# Properties

 Label 2760.2.w Level $2760$ Weight $2$ Character orbit 2760.w Rep. character $\chi_{2760}(2069,\cdot)$ Character field $\Q$ Dimension $568$ Sturm bound $1152$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2760.w (of order $$2$$ and degree $$1$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$2760$$ Character field: $$\Q$$ Sturm bound: $$1152$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(2760, [\chi])$$.

Total New Old
Modular forms 584 584 0
Cusp forms 568 568 0
Eisenstein series 16 16 0

## Trace form

 $$568q - 12q^{4} + 4q^{6} - 8q^{9} + O(q^{10})$$ $$568q - 12q^{4} + 4q^{6} - 8q^{9} - 12q^{16} + 8q^{24} - 8q^{25} - 32q^{31} - 20q^{36} - 32q^{39} - 8q^{46} + 504q^{49} - 48q^{54} + 32q^{55} - 36q^{64} + 8q^{81} + 24q^{94} + 84q^{96} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(2760, [\chi])$$ into newform subspaces

The newforms in this space have not yet been added to the LMFDB.