Properties

Label 2760.2.dm
Level $2760$
Weight $2$
Character orbit 2760.dm
Rep. character $\chi_{2760}(97,\cdot)$
Character field $\Q(\zeta_{44})$
Dimension $1440$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.dm (of order \(44\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 115 \)
Character field: \(\Q(\zeta_{44})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).

Total New Old
Modular forms 11840 1440 10400
Cusp forms 11200 1440 9760
Eisenstein series 640 0 640

Trace form

\( 1440q + O(q^{10}) \) \( 1440q + 24q^{23} - 16q^{25} + 16q^{31} - 88q^{37} + 48q^{41} - 160q^{47} + 32q^{55} - 88q^{57} - 16q^{73} + 32q^{75} + 96q^{77} + 144q^{81} + 200q^{85} + 48q^{87} - 48q^{93} + 416q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2760, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(345, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(690, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(920, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1380, [\chi])\)\(^{\oplus 2}\)