Properties

Label 2760.2.bq
Level $2760$
Weight $2$
Character orbit 2760.bq
Rep. character $\chi_{2760}(1243,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $528$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.bq (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q(i)\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).

Total New Old
Modular forms 1168 528 640
Cusp forms 1136 528 608
Eisenstein series 32 0 32

Trace form

\( 528q + 24q^{8} + O(q^{10}) \) \( 528q + 24q^{8} - 16q^{10} + 16q^{12} + 32q^{16} - 16q^{17} + 16q^{22} + 16q^{25} + 32q^{26} + 24q^{28} - 16q^{30} + 96q^{35} - 80q^{38} - 16q^{40} + 64q^{43} - 16q^{52} - 32q^{56} - 8q^{58} + 16q^{65} + 48q^{66} - 96q^{67} - 144q^{68} + 24q^{70} - 24q^{72} + 80q^{73} - 48q^{76} + 48q^{78} - 528q^{81} - 8q^{82} + 32q^{86} - 24q^{88} + 24q^{90} - 128q^{91} + 48q^{97} + 120q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2760, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(920, [\chi])\)\(^{\oplus 2}\)