Properties

Label 2760.2.do
Level $2760$
Weight $2$
Character orbit 2760.do
Rep. character $\chi_{2760}(233,\cdot)$
Character field $\Q(\zeta_{44})$
Dimension $2880$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.do (of order \(44\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 345 \)
Character field: \(\Q(\zeta_{44})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).

Total New Old
Modular forms 11840 2880 8960
Cusp forms 11200 2880 8320
Eisenstein series 640 0 640

Trace form

\( 2880q + O(q^{10}) \) \( 2880q + 24q^{15} + 32q^{21} + 16q^{25} + 24q^{27} + 16q^{31} - 72q^{37} - 48q^{55} - 48q^{57} - 48q^{61} - 16q^{63} - 80q^{67} - 16q^{73} + 108q^{75} + 56q^{81} - 16q^{85} + 40q^{87} + 64q^{91} + 72q^{93} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2760, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(345, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(690, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1380, [\chi])\)\(^{\oplus 2}\)