Properties

Label 2760.2.t
Level $2760$
Weight $2$
Character orbit 2760.t
Rep. character $\chi_{2760}(1381,\cdot)$
Character field $\Q$
Dimension $176$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.t (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).

Total New Old
Modular forms 584 176 408
Cusp forms 568 176 392
Eisenstein series 16 0 16

Trace form

\( 176q - 176q^{9} + O(q^{10}) \) \( 176q - 176q^{9} + 16q^{14} - 16q^{16} + 16q^{20} + 24q^{22} - 24q^{24} - 176q^{25} - 16q^{26} + 24q^{28} + 40q^{32} - 40q^{38} - 24q^{42} - 24q^{44} + 144q^{49} - 16q^{52} - 32q^{55} + 40q^{56} + 32q^{57} + 56q^{58} - 96q^{62} + 24q^{66} - 56q^{68} - 8q^{70} + 64q^{71} + 32q^{73} + 40q^{74} - 120q^{76} - 16q^{78} + 176q^{81} + 40q^{82} - 24q^{84} - 40q^{86} - 48q^{87} + 80q^{88} + 40q^{96} - 32q^{97} + 56q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2760, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(552, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(920, [\chi])\)\(^{\oplus 2}\)