Properties

Label 2760.2.bj
Level $2760$
Weight $2$
Character orbit 2760.bj
Rep. character $\chi_{2760}(737,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $264$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.bj (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).

Total New Old
Modular forms 1184 264 920
Cusp forms 1120 264 856
Eisenstein series 64 0 64

Trace form

\( 264q - 8q^{7} + O(q^{10}) \) \( 264q - 8q^{7} - 16q^{13} + 24q^{27} + 24q^{33} + 48q^{37} - 32q^{45} - 96q^{51} - 8q^{55} - 32q^{57} - 72q^{63} - 24q^{73} + 24q^{75} + 112q^{85} + 96q^{91} - 24q^{93} + 88q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2760, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(345, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(690, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1380, [\chi])\)\(^{\oplus 2}\)