Properties

Label 2760.2.br
Level $2760$
Weight $2$
Character orbit 2760.br
Rep. character $\chi_{2760}(1333,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $576$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.br (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 920 \)
Character field: \(\Q(i)\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).

Total New Old
Modular forms 1168 576 592
Cusp forms 1136 576 560
Eisenstein series 32 0 32

Trace form

\( 576q + 8q^{6} + O(q^{10}) \) \( 576q + 8q^{6} - 8q^{16} - 32q^{31} - 40q^{32} + 8q^{36} + 48q^{46} - 32q^{48} + 32q^{50} + 112q^{52} - 32q^{58} + 112q^{62} + 32q^{70} - 576q^{81} - 40q^{82} - 24q^{92} - 88q^{96} + 56q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2760, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(920, [\chi])\)\(^{\oplus 2}\)