Properties

Label 2760.2.da
Level $2760$
Weight $2$
Character orbit 2760.da
Rep. character $\chi_{2760}(131,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $3840$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.da (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 552 \)
Character field: \(\Q(\zeta_{22})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).

Total New Old
Modular forms 5840 3840 2000
Cusp forms 5680 3840 1840
Eisenstein series 160 0 160

Trace form

\( 3840q - 4q^{4} + 6q^{6} + O(q^{10}) \) \( 3840q - 4q^{4} + 6q^{6} + 4q^{10} + 6q^{12} + 28q^{16} + 6q^{18} + 16q^{19} - 32q^{22} - 384q^{25} + 24q^{27} + 32q^{28} + 46q^{34} + 34q^{36} - 126q^{40} - 40q^{42} + 192q^{46} + 46q^{48} + 384q^{49} - 68q^{52} + 148q^{58} - 64q^{64} - 12q^{66} + 128q^{67} - 108q^{72} + 64q^{76} + 178q^{78} - 16q^{81} + 12q^{82} + 252q^{84} - 16q^{88} + 76q^{94} - 22q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2760, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(552, [\chi])\)\(^{\oplus 2}\)