Learn more

Refine search


Results (1-50 of 146 matches)

Next   displayed columns for results
Label Char Prim Dim $A$ Field CM RM Minimal twist Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
279.1.d.a 279.d 31.b $1$ $0.139$ \(\Q\) \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-31}) \) \(\Q(\sqrt{93}) \) 279.1.d.a \(0\) \(0\) \(0\) \(2\) \(q-q^{4}+2q^{7}+q^{16}-2q^{19}-q^{25}+\cdots\)
279.1.d.b 279.d 31.b $1$ $0.139$ \(\Q\) \(\Q(\sqrt{-31}) \) None 31.1.b.a \(1\) \(0\) \(1\) \(-1\) \(q+q^{2}+q^{5}-q^{7}-q^{8}+q^{10}-q^{14}+\cdots\)
279.1.d.c 279.d 31.b $2$ $0.139$ \(\Q(\sqrt{3}) \) \(\Q(\sqrt{-31}) \) None 279.1.d.c \(0\) \(0\) \(0\) \(-2\) \(q-\beta q^{2}+2q^{4}+\beta q^{5}-q^{7}-\beta q^{8}+\cdots\)
279.1.v.a 279.v 31.f $4$ $0.139$ \(\Q(\zeta_{10})\) \(\Q(\sqrt{-3}) \) None 279.1.v.a \(0\) \(0\) \(0\) \(-2\) \(q+\zeta_{10}q^{4}+(-\zeta_{10}^{3}+\zeta_{10}^{4})q^{7}+(-\zeta_{10}+\cdots)q^{13}+\cdots\)
279.2.a.a 279.a 1.a $2$ $2.228$ \(\Q(\sqrt{5}) \) None None 31.2.a.a \(-1\) \(0\) \(-2\) \(-4\) $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{4}-q^{5}+(-3+2\beta )q^{7}+\cdots\)
279.2.a.b 279.a 1.a $2$ $2.228$ \(\Q(\sqrt{5}) \) None None 93.2.a.a \(3\) \(0\) \(4\) \(-4\) $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+3\beta q^{4}+(3-2\beta )q^{5}+(-1+\cdots)q^{7}+\cdots\)
279.2.a.c 279.a 1.a $3$ $2.228$ 3.3.229.1 None None 93.2.a.b \(0\) \(0\) \(2\) \(4\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(1-\beta _{1}+\beta _{2})q^{5}+\cdots\)
279.2.a.d 279.a 1.a $6$ $2.228$ 6.6.361944768.1 None None 279.2.a.d \(0\) \(0\) \(0\) \(8\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2+\beta _{3})q^{4}-\beta _{2}q^{5}+(1+\beta _{5})q^{7}+\cdots\)
279.2.c.a 279.c 93.c $12$ $2.228$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) \(\Q(\sqrt{-31}) \) None 279.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{1}q^{2}+(-2-\beta _{2})q^{4}+\beta _{10}q^{5}+\cdots\)
279.2.e.a 279.e 279.e $60$ $2.228$ None None 279.2.e.a \(-2\) \(-5\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$
279.2.f.a 279.f 9.c $30$ $2.228$ None None 279.2.f.a \(-5\) \(-1\) \(-10\) \(0\) $\mathrm{SU}(2)[C_{3}]$
279.2.f.b 279.f 9.c $30$ $2.228$ None None 279.2.f.b \(3\) \(-1\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$
279.2.g.a 279.g 279.g $60$ $2.228$ None None 279.2.e.a \(-2\) \(1\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{3}]$
279.2.h.a 279.h 31.c $2$ $2.228$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) None 279.2.h.a \(0\) \(0\) \(0\) \(4\) $\mathrm{U}(1)[D_{3}]$ \(q-2q^{4}+(4-4\zeta_{6})q^{7}-5\zeta_{6}q^{13}+4q^{16}+\cdots\)
279.2.h.b 279.h 31.c $4$ $2.228$ \(\Q(\sqrt{2}, \sqrt{-3})\) None None 93.2.e.a \(0\) \(0\) \(-4\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{3}q^{2}+(-\beta _{1}+2\beta _{2}-\beta _{3})q^{5}+(2+\cdots)q^{7}+\cdots\)
279.2.h.c 279.h 31.c $4$ $2.228$ \(\Q(\sqrt{2}, \sqrt{-3})\) None None 31.2.c.a \(4\) \(0\) \(2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{3})q^{2}+(1+2\beta _{3})q^{4}+(1+\beta _{2}+\cdots)q^{5}+\cdots\)
