679 0.337558i
\(665\) −31.7705 + 23.0826i −1.23201 + 0.895106i
\(666\) 0 0
\(667\) 14.5729 + 44.8509i 0.564267 + 1.73663i
\(668\) 12.0902 8.78402i 0.467783 0.339864i
\(669\) 0 0
\(670\) −2.11803 + 6.51864i −0.0818268 + 0.251837i
\(671\) 4.29180 + 3.11817i 0.165683 + 0.120376i
\(672\) 0 0
\(673\) 3.57295 2.59590i 0.137727 0.100065i −0.516788 0.856113i \(-0.672873\pi\)
0.654516 + 0.756049i \(0.272873\pi\)
\(674\) −9.48936 + 6.89442i −0.365516 + 0.265563i
\(675\) 0 0
\(676\) −17.0902 −0.657314
\(677\) −28.6525 −1.10120 −0.550602 0.834768i \(-0.685602\pi\)
−0.550602 + 0.834768i \(0.685602\pi\)
\(678\) 0 0
\(679\) −4.90576 15.0984i −0.188266 0.579423i
\(680\) 0.427051 1.31433i 0.0163767 0.0504022i
\(681\) 0 0
\(682\) 2.25735 1.34708i 0.0864386 0.0515825i
\(683\) −10.0557 −0.384772 −0.192386 0.981319i \(-0.561623\pi\)
−0.192386 + 0.981319i \(0.561623\pi\)
\(684\) 0 0
\(685\) 5.23607 + 16.1150i 0.200060 + 0.615721i
\(686\) 7.50000 + 5.44907i 0.286351 + 0.208046i
\(687\) 0 0
\(688\) −8.56231 −0.326435
\(689\) −49.9058 36.2587i −1.90126 1.38134i
\(690\) 0 0
\(691\) −3.10081 + 2.25287i −0.117960 + 0.0857033i −0.645201 0.764013i \(-0.723227\pi\)
0.527241 + 0.849716i \(0.323227\pi\)
\(692\) 0.454915 1.40008i 0.0172933 0.0532232i
\(693\) 0 0
\(694\) −1.55166 + 4.77553i −0.0589003 + 0.181277i
\(695\) 4.73607 + 14.5761i 0.179649 + 0.552904i
\(696\) 0 0
\(697\) 0.472136 + 1.45309i 0.0178834 + 0.0550395i
\(698\) −3.19098 9.82084i −0.120780 0.371724i
\(699\) 0 0
\(700\) −2.78115 8.55951i −0.105118 0.323519i
\(701\) 9.28115 28.5645i 0.350544 1.07886i −0.608004 0.793934i \(-0.708030\pi\)
0.958548 0.284930i \(-0.0919705\pi\)
\(702\) 0 0
\(703\) 0.364745 1.12257i 0.0137566 0.0423385i
\(704\) 0.145898 0.106001i 0.00549874 0.00399507i
\(705\) 0 0
\(706\) −16.1910 11.7634i −0.609356 0.442723i
\(707\) −14.2918 −0.537498
\(708\) 0 0
\(709\) −3.35410 2.43690i −0.125966 0.0915196i 0.523018 0.852321i \(-0.324806\pi\)
−0.648984 + 0.760802i \(0.724806\pi\)
\(710\) −0.0450850 0.138757i −0.00169201 0.00520747i
\(711\) 0 0
\(712\) −14.2705 −0.534810
\(713\) 26.1631 15.6129i 0.979817 0.584709i
\(714\) 0 0
\(715\) 3.00000 9.23305i 0.112194 0.345297i
\(716\) 9.89919 + 30.4666i 0.369950 + 1.13859i
\(717\) 0 0
\(718\) 15.6525 0.584145
\(719\) 41.3820 1.54329 0.771643 0.636055i \(-0.219435\pi\)
0.771643 + 0.636055i \(0.219435\pi\)
\(720\) 0 0
\(721\) 0.354102 0.257270i 0.0131874 0.00958124i
\(722\) −3.00000 + 2.17963i −0.111648 + 0.0811173i
\(723\) 0 0
