Properties

Label 2775.1.h.a
Level $2775$
Weight $1$
Character orbit 2775.h
Self dual yes
Analytic conductor $1.385$
Analytic rank $0$
Dimension $1$
Projective image $D_{2}$
CM/RM discs -3, -111, 37
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2775 = 3 \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2775.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: yes
Analytic conductor: \(1.38490541006\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 111)
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{-3}, \sqrt{37})\)
Artin image: $D_4$
Artin field: Galois closure of 4.0.8325.1

$q$-expansion

\(f(q)\) \(=\) \( q - q^{3} - q^{4} + 2q^{7} + q^{9} + O(q^{10}) \) \( q - q^{3} - q^{4} + 2q^{7} + q^{9} + q^{12} + q^{16} - 2q^{21} - q^{27} - 2q^{28} - q^{36} - q^{37} - q^{48} + 3q^{49} + 2q^{63} - q^{64} + 2q^{67} + 2q^{73} + q^{81} + 2q^{84} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2775\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(926\) \(1777\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
776.1
0
0 −1.00000 −1.00000 0 0 2.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
37.b even 2 1 RM by \(\Q(\sqrt{37}) \)
111.d odd 2 1 CM by \(\Q(\sqrt{-111}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2775.1.h.a 1
3.b odd 2 1 CM 2775.1.h.a 1
5.b even 2 1 111.1.d.a 1
5.c odd 4 2 2775.1.b.a 2
15.d odd 2 1 111.1.d.a 1
15.e even 4 2 2775.1.b.a 2
20.d odd 2 1 1776.1.n.a 1
37.b even 2 1 RM 2775.1.h.a 1
45.h odd 6 2 2997.1.n.b 2
45.j even 6 2 2997.1.n.b 2
60.h even 2 1 1776.1.n.a 1
111.d odd 2 1 CM 2775.1.h.a 1
185.d even 2 1 111.1.d.a 1
185.h odd 4 2 2775.1.b.a 2
555.b odd 2 1 111.1.d.a 1
555.n even 4 2 2775.1.b.a 2
740.g odd 2 1 1776.1.n.a 1
1665.bh even 6 2 2997.1.n.b 2
1665.bt odd 6 2 2997.1.n.b 2
2220.p even 2 1 1776.1.n.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
111.1.d.a 1 5.b even 2 1
111.1.d.a 1 15.d odd 2 1
111.1.d.a 1 185.d even 2 1
111.1.d.a 1 555.b odd 2 1
1776.1.n.a 1 20.d odd 2 1
1776.1.n.a 1 60.h even 2 1
1776.1.n.a 1 740.g odd 2 1
1776.1.n.a 1 2220.p even 2 1
2775.1.b.a 2 5.c odd 4 2
2775.1.b.a 2 15.e even 4 2
2775.1.b.a 2 185.h odd 4 2
2775.1.b.a 2 555.n even 4 2
2775.1.h.a 1 1.a even 1 1 trivial
2775.1.h.a 1 3.b odd 2 1 CM
2775.1.h.a 1 37.b even 2 1 RM
2775.1.h.a 1 111.d odd 2 1 CM
2997.1.n.b 2 45.h odd 6 2
2997.1.n.b 2 45.j even 6 2
2997.1.n.b 2 1665.bh even 6 2
2997.1.n.b 2 1665.bt odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2775, [\chi])\):

\( T_{2} \)
\( T_{223} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( 1 + T \)
$5$ \( T \)
$7$ \( -2 + T \)
$11$ \( T \)
$13$ \( T \)
$17$ \( T \)
$19$ \( T \)
$23$ \( T \)
$29$ \( T \)
$31$ \( T \)
$37$ \( 1 + T \)
$41$ \( T \)
$43$ \( T \)
$47$ \( T \)
$53$ \( T \)
$59$ \( T \)
$61$ \( T \)
$67$ \( -2 + T \)
$71$ \( T \)
$73$ \( -2 + T \)
$79$ \( T \)
$83$ \( T \)
$89$ \( T \)
$97$ \( T \)
show more
show less