Properties

Label 2775.1
Level 2775
Weight 1
Dimension 213
Nonzero newspaces 18
Newform subspaces 27
Sturm bound 547200
Trace bound 64

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2775 = 3 \cdot 5^{2} \cdot 37 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 18 \)
Newform subspaces: \( 27 \)
Sturm bound: \(547200\)
Trace bound: \(64\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(2775))\).

Total New Old
Modular forms 4282 1647 2635
Cusp forms 250 213 37
Eisenstein series 4032 1434 2598

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 213 0 0 0

Trace form

\( 213q + 3q^{3} + 7q^{4} + 2q^{7} + 7q^{9} + O(q^{10}) \) \( 213q + 3q^{3} + 7q^{4} + 2q^{7} + 7q^{9} + 3q^{12} + 2q^{13} - 17q^{16} + 2q^{19} - 6q^{21} - 3q^{27} - 20q^{28} - 6q^{31} - 52q^{34} - 5q^{36} - 3q^{37} - 4q^{39} + 2q^{43} - 12q^{46} - 23q^{48} + 7q^{49} + 2q^{52} + 2q^{57} - 20q^{58} - 6q^{61} + 2q^{63} + 11q^{64} + 2q^{67} + 2q^{73} - 6q^{76} + 2q^{79} - 5q^{81} + 34q^{84} - 18q^{91} + 2q^{93} + 2q^{97} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(2775))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2775.1.b \(\chi_{2775}(2774, \cdot)\) 2775.1.b.a 2 1
2775.1.b.b 4
2775.1.d \(\chi_{2775}(926, \cdot)\) None 0 1
2775.1.f \(\chi_{2775}(149, \cdot)\) None 0 1
2775.1.h \(\chi_{2775}(776, \cdot)\) 2775.1.h.a 1 1
2775.1.h.b 2
2775.1.h.c 4
2775.1.h.d 4
2775.1.k \(\chi_{2775}(68, \cdot)\) 2775.1.k.a 4 2
2775.1.l \(\chi_{2775}(1474, \cdot)\) None 0 2
2775.1.p \(\chi_{2775}(2332, \cdot)\) None 0 2
2775.1.q \(\chi_{2775}(2182, \cdot)\) None 0 2
2775.1.r \(\chi_{2775}(376, \cdot)\) None 0 2
2775.1.u \(\chi_{2775}(968, \cdot)\) 2775.1.u.a 4 2
2775.1.w \(\chi_{2775}(101, \cdot)\) 2775.1.w.a 2 2
2775.1.x \(\chi_{2775}(824, \cdot)\) 2775.1.x.a 4 2
2775.1.z \(\chi_{2775}(26, \cdot)\) 2775.1.z.a 2 2
2775.1.bb \(\chi_{2775}(899, \cdot)\) 2775.1.bb.a 4 2
2775.1.bf \(\chi_{2775}(704, \cdot)\) None 0 4
2775.1.bg \(\chi_{2775}(221, \cdot)\) 2775.1.bg.a 4 4
2775.1.bg.b 4
2775.1.bg.c 8
2775.1.bg.d 16
2775.1.bi \(\chi_{2775}(554, \cdot)\) 2775.1.bi.a 32 4
2775.1.bk \(\chi_{2775}(371, \cdot)\) None 0 4
2775.1.bm \(\chi_{2775}(1118, \cdot)\) 2775.1.bm.a 8 4
2775.1.bn \(\chi_{2775}(526, \cdot)\) None 0 4
2775.1.br \(\chi_{2775}(232, \cdot)\) None 0 4
2775.1.bs \(\chi_{2775}(307, \cdot)\) None 0 4
2775.1.bt \(\chi_{2775}(199, \cdot)\) None 0 4
2775.1.bw \(\chi_{2775}(1007, \cdot)\) 2775.1.bw.a 8 4
2775.1.bz \(\chi_{2775}(176, \cdot)\) 2775.1.bz.a 6 6
2775.1.bz.b 6
2775.1.ca \(\chi_{2775}(599, \cdot)\) 2775.1.ca.a 12 6
2775.1.cd \(\chi_{2775}(299, \cdot)\) 2775.1.cd.a 12 6
2775.1.ce \(\chi_{2775}(551, \cdot)\) 2775.1.ce.a 6 6
2775.1.ce.b 6
2775.1.cf \(\chi_{2775}(413, \cdot)\) None 0 8
2775.1.ci \(\chi_{2775}(154, \cdot)\) None 0 8
2775.1.cj \(\chi_{2775}(73, \cdot)\) None 0 8
2775.1.ck \(\chi_{2775}(112, \cdot)\) None 0 8
2775.1.co \(\chi_{2775}(31, \cdot)\) None 0 8
2775.1.cp \(\chi_{2775}(302, \cdot)\) None 0 8
2775.1.cs \(\chi_{2775}(491, \cdot)\) None 0 8
2775.1.cu \(\chi_{2775}(344, \cdot)\) None 0 8
2775.1.cv \(\chi_{2775}(11, \cdot)\) None 0 8
2775.1.cx \(\chi_{2775}(269, \cdot)\) None 0 8
2775.1.cy \(\chi_{2775}(32, \cdot)\) 2775.1.cy.a 24 12
2775.1.da \(\chi_{2775}(1057, \cdot)\) None 0 12
2775.1.dd \(\chi_{2775}(7, \cdot)\) None 0 12
2775.1.df \(\chi_{2775}(124, \cdot)\) None 0 12
2775.1.dg \(\chi_{2775}(76, \cdot)\) None 0 12
2775.1.di \(\chi_{2775}(143, \cdot)\) 2775.1.di.a 24 12
2775.1.dl \(\chi_{2775}(452, \cdot)\) None 0 16
2775.1.do \(\chi_{2775}(421, \cdot)\) None 0 16
2775.1.dp \(\chi_{2775}(397, \cdot)\) None 0 16
2775.1.dq \(\chi_{2775}(322, \cdot)\) None 0 16
2775.1.du \(\chi_{2775}(214, \cdot)\) None 0 16
2775.1.dv \(\chi_{2775}(8, \cdot)\) None 0 16
2775.1.dx \(\chi_{2775}(71, \cdot)\) None 0 24
2775.1.dy \(\chi_{2775}(104, \cdot)\) None 0 24
2775.1.eb \(\chi_{2775}(44, \cdot)\) None 0 24
2775.1.ec \(\chi_{2775}(41, \cdot)\) None 0 24
2775.1.ef \(\chi_{2775}(17, \cdot)\) None 0 48
2775.1.eh \(\chi_{2775}(61, \cdot)\) None 0 48
2775.1.ei \(\chi_{2775}(19, \cdot)\) None 0 48
2775.1.ek \(\chi_{2775}(127, \cdot)\) None 0 48
2775.1.en \(\chi_{2775}(28, \cdot)\) None 0 48
2775.1.ep \(\chi_{2775}(2, \cdot)\) None 0 48

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(2775))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(2775)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(111))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(555))\)\(^{\oplus 2}\)