\(724\) 22.2533 + 16.1680i 0.827037 + 0.600878i
\(725\) 4.93769 15.1967i 0.183381 0.564390i
\(726\) 0 0
\(727\) 19.2812 14.0086i 0.715098 0.519549i −0.169716 0.985493i \(-0.554285\pi\)
0.884814 + 0.465944i \(0.154285\pi\)
\(728\) −10.0623 30.9686i −0.372934 1.14777i
\(729\) 0 0
\(730\) 11.2082 8.14324i 0.414834 0.301395i
\(731\) 0.336881 + 1.03681i 0.0124600 + 0.0383479i
\(732\) 0 0
\(733\) −22.6074 16.4252i −0.835023 0.606680i 0.0859529 0.996299i \(-0.472607\pi\)
−0.920976 + 0.389619i \(0.872607\pi\)
\(734\) −6.92705 + 21.3193i −0.255682 + 0.786909i
\(735\) 0 0
\(736\) −24.8713 + 18.0701i −0.916769 + 0.666072i
\(737\) 2.61803 + 1.90211i 0.0964365 + 0.0700652i
\(738\) 0 0
\(739\) 21.7082 0.798549 0.399275 0.916831i \(-0.369262\pi\)
0.399275 + 0.916831i \(0.369262\pi\)
\(740\) 0.809017 + 0.587785i 0.0297401 + 0.0216074i
\(741\) 0 0
\(742\) 7.28115 22.4091i 0.267300 0.822663i
\(743\) 3.43769 0.126117 0.0630584 0.998010i \(-0.479915\pi\)
0.0630584 + 0.998010i \(0.479915\pi\)
\(744\) 0 0
\(745\) 44.5967 1.63390
\(746\) −0.0663712 + 0.204270i −0.00243002 + 0.00747884i
\(747\) 0 0
\(748\) −0.236068 0.171513i −0.00863150 0.00627115i
\(749\) −3.27051 −0.119502
\(750\) 0 0
\(751\) 32.2254 + 23.4131i 1.17592 + 0.854358i 0.991706 0.128528i \(-0.0410252\pi\)
0.184217 + 0.982886i \(0.441025\pi\)
\(752\) −5.07295 + 3.68571i −0.184991 + 0.134404i
\(753\) 0 0
\(754\) 7.98936 24.5887i 0.290955 0.895468i
\(755\) 41.3156 + 30.0175i 1.50363 + 1.09245i
\(756\) 0 0
\(757\) 13.3262 + 41.0139i 0.484350 + 1.49068i 0.832920 + 0.553394i \(0.186668\pi\)
−0.348569 + 0.937283i \(0.613332\pi\)
\(758\) 9.20820 6.69015i 0.334457 0.242997i
\(759\) 0 0
\(760\) −9.04508 27.8379i −0.328100 1.00979i
\(761\) 2.83688 2.06111i 0.102837 0.0747154i −0.535178 0.844739i \(-0.679756\pi\)
0.638015 + 0.770024i \(0.279756\pi\)
\(762\) 0 0
\(763\) −7.80244 + 24.0134i −0.282467 + 0.869345i
\(764\) 21.0623 + 15.3027i 0.762007 + 0.553631i
\(765\) 0 0
\(766\) −8.42705 + 6.12261i −0.304482 + 0.221219i
\(767\) 37.1976 27.0256i 1.34313 0.975838i
\(768\) 0 0
\(769\) −53.7426 −1.93801 −0.969005 0.247042i \(-0.920541\pi\)
−0.969005 + 0.247042i \(0.920541\pi\)
\(770\) 3.70820 0.133634
\(771\) 0 0
\(772\) 1.19098 + 3.66547i 0.0428644 + 0.131923i
\(773\) 5.89919 18.1558i 0.212179 0.653020i −0.787163 0.616745i \(-0.788451\pi\)
0.999342 0.0362746i \(-0.0115491\pi\)
\(774\) 0 0
\(775\) −10.2812 0.930812i −0.369310 0.0334358i
\(776\) 11.8328 0.424773
\(777\) 0 0
