Properties

Label 2760.2.cv
Level $2760$
Weight $2$
Character orbit 2760.cv
Rep. character $\chi_{2760}(19,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $2880$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.cv (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 920 \)
Character field: \(\Q(\zeta_{22})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).

Total New Old
Modular forms 5840 2880 2960
Cusp forms 5680 2880 2800
Eisenstein series 160 0 160

Trace form

\( 2880q + 4q^{4} + 4q^{6} + 288q^{9} + O(q^{10}) \) \( 2880q + 4q^{4} + 4q^{6} + 288q^{9} - 4q^{16} - 4q^{24} + 40q^{26} + 22q^{34} - 4q^{36} - 264q^{44} + 4q^{46} + 288q^{49} + 56q^{50} + 18q^{54} + 52q^{64} - 32q^{70} + 220q^{76} - 198q^{80} - 288q^{81} + 440q^{86} + 72q^{94} + 84q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2760, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(920, [\chi])\)\(^{\oplus 2}\)