Properties

Label 2760.2.h
Level $2760$
Weight $2$
Character orbit 2760.h
Rep. character $\chi_{2760}(2299,\cdot)$
Character field $\Q$
Dimension $288$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 920 \)
Character field: \(\Q\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).

Total New Old
Modular forms 584 288 296
Cusp forms 568 288 280
Eisenstein series 16 0 16

Trace form

\( 288q - 4q^{4} - 4q^{6} - 288q^{9} + O(q^{10}) \) \( 288q - 4q^{4} - 4q^{6} - 288q^{9} + 4q^{16} + 4q^{24} - 40q^{26} + 4q^{36} - 4q^{46} - 288q^{49} - 56q^{50} + 4q^{54} - 52q^{64} + 32q^{70} + 288q^{81} - 72q^{94} - 84q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2760, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(920, [\chi])\)\(^{\oplus 2}\)