\(778\) 5.55166 + 17.0863i 0.199037 + 0.612572i
\(779\) 26.1803 + 19.0211i 0.938008 + 0.681503i
\(780\) 0 0
\(781\) −0.0688837 −0.00246485
\(782\) 0.645898 + 0.469272i 0.0230973 + 0.0167811i
\(783\) 0 0
\(784\) −3.00000 + 2.17963i −0.107143 + 0.0778438i
\(785\) 7.85410 24.1724i 0.280325 0.862751i
\(786\) 0 0
\(787\) 9.66970 29.7603i 0.344687 1.06084i −0.617063 0.786913i \(-0.711678\pi\)
0.961751 0.273926i \(-0.0883222\pi\)
\(788\) 8.20820 + 25.2623i 0.292405 + 0.899931i
\(789\) 0 0
\(790\) 0 0
\(791\) 1.71885 + 5.29007i 0.0611152 + 0.188093i
\(792\) 0 0
\(793\) −10.4164 32.0584i −0.369897 1.13843i
\(794\) 3.11146 9.57608i 0.110421 0.339842i
\(795\) 0 0
\(796\) 13.3541 41.0997i 0.473324 1.45674i
\(797\) 7.32624 5.32282i 0.259509 0.188544i −0.450422 0.892816i \(-0.648726\pi\)
0.709930 + 0.704272i \(0.248726\pi\)
\(798\) 0 0
\(799\) 0.645898 + 0.469272i 0.0228502 + 0.0166017i
\(800\) 10.4164 0.368276
\(801\) 0 0
\(802\) −14.9164 10.8374i −0.526717 0.382682i
\(803\) −2.02129 6.22088i −0.0713296 0.219530i
\(804\) 0 0
\(805\) 42.9787 1.51480
\(806\) −16.6353 1.50609i −0.585952 0.0530496i
\(807\) 0 0
\(808\) 3.29180 10.1311i 0.115805 0.356411i
\(809\) −16.9336 52.1164i −0.595355 1.83231i −0.552953 0.833213i \(-0.686499\pi\)
−0.0424020 0.999101i \(-0.513501\pi\)
\(810\) 0 0
\(811\) 42.7771 1.50211 0.751053 0.660242i \(-0.229546\pi\)
0.751053 + 0.660242i \(0.229546\pi\)
\(812\) −41.8328 −1.46804
\(813\) 0 0
\(814\) −0.0901699 + 0.0655123i −0.00316045 + 0.00229620i
\(815\) 26.9164 19.5559i 0.942841 0.685014i
\(816\) 0 0
\(817\) 18.6803 + 13.5721i 0.653542 + 0.474826i
\(818\) −1.18034 + 3.63271i −0.0412696 + 0.127015i
\(819\) 0 0
\(820\) −22.1803 + 16.1150i −0.774571 + 0.562759i
\(821\) 10.0344 + 30.8828i 0.350204 + 1.07782i 0.958738 + 0.284290i \(0.0917580\pi\)
−0.608534 + 0.793528i \(0.708242\pi\)
\(822\) 0 0
\(823\) 4.95492 3.59996i 0.172717 0.125487i −0.498068 0.867138i \(-0.665957\pi\)
0.670786 + 0.741651i \(0.265957\pi\)
\(824\) 0.100813 + 0.310271i 0.00351199 + 0.0108088i
\(825\) 0 0
\(826\) 14.2082 + 10.3229i 0.494367 + 0.359178i
\(827\) −0.826238 + 2.54290i −0.0287311 + 0.0884253i −0.964394 0.264470i \(-0.914803\pi\)
0.935663 + 0.352896i \(0.114803\pi\)
\(828\) 0 0
\(829\) 17.5623 12.7598i 0.609964 0.443165i −0.239438 0.970912i \(-0.576963\pi\)
0.849402 + 0.527747i \(0.176963\pi\)
\(830\) −5.35410 3.88998i −0.185844 0.135023i
\(831\) 0 0
\(832\) −1.14590 −0.0397269
\(833\) 0.381966 + 0.277515i 0.0132343 + 0.00961531i
\(834\) 0 0
