Properties

Label 2775.2.a.v
Level $2775$
Weight $2$
Character orbit 2775.a
Self dual yes
Analytic conductor $22.158$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2775,2,Mod(1,2775)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2775, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2775.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2775 = 3 \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2775.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.1584865609\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + q^{3} + ( - \beta_{2} + \beta_1 + 1) q^{4} + \beta_{2} q^{6} + (\beta_{2} - 2) q^{7} + (\beta_{2} - 3) q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{2} q^{2} + q^{3} + ( - \beta_{2} + \beta_1 + 1) q^{4} + \beta_{2} q^{6} + (\beta_{2} - 2) q^{7} + (\beta_{2} - 3) q^{8} + q^{9} + ( - \beta_{2} - 2 \beta_1 + 1) q^{11} + ( - \beta_{2} + \beta_1 + 1) q^{12} + ( - \beta_{2} + \beta_1 - 1) q^{13} + ( - 3 \beta_{2} + \beta_1 + 3) q^{14} + ( - 2 \beta_{2} - \beta_1 + 1) q^{16} + ( - \beta_{2} - \beta_1 - 2) q^{17} + \beta_{2} q^{18} + ( - \beta_{2} - \beta_1 - 3) q^{19} + (\beta_{2} - 2) q^{21} + ( - 3 \beta_1 - 3) q^{22} + (\beta_{2} + \beta_1 - 3) q^{23} + (\beta_{2} - 3) q^{24} + (\beta_{2} - 3) q^{26} + q^{27} + (5 \beta_{2} - 2 \beta_1 - 5) q^{28} + ( - 2 \beta_{2} + 3) q^{29} + (2 \beta_{2} - 2 \beta_1 + 3) q^{31} - 3 \beta_1 q^{32} + ( - \beta_{2} - 2 \beta_1 + 1) q^{33} + ( - 2 \beta_{2} - 2 \beta_1 - 3) q^{34} + ( - \beta_{2} + \beta_1 + 1) q^{36} - q^{37} + ( - 3 \beta_{2} - 2 \beta_1 - 3) q^{38} + ( - \beta_{2} + \beta_1 - 1) q^{39} + (3 \beta_{2} + 4 \beta_1 - 6) q^{41} + ( - 3 \beta_{2} + \beta_1 + 3) q^{42} + ( - \beta_{2} + 3 \beta_1 - 2) q^{43} + ( - 4 \beta_{2} + \beta_1 - 2) q^{44} + ( - 3 \beta_{2} + 2 \beta_1 + 3) q^{46} + ( - 3 \beta_{2} + 2 \beta_1 - 3) q^{47} + ( - 2 \beta_{2} - \beta_1 + 1) q^{48} + ( - 5 \beta_{2} + \beta_1) q^{49} + ( - \beta_{2} - \beta_1 - 2) q^{51} + ( - 2 \beta_{2} - \beta_1 + 5) q^{52} + ( - \beta_{2} + 2 \beta_1 + 3) q^{53} + \beta_{2} q^{54} + ( - 6 \beta_{2} + \beta_1 + 9) q^{56} + ( - \beta_{2} - \beta_1 - 3) q^{57} + (5 \beta_{2} - 2 \beta_1 - 6) q^{58} + ( - 2 \beta_{2} + 3 \beta_1 - 4) q^{59} + (2 \beta_{2} + \beta_1 - 5) q^{61} + ( - \beta_{2} + 6) q^{62} + (\beta_{2} - 2) q^{63} + (\beta_{2} - \beta_1 - 2) q^{64} + ( - 3 \beta_1 - 3) q^{66} + (5 \beta_{2} + 1) q^{67} + ( - \beta_{2} - 2 \beta_1 - 2) q^{68} + (\beta_{2} + \beta_1 - 3) q^{69} + ( - 3 \beta_{2} + 3 \beta_1 + 6) q^{71} + (\beta_{2} - 3) q^{72} + (2 \beta_{2} - 5 \beta_1 - 6) q^{73} - \beta_{2} q^{74} + ( - 3 \beta_1 - 3) q^{76} + (2 \beta_{2} + \beta_1 - 5) q^{77} + (\beta_{2} - 3) q^{78} + ( - 3 \beta_{2} - 6) q^{79} + q^{81} + ( - 5 \beta_{2} + 7 \beta_1 + 9) q^{82} + (5 \beta_1 + 2) q^{83} + (5 \beta_{2} - 2 \beta_1 - 5) q^{84} + (2 \beta_{2} + 2 \beta_1 - 3) q^{86} + ( - 2 \beta_{2} + 3) q^{87} + (3 \beta_{2} + 3 \beta_1 - 6) q^{88} + (5 \beta_{2} + \beta_1 + 4) q^{89} + (3 \beta_{2} - 2 \beta_1 - 1) q^{91} + (6 \beta_{2} - 3 \beta_1 - 3) q^{92} + (2 \beta_{2} - 2 \beta_1 + 3) q^{93} + (2 \beta_{2} - \beta_1 - 9) q^{94} - 3 \beta_1 q^{96} + (2 \beta_{2} - 2 \beta_1 - 4) q^{97} + (6 \beta_{2} - 4 \beta_1 - 15) q^{98} + ( - \beta_{2} - 2 \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + 4 q^{4} - 6 q^{7} - 9 