# Properties

 Label 2760.2.cv Level $2760$ Weight $2$ Character orbit 2760.cv Rep. character $\chi_{2760}(19,\cdot)$ Character field $\Q(\zeta_{22})$ Dimension $2880$ Sturm bound $1152$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2760.cv (of order $$22$$ and degree $$10$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$920$$ Character field: $$\Q(\zeta_{22})$$ Sturm bound: $$1152$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(2760, [\chi])$$.

Total New Old
Modular forms 5840 2880 2960
Cusp forms 5680 2880 2800
Eisenstein series 160 0 160

## Trace form

 $$2880q + 4q^{4} + 4q^{6} + 288q^{9} + O(q^{10})$$ $$2880q + 4q^{4} + 4q^{6} + 288q^{9} - 4q^{16} - 4q^{24} + 40q^{26} + 22q^{34} - 4q^{36} - 264q^{44} + 4q^{46} + 288q^{49} + 56q^{50} + 18q^{54} + 52q^{64} - 32q^{70} + 220q^{76} - 198q^{80} - 288q^{81} + 440q^{86} + 72q^{94} + 84q^{96} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(2760, [\chi])$$ into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

## Decomposition of $$S_{2}^{\mathrm{old}}(2760, [\chi])$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(2760, [\chi]) \cong$$ $$S_{2}^{\mathrm{new}}(920, [\chi])$$$$^{\oplus 2}$$