279.2.h.d 279.h 31.c $6$ $2.228$ 6.0.591408.1 None None 93.2.e.b \(0\) \(0\) \(4\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{3}q^{2}+(1-\beta _{2}+\beta _{3})q^{4}+(-2\beta _{1}+\cdots)q^{5}+\cdots\)
279.2.h.e 279.h 31.c $8$ $2.228$ 8.0.207360000.1 None None 279.2.h.e \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{3}q^{2}+(1-\beta _{4})q^{4}+\beta _{7}q^{5}+(-1+\cdots)q^{7}+\cdots\)
279.2.i.a 279.i 31.d $4$ $2.228$ \(\Q(\zeta_{10})\) None None 31.2.d.a \(3\) \(0\) \(6\) \(-3\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1+\zeta_{10}^{2})q^{2}+(\zeta_{10}-\zeta_{10}^{2}+\zeta_{10}^{3})q^{4}+\cdots\)
279.2.i.b 279.i 31.d $8$ $2.228$ \(\Q(\zeta_{15})\) None None 93.2.f.a \(-3\) \(0\) \(6\) \(9\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-\beta_{4}-\beta_{3}-1)q^{2}+(-\beta_{5}+\beta_{3}-\beta_1)q^{4}+\cdots\)
279.2.i.c 279.i 31.d $16$ $2.228$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None None 93.2.f.b \(3\) \(0\) \(-6\) \(-7\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{1}q^{2}+(-1-\beta _{8}-\beta _{9}-\beta _{11})q^{4}+\cdots\)
279.2.i.d 279.i 31.d $24$ $2.228$ None None 279.2.i.d \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{5}]$
279.2.j.a 279.j 93.g $4$ $2.228$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None None 279.2.j.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{3}q^{2}+2\beta _{1}q^{5}-2\beta _{2}q^{7}+2\beta _{3}q^{8}+\cdots\)
279.2.j.b 279.j 93.g $4$ $2.228$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None None 279.2.j.b \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{6}]$ \(q+2q^{4}+(\beta _{2}+\beta _{3})q^{5}-2\beta _{1}q^{7}+(2\beta _{2}+\cdots)q^{11}+\cdots\)
279.2.j.c 279.j 93.g $12$ $2.228$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None None 279.2.j.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{7}q^{2}+(-1-\beta _{1})q^{4}+(-\beta _{7}+\beta _{9}+\cdots)q^{5}+\cdots\)
279.2.o.a 279.o 279.o $60$ $2.228$ None None 279.2.o.a \(-6\) \(-3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
279.2.r.a 279.r 279.r $60$ $2.228$ None None 279.2.o.a \(-6\) \(-3\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{6}]$
279.2.s.a 279.s 279.s $60$ $2.228$ None None 279.2.s.a \(-6\) \(0\) \(-12\) \(0\) $\mathrm{SU}(2)[C_{6}]$
279.2.w.a 279.w 93.k $48$ $2.228$ None None 279.2.w.a \(0\) \(0\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{10}]$
279.2.y.a 279.y 31.g $8$ $2.228$ \(\Q(\zeta_{15})\) \(\Q(\sqrt{-3}) \) None 279.2.y.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{U}(1)[D_{15}]$ \(q+(2\zeta_{15}^{2}+2\zeta_{15}^{7})q^{4}+(-3+2\zeta_{15}+\cdots)q^{7}+\cdots\)
279.2.y.b 279.y 31.g $16$ $2.228$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None None 93.2.m.a \(0\) \(0\) \(-6\) \(-9\) $\mathrm{SU}(2)[C_{15}]$ \(q+(\beta _{7}-\beta _{12}-\beta _{13})q^{2}+(-\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\)