\(835\) 7.47214 22.9969i 0.258584 0.795839i
\(836\) −6.18034 −0.213752
\(837\) 0 0
\(838\) −2.76393 −0.0954784
\(839\) −3.45492 + 10.6331i −0.119277 + 0.367097i −0.992815 0.119659i \(-0.961820\pi\)
0.873538 + 0.486756i \(0.161820\pi\)
\(840\) 0 0
\(841\) −36.6246 26.6093i −1.26292 0.917563i
\(842\) 9.12461 0.314455
\(843\) 0 0
\(844\) −10.4721 7.60845i −0.360466 0.261894i
\(845\) −22.3713 + 16.2537i −0.769597 + 0.559145i
\(846\) 0 0
\(847\) −9.65654 + 29.7198i −0.331803 + 1.02118i
\(848\) −19.0623 13.8496i −0.654602 0.475596i
\(849\) 0 0
\(850\) −0.0835921 0.257270i −0.00286719 0.00882429i
\(851\) −1.04508 + 0.759299i −0.0358251 + 0.0260284i
\(852\) 0 0
\(853\) 1.23607 + 3.80423i 0.0423222 + 0.130254i 0.969985 0.243164i \(-0.0781855\pi\)
−0.927663 + 0.373419i \(0.878185\pi\)
\(854\) 10.4164 7.56796i 0.356442 0.258970i
\(855\) 0 0
\(856\) 0.753289 2.31838i 0.0257469 0.0792408i
\(857\) −6.61803 4.80828i −0.226068 0.164248i 0.468986 0.883206i \(-0.344619\pi\)
−0.695054 + 0.718958i \(0.744619\pi\)
\(858\) 0 0
\(859\) −35.0238 + 25.4463i −1.19500 + 0.868216i −0.993783 0.111332i \(-0.964488\pi\)
−0.201213 + 0.979547i \(0.564488\pi\)
\(860\) −15.8262 + 11.4984i −0.539670 + 0.392093i
\(861\) 0 0
\(862\) −18.0689 −0.615429
\(863\) −2.49342 −0.0848771 −0.0424385 0.999099i \(-0.513513\pi\)
−0.0424385 + 0.999099i \(0.513513\pi\)
\(864\) 0 0
\(865\) −0.736068 2.26538i −0.0250271 0.0770254i
\(866\) 0.111456 0.343027i 0.00378744 0.0116565i
\(867\) 0 0
\(868\) 6.00000 + 26.3521i 0.203653 + 0.894447i
\(869\) 0 0
\(870\) 0 0
\(871\) −6.35410 19.5559i −0.215301 0.662627i
\(872\) −15.2254 11.0619i −0.515598 0.374604i
\(873\) 0 0
\(874\) 16.9098 0.571984
\(875\) 19.9894 + 14.5231i 0.675764 + 0.490971i
\(876\) 0 0
\(877\) −13.1803 + 9.57608i −0.445068 + 0.323361i −0.787646 0.616129i \(-0.788700\pi\)
0.342577 + 0.939490i \(0.388700\pi\)
\(878\) 7.98936 24.5887i 0.269628 0.829829i
\(879\) 0 0
\(880\) 1.14590 3.52671i 0.0386282 0.118885i
\(881\) 4.74671 + 14.6089i 0.159921 + 0.492185i 0.998626 0.0523999i \(-0.0166870\pi\)
−0.838705 + 0.544585i \(0.816687\pi\)
\(882\) 0 0
\(883\) −0.309017 0.951057i −0.0103992 0.0320056i 0.945722 0.324976i \(-0.105356\pi\)
−0.956121 + 0.292970i \(0.905356\pi\)
\(884\) 0.572949 + 1.76336i 0.0192704 + 0.0593081i
\(885\) 0 0
\(886\) 7.85410 + 24.1724i 0.263864 + 0.812089i
\(887\) −12.0836 + 37.1895i −0.405727 + 1.24870i 0.514559 + 0.857455i \(0.327956\pi\)
−0.920286 + 0.391245i \(0.872044\pi\)
\(888\) 0 0
