Properties

Label 2760.2.cn
Level $2760$
Weight $2$
Character orbit 2760.cn
Rep. character $\chi_{2760}(281,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $960$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.cn (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 69 \)
Character field: \(\Q(\zeta_{22})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).

Total New Old
Modular forms 5920 960 4960
Cusp forms 5600 960 4640
Eisenstein series 320 0 320

Trace form

\( 960q + 4q^{9} + O(q^{10}) \) \( 960q + 4q^{9} - 96q^{25} + 8q^{31} - 24q^{39} - 88q^{43} + 4q^{49} - 36q^{55} - 16q^{69} - 16q^{73} + 44q^{81} + 300q^{87} + 48q^{93} + 396q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2760, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(138, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(276, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(345, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(552, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(690, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1380, [\chi])\)\(^{\oplus 2}\)