Properties

Label 2760.2.a.c
Level $2760$
Weight $2$
Character orbit 2760.a
Self dual yes
Analytic conductor $22.039$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(22.0387109579\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{3} - q^{5} + 4 q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{3} - q^{5} + 4 q^{7} + q^{9} - 6 q^{11} - 4 q^{13} + q^{15} + 2 q^{17} - 4 q^{21} + q^{23} + q^{25} - q^{27} + 8 q^{29} + 8 q^{31} + 6 q^{33} - 4 q^{35} - 6 q^{37} + 4 q^{39} - 2 q^{41} + 6 q^{43} - q^{45} - 12 q^{47} + 9 q^{49} - 2 q^{51} + 6 q^{53} + 6 q^{55} + 4 q^{59} + 2 q^{61} + 4 q^{63} + 4 q^{65} + 6 q^{67} - q^{69} - 6 q^{71} + 14 q^{73} - q^{75} - 24 q^{77} + q^{81} - 2 q^{85} - 8 q^{87} + 12 q^{89} - 16 q^{91} - 8 q^{93} + 12 q^{97} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 −1.00000 0 4.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(5\) \(1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2760.2.a.c 1
3.b odd 2 1 8280.2.a.w 1
4.b odd 2 1 5520.2.a.s 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2760.2.a.c 1 1.a even 1 1 trivial
5520.2.a.s 1 4.b odd 2 1
8280.2.a.w 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2760))\):

\( T_{7} - 4 \) Copy content Toggle raw display
\( T_{11} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T - 4 \) Copy content Toggle raw display
$11$ \( T + 6 \) Copy content Toggle raw display
$13$ \( T + 4 \) Copy content Toggle raw display
$17$ \( T - 2 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T - 1 \) Copy content Toggle raw display
$29$ \( T - 8 \) Copy content Toggle raw display
$31$ \( T - 8 \) Copy content Toggle raw display
$37$ \( T + 6 \) Copy content Toggle raw display
$41$ \( T + 2 \) Copy content Toggle raw display
$43$ \( T - 6 \) Copy content Toggle raw display
$47$ \( T + 12 \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T - 4 \) Copy content Toggle raw display
$61$ \( T - 2 \) Copy content Toggle raw display
$67$ \( T - 6 \) Copy content Toggle raw display
$71$ \( T + 6 \) Copy content Toggle raw display
$73$ \( T - 14 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T - 12 \) Copy content Toggle raw display
$97$ \( T - 12 \) Copy content Toggle raw display
show more
show less