\(889\) 9.48936 29.2052i 0.318263 0.979512i
\(890\) −8.35410 + 6.06961i −0.280030 + 0.203454i
\(891\) 0 0
\(892\) 0.927051 + 0.673542i 0.0310400 + 0.0225519i
\(893\) 16.9098 0.565866
\(894\) 0 0
\(895\) 41.9336 + 30.4666i 1.40169 + 1.01838i
\(896\) −10.5517 32.4747i −0.352506 1.08490i
\(897\) 0 0
\(898\) −14.8754 −0.496398
\(899\) −18.8820 + 44.1119i −0.629749 + 1.47121i
\(900\) 0 0
\(901\) −0.927051 + 2.85317i −0.0308845 + 0.0950529i
\(902\) −0.944272 2.90617i −0.0314408 0.0967649i
\(903\) 0 0
\(904\) −4.14590 −0.137891
\(905\) 44.5066 1.47945
\(906\) 0 0
\(907\) −42.8156 + 31.1074i −1.42167 + 1.03290i −0.430175 + 0.902745i \(0.641548\pi\)
−0.991493 + 0.130157i \(0.958452\pi\)
\(908\) 27.1525 19.7274i 0.901087 0.654678i
\(909\) 0 0
\(910\) −19.0623 13.8496i −0.631909 0.459109i
\(911\) −2.52786 + 7.77997i −0.0837519 + 0.257762i −0.984159 0.177286i \(-0.943268\pi\)
0.900408 + 0.435047i \(0.143268\pi\)
\(912\) 0 0
\(913\) −2.52786 + 1.83660i −0.0836601 + 0.0607826i
\(914\) −3.00658 9.25330i −0.0994488 0.306072i
\(915\) 0 0
\(916\) −9.47214 + 6.88191i −0.312968 + 0.227385i
\(917\) −0.0835921 0.257270i −0.00276046 0.00849581i
\(918\) 0 0
\(919\) −7.98936 5.80461i −0.263545 0.191476i 0.448164 0.893952i \(-0.352078\pi\)
−0.711708 + 0.702475i \(0.752078\pi\)
\(920\) −9.89919 + 30.4666i −0.326367 + 1.00445i
\(921\) 0 0
\(922\) 5.37132 3.90249i 0.176895 0.128522i
\(923\) 0.354102 + 0.257270i 0.0116554 + 0.00846815i
\(924\) 0 0
\(925\) 0.437694 0.0143913
\(926\) 15.5623 + 11.3067i 0.511409 + 0.371560i
\(927\) 0 0
\(928\) 14.9615 46.0467i 0.491135 1.51156i
\(929\) −33.5410 −1.10045 −0.550223 0.835018i \(-0.685457\pi\)
−0.550223 + 0.835018i \(0.685457\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) 9.39919 28.9277i 0.307881 0.947559i
\(933\) 0 0
\(934\) −16.3885 11.9070i −0.536250 0.389608i
\(935\) −0.472136 −0.0154405
\(936\) 0 0
\(937\) −32.7533 23.7967i −1.07000 0.777403i −0.0940905 0.995564i \(-0.529994\pi\)
−0.975913 + 0.218161i \(0.929994\pi\)
\(938\) 6.35410 4.61653i 0.207469 0.150735i
\(939\) 0 0
\(940\) −4.42705 + 13.6251i −0.144394 + 0.444401i
\(941\) 23.1246 + 16.8010i 0.753841 + 0.547697i 0.897015 0.442000i \(-0.145731\pi\)
−0.143174 + 0.989698i \(0.545731\pi\)
\(942\) 0 0
\(943\) −10.9443 33.6830i −0.356395 1.09687i
\(944\) 14.2082 10.3229i 0.462438 0.335981i
\(945\) 0 0
\(946\) −0.673762 2.07363i −0.0219059 0.0674194i
\(947\) 17.8541 12.9718i 0.580180 0.421526i −0.258609 0.965982i \(-0.583264\pi\)
