Properties

Label 2760.2.f
Level $2760$
Weight $2$
Character orbit 2760.f
Rep. character $\chi_{2760}(829,\cdot)$
Character field $\Q$
Dimension $264$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).

Total New Old
Modular forms 584 264 320
Cusp forms 568 264 304
Eisenstein series 16 0 16

Trace form

\( 264q + 264q^{9} + O(q^{10}) \) \( 264q + 264q^{9} + 20q^{10} + 40q^{14} - 12q^{20} - 8q^{25} + 16q^{26} - 8q^{30} + 48q^{31} - 16q^{34} + 32q^{39} - 20q^{40} + 16q^{41} - 40q^{44} - 264q^{49} - 16q^{50} + 32q^{55} + 16q^{56} + 24q^{60} + 48q^{64} + 48q^{65} - 40q^{66} - 32q^{70} - 64q^{71} - 88q^{74} + 48q^{76} + 28q^{80} + 264q^{81} - 24q^{84} - 16q^{86} + 80q^{89} + 20q^{90} - 64q^{94} - 48q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2760, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(920, [\chi])\)\(^{\oplus 2}\)