Properties

Label 2760.2.dh
Level $2760$
Weight $2$
Character orbit 2760.dh
Rep. character $\chi_{2760}(163,\cdot)$
Character field $\Q(\zeta_{44})$
Dimension $5760$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.dh (of order \(44\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 920 \)
Character field: \(\Q(\zeta_{44})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).

Total New Old
Modular forms 11680 5760 5920
Cusp forms 11360 5760 5600
Eisenstein series 320 0 320

Trace form

\( 5760q - 8q^{6} + O(q^{10}) \) \( 5760q - 8q^{6} + 8q^{16} + 40q^{20} + 40q^{22} - 32q^{28} - 40q^{32} - 8q^{36} + 180q^{42} - 48q^{46} - 32q^{48} - 112q^{50} + 32q^{51} - 108q^{52} + 96q^{56} + 32q^{58} - 40q^{60} + 32q^{62} - 32q^{70} - 48q^{76} + 244q^{80} + 576q^{81} - 40q^{82} - 160q^{83} + 32q^{86} - 16q^{92} + 88q^{96} + 56q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2760, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(920, [\chi])\)\(^{\oplus 2}\)