0.838789 + 0.544456i \(0.183264\pi\)
\(948\) 0 0
\(949\) −12.8435 + 39.5281i −0.416916 + 1.28314i
\(950\) −4.63525 3.36771i −0.150388 0.109263i
\(951\) 0 0
\(952\) −1.28115 + 0.930812i −0.0415224 + 0.0301678i
\(953\) 34.1525 24.8132i 1.10631 0.803779i 0.124229 0.992254i \(-0.460354\pi\)
0.982078 + 0.188474i \(0.0603542\pi\)
\(954\) 0 0
\(955\) 42.1246 1.36312
\(956\) −21.7082 −0.702093
\(957\) 0 0
\(958\) 1.70820 + 5.25731i 0.0551896 + 0.169856i
\(959\) 6.00000 18.4661i 0.193750 0.596302i
\(960\) 0 0
\(961\) 30.4959 + 5.56758i 0.983740 + 0.179599i
\(962\) 0.708204 0.0228334
\(963\) 0 0
\(964\) 4.26393 + 13.1230i 0.137332 + 0.422664i
\(965\) 5.04508 + 3.66547i 0.162407 + 0.117996i
\(966\) 0 0
\(967\) 43.6525 1.40377 0.701884 0.712291i \(-0.252342\pi\)
0.701884 + 0.712291i \(0.252342\pi\)
\(968\) −18.8435 13.6906i −0.605652 0.440032i
\(969\) 0 0
\(970\) 6.92705 5.03280i 0.222414 0.161593i
\(971\) 6.35410 19.5559i 0.203913 0.627579i −0.795843 0.605502i \(-0.792972\pi\)
0.999756 0.0220767i \(-0.00702781\pi\)
\(972\) 0 0
\(973\) 5.42705 16.7027i 0.173983 0.535465i
\(974\) 4.37790 + 13.4738i 0.140277 + 0.431728i
\(975\) 0 0
\(976\) −3.97871 12.2452i −0.127356 0.391960i
\(977\) 1.87539 + 5.77185i 0.0599990 + 0.184658i 0.976564 0.215228i \(-0.0690496\pi\)
−0.916565 + 0.399886i \(0.869050\pi\)
\(978\) 0 0
\(979\) 1.50658 + 4.63677i 0.0481504 + 0.148192i
\(980\) −2.61803 + 8.05748i −0.0836300 + 0.257387i
\(981\) 0 0
\(982\) 5.27051 16.2210i 0.168189 0.517632i
\(983\) 17.0172 12.3637i 0.542765 0.394342i −0.282346 0.959313i \(-0.591113\pi\)
0.825111 + 0.564971i \(0.191113\pi\)
\(984\) 0 0
\(985\) 34.7705 + 25.2623i 1.10788 + 0.804922i
\(986\) −1.25735 −0.0400423
\(987\) 0 0
\(988\) 31.7705 + 23.0826i 1.01075 + 0.734356i
\(989\) −7.80902 24.0337i −0.248312 0.764227i
\(990\) 0 0
\(991\) −17.2705 −0.548616 −0.274308 0.961642i \(-0.588449\pi\)
−0.274308 + 0.961642i \(0.588449\pi\)
\(992\) −31.1525 2.82041i −0.989092 0.0895482i
\(993\) 0 0
\(994\) −0.0516628 + 0.159002i −0.00163864 + 0.00504323i
\(995\) −21.6074 66.5007i −0.685000 2.10821i
\(996\) 0 0
\(997\) −27.2492 −0.862992 −0.431496 0.902115i \(-0.642014\pi\)
−0.431496 + 0.902115i \(0.642014\pi\)
\(998\) 2.56231 0.0811084
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 279.2.i.a.163.1 4
3.2 odd 2 31.2.d.a.8.1 yes 4
12.11 even 2 496.2.n.b.225.1 4
15.2 even 4 775.2.bf.a.349.1 8
15.8 even 4 775.2.bf.a.349.2 8
15.14 odd 2 775.2.k.c.101.1 4
31.2 even 5 8649.2.a.g.1.2 2
