Properties

Label 2760.2.y
Level $2760$
Weight $2$
Character orbit 2760.y
Rep. character $\chi_{2760}(1979,\cdot)$
Character field $\Q$
Dimension $528$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.y (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 120 \)
Character field: \(\Q\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).

Total New Old
Modular forms 584 528 56
Cusp forms 568 528 40
Eisenstein series 16 0 16

Trace form

\( 528q + O(q^{10}) \) \( 528q - 8q^{10} + 16q^{16} + 12q^{24} - 34q^{30} + 56q^{36} + 8q^{40} + 528q^{49} + 12q^{54} - 24q^{60} - 24q^{64} - 104q^{66} + 72q^{70} - 56q^{75} - 120q^{76} - 68q^{84} + 22q^{90} + 136q^{94} - 80q^{96} - 64q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2760, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)