279.2.y.c 279.y 31.g $16$ $2.228$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None None 31.2.g.a \(6\) \(0\) \(3\) \(2\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-\beta _{1}-\beta _{4}+\beta _{5}-\beta _{9}-\beta _{10}-\beta _{11}+\cdots)q^{2}+\cdots\)
279.2.y.d 279.y 31.g $24$ $2.228$ None None 93.2.m.b \(0\) \(0\) \(6\) \(-1\) $\mathrm{SU}(2)[C_{15}]$
279.2.y.e 279.y 31.g $32$ $2.228$ None None 279.2.y.e \(0\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{15}]$
279.2.z.a 279.z 279.z $240$ $2.228$ None None 279.2.z.a \(-3\) \(-8\) \(-6\) \(-5\) $\mathrm{SU}(2)[C_{15}]$
279.2.ba.a 279.ba 279.aa $240$ $2.228$ None None 279.2.ba.a \(-3\) \(-5\) \(3\) \(-5\) $\mathrm{SU}(2)[C_{15}]$
279.2.bb.a 279.bb 279.ab $240$ $2.228$ None None 279.2.ba.a \(-3\) \(-11\) \(-6\) \(-5\) $\mathrm{SU}(2)[C_{15}]$
279.2.be.a 279.be 279.ae $240$ $2.228$ None None 279.2.be.a \(-9\) \(-7\) \(0\) \(-5\) $\mathrm{SU}(2)[C_{30}]$
279.2.bg.a 279.bg 279.ag $240$ $2.228$ None None 279.2.bg.a \(-9\) \(-10\) \(-18\) \(-5\) $\mathrm{SU}(2)[C_{30}]$
279.2.bh.a 279.bh 279.ah $240$ $2.228$ None None 279.2.be.a \(-9\) \(-7\) \(-9\) \(-5\) $\mathrm{SU}(2)[C_{30}]$
279.2.bn.a 279.bn 93.p $80$ $2.228$ None None 279.2.bn.a \(0\) \(0\) \(0\) \(28\) $\mathrm{SU}(2)[C_{30}]$
279.3.b.a 279.b 3.b $20$ $7.602$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None None 279.3.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-2+\beta _{2})q^{4}+\beta _{13}q^{5}+\cdots\)
279.3.d.a 279.d 31.b $2$ $7.602$ \(\Q(\sqrt{-26}) \) None None 31.3.b.a \(2\) \(0\) \(-4\) \(16\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}-3q^{4}-2q^{5}+8q^{7}-7q^{8}+\cdots\)
279.3.d.b 279.d 31.b $2$ $7.602$ \(\Q(\sqrt{-3}) \) None None 93.3.d.a \(6\) \(0\) \(12\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+3q^{2}+5q^{4}+6q^{5}+2q^{7}+3q^{8}+\cdots\)
279.3.d.c 279.d 31.b $3$ $7.602$ 3.3.837.1 \(\Q(\sqrt{-31}) \) None 31.3.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{2}q^{2}+(4+\beta _{1}-2\beta _{2})q^{4}+(3\beta _{1}+\cdots)q^{5}+\cdots\)
279.3.d.d 279.d 31.b $4$ $7.602$ \(\Q(\sqrt{3}, \sqrt{-53})\) None None 279.3.d.d \(0\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-q^{4}-\beta _{1}q^{5}-4q^{7}-5\beta _{1}q^{8}+\cdots\)
279.3.d.e 279.d 31.b $6$ $7.602$ 6.6.1389928896.1 \(\Q(\sqrt{-31}) \) None 279.3.d.e \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{3}q^{2}+(4+\beta _{4}-\beta _{5})q^{4}+(\beta _{1}-\beta _{3}+\cdots)q^{5}+\cdots\)
279.3.d.f 279.d 31.b $8$ $7.602$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None None 93.3.d.b \(-6\) \(0\) \(-12\) \(-20\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1-\beta _{3})q^{2}+(2+\beta _{2}+\beta _{3})q^{4}+\cdots\)
279.3.k.a 279.k 93.h $44$ $7.602$ None None 279.3.k.a \(0\) \(0\) \(0\) \(32\) $\mathrm{SU}(2)[C_{6}]$
279.3.l.a 279.l 279.l $124$ $7.602$ None None 279.3.l.a \(-2\) \(-3\) \(-2\) \(2\) $\mathrm{SU}(2)[C_{6}]$
Next   displayed columns for results