31.4 even 5 inner 279.2.i.a.190.1 4
31.29 odd 10 8649.2.a.f.1.2 2
93.2 odd 10 961.2.a.d.1.1 2
93.5 odd 6 961.2.g.b.448.1 8
93.8 odd 10 961.2.d.f.388.1 4
93.11 even 30 961.2.g.c.844.1 8
93.14 odd 30 961.2.g.f.235.1 8
93.17 even 30 961.2.g.g.235.1 8
93.20 odd 30 961.2.g.b.844.1 8
93.23 even 10 961.2.d.e.388.1 4
93.26 even 6 961.2.g.c.448.1 8
93.29 even 10 961.2.a.e.1.1 2
93.35 odd 10 31.2.d.a.4.1 4
93.38 odd 30 961.2.g.b.547.1 8
93.41 odd 30 961.2.c.f.521.1 4
93.44 even 30 961.2.g.g.732.1 8
93.47 odd 10 961.2.d.f.374.1 4
93.50 odd 30 961.2.c.f.439.1 4
93.53 even 30 961.2.g.g.338.1 8
93.56 odd 6 961.2.g.b.846.1 8
93.59 odd 30 961.2.g.f.816.1 8
93.65 even 30 961.2.g.g.816.1 8
93.68 even 6 961.2.g.c.846.1 8
93.71 odd 30 961.2.g.f.338.1 8
93.74 even 30 961.2.c.d.439.1 4
93.77 even 10 961.2.d.e.374.1 4
93.80 odd 30 961.2.g.f.732.1 8
93.83 even 30 961.2.c.d.521.1 4
93.86 even 30 961.2.g.c.547.1 8
93.89 even 10 961.2.d.b.531.1 4
93.92 even 2 961.2.d.b.628.1 4
372.35 even 10 496.2.n.b.97.1 4
465.128 even 20 775.2.bf.a.624.1 8
465.314 odd 10 775.2.k.c.376.1 4
465.407 even 20 775.2.bf.a.624.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.4.1 4 93.35 odd 10
31.2.d.a.8.1 yes 4 3.2 odd 2
279.2.i.a.163.1 4 1.1 even 1 trivial
279.2.i.a.190.1 4 31.4 even 5 inner
496.2.n.b.97.1 4 372.35 even 10
496.2.n.b.225.1 4 12.11 even 2
775.2.k.c.101.1 4 15.14 odd 2
775.2.k.c.376.1 4 465.314 odd 10
775.2.bf.a.349.1 8 15.2 even 4
775.2.bf.a.349.2 8 15.8 even 4
775.2.bf.a.624.1 8 465.128 even 20
775.2.bf.a.624.2 8 465.407 even 20
961.2.a.d.1.1 2 93.2 odd 10
961.2.a.e.1.1 2 93.29 even 10
961.2.c.d.439.1 4 93.74 even 30
961.2.c.d.521.1 4 93.83 even 30
961.2.c.f.439.1 4 93.50 odd 30
961.2.c.f.521.1 4 93.41 odd 30
961.2.d.b.531.1 4 93.89 even 10
961.2.d.b.628.1 4 93.92 even 2
961.2.d.e.374.1 4 93.77 even 10
961.2.d.e.388.1 4 93.23 even 10
961.2.d.f.374.1 4 93.47 odd 10
961.2.d.f.388.1 4 93.8 odd 10
961.2.g.b.448.1 8 93.5 odd 6
961.2.g.b.547.1 8 93.38 odd 30
961.2.g.b.844.1 8 93.20 odd 30
961.2.g.b.846.1 8 93.56 odd 6
961.2.g.c.448.1 8 93.26 even 6
961.2.g.c.547.1 8 93.86 even 30
961.2.g.c.844.1 8 93.11 even 30
961.2.g.c.846.1 8 93.68 even 6
961.2.g.f.235.1 8 93.14 odd 30
961.2.g.f.338.1 8 93.71 odd 30
961.2.g.f.732.1 8 93.80 odd 30
961.2.g.f.816.1 8 93.59 odd 30
961.2.g.g.235.1 8 93.17 even 30
961.2.g.g.338.1 8 93.53 even 30
961.2.g.g.732.1 8 93.44 even 30
961.2.g.g.816.1 8 93.65 even 30
8649.2.a.f.1.2 2 31.29 odd 10
8649.2.a.g.1.2 2 31.2 even 5