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{3} + 4 q^{4} - 6 q^{7} - 9 q^{8} + 3 q^{9} + q^{11} + 4 q^{12} - 2 q^{13} + 10 q^{14} + 2 q^{16} - 7 q^{17} - 10 q^{19} - 6 q^{21} - 12 q^{22} - 8 q^{23} - 9 q^{24} - 9 q^{26} + 3 q^{27} - 17 q^{28} + 9 q^{29} + 7 q^{31} - 3 q^{32} + q^{33} - 11 q^{34} + 4 q^{36} - 3 q^{37} - 11 q^{38} - 2 q^{39} - 14 q^{41} + 10 q^{42} - 3 q^{43} - 5 q^{44} + 11 q^{46} - 7 q^{47} + 2 q^{48} + q^{49} - 7 q^{51} + 14 q^{52} + 11 q^{53} + 28 q^{56} - 10 q^{57} - 20 q^{58} - 9 q^{59} - 14 q^{61} + 18 q^{62} - 6 q^{63} - 7 q^{64} - 12 q^{66} + 3 q^{67} - 8 q^{68} - 8 q^{69} + 21 q^{71} - 9 q^{72} - 23 q^{73} - 12 q^{76} - 14 q^{77} - 9 q^{78} - 18 q^{79} + 3 q^{81} + 34 q^{82} + 11 q^{83} - 17 q^{84} - 7 q^{86} + 9 q^{87} - 15 q^{88} + 13 q^{89} - 5 q^{91} - 12 q^{92} + 7 q^{93} - 28 q^{94} - 3 q^{96} - 14 q^{97} - 49 q^{98} + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.713538
−1.91223
2.19869
−2.49086 1.00000 4.20440 0 −2.49086 −4.49086 −5.49086 1.00000 0
1.2 0.656620 1.00000 −1.56885 0 0.656620 −1.34338 −2.34338 1.00000 0
1.3 1.83424 1.00000 1.36445 0 1.83424 −0.165757 −1.16576 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(-1\)
\(37\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2775.2.a.v yes 3
3.b odd 2 1 8325.2.a.bo 3
5.b even 2 1 2775.2.a.u 3
15.d odd 2 1 8325.2.a.bp 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2775.2.a.u 3 5.b even 2 1
2775.2.a.v yes 3 1.a even 1 1 trivial
8325.2.a.bo 3 3.b odd 2 1
8325.2.a.bp 3 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2775))\):

\( T_{2}^{3} - 5T_{2} + 3 \) Copy content Toggle raw display
\( T_{7}^{3} + 6T_{7}^{2} + 7T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 5T + 3 \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 6 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{3} - T^{2} + \cdots + 45 \) Copy content Toggle raw display
$13$ \( T^{3} + 2 T^{2} + \cdots - 5 \) Copy content Toggle raw display
$17$ \( T^{3} + 7 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{3} + 10 T^{2} + \cdots + 15 \) Copy content Toggle raw display
$23$ \( T^{3} + 8 T^{2} + \cdots - 21 \) Copy content Toggle raw display
$29$ \( T^{3} - 9 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$31$ \( T^{3} - 7 T^{2} + \cdots + 63 \) Copy content Toggle raw display
$37$ \( (T + 1)^{3} \) Copy content Toggle raw display
$41$ \( T^{3} + 14 T^{2} + \cdots - 1029 \) Copy content Toggle raw display
$43$ \( T^{3} + 3 T^{2} + \cdots + 61 \) Copy content Toggle raw display
$47$ \( T^{3} + 7 T^{2} + \cdots - 213 \) Copy content Toggle raw display
$53$ \( T^{3} - 11 T^{2} + \cdots + 57 \) Copy content Toggle raw display
$59$ \( T^{3} + 9 T^{2} + \cdots - 37 \) Copy content Toggle raw display
$61$ \( T^{3} + 14 T^{2} + \cdots - 45 \) Copy content Toggle raw display
$67$ \( T^{3} - 3 T^{2} + \cdots + 499 \) Copy content Toggle raw display
$71$ \( T^{3} - 21 T^{2} + \cdots + 189 \) Copy content Toggle raw display
$73$ \( T^{3} + 23 T^{2} + \cdots - 945 \) Copy content Toggle raw display
$79$ \( T^{3} + 18 T^{2} + \cdots - 135 \) Copy content Toggle raw display
$83$ \( T^{3} - 11 T^{2} + \cdots + 547 \) Copy content Toggle raw display
$89$ \( T^{3} - 13 T^{2} + \cdots + 639 \) Copy content Toggle raw display
$97$ \( T^{3} + 14 T^{2} + \cdots - 56 \) Copy content Toggle raw display
show more
show less