Properties

Label 2760.2.cx
Level $2760$
Weight $2$
Character orbit 2760.cx
Rep. character $\chi_{2760}(349,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $2880$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.cx (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 920 \)
Character field: \(\Q(\zeta_{22})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).

Total New Old
Modular forms 5840 2880 2960
Cusp forms 5680 2880 2800
Eisenstein series 160 0 160

Trace form

\( 2880q - 4q^{4} + 4q^{6} - 288q^{9} + O(q^{10}) \) \( 2880q - 4q^{4} + 4q^{6} - 288q^{9} - 4q^{16} + 20q^{20} + 4q^{24} + 40q^{26} - 16q^{30} + 16q^{31} - 54q^{34} - 4q^{36} - 24q^{40} + 216q^{44} + 4q^{46} + 288q^{49} + 16q^{50} - 18q^{54} - 120q^{56} + 20q^{60} + 44q^{64} - 32q^{70} + 16q^{74} + 148q^{76} - 64q^{79} - 202q^{80} - 288q^{81} + 32q^{84} + 376q^{86} + 72q^{94} - 80q^{95} + 84q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2760, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(920, [\chi])\)\(^{\oplus 2}\)