Properties

Label 276.2.i.a.85.2
Level $276$
Weight $2$
Character 276.85
Analytic conductor $2.204$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 276 = 2^{2} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 276.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.20387109579\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 43 x^{18} - 165 x^{17} + 538 x^{16} - 1433 x^{15} + 3444 x^{14} - 7370 x^{13} + 15500 x^{12} - 28190 x^{11} + 41920 x^{10} - 33520 x^{9} - 13837 x^{8} + 78980 x^{7} - 92652 x^{6} - 52852 x^{5} + 177374 x^{4} + 151360 x^{3} + 115323 x^{2} + 12834 x + 529\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 85.2
Root \(-0.962045 + 0.282482i\) of defining polynomial
Character \(\chi\) \(=\) 276.85
Dual form 276.2.i.a.13.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.841254 - 0.540641i) q^{3} +(1.11647 + 2.44474i) q^{5} +(0.161591 - 0.0474474i) q^{7} +(0.415415 - 0.909632i) q^{9} +O(q^{10})\) \(q+(0.841254 - 0.540641i) q^{3} +(1.11647 + 2.44474i) q^{5} +(0.161591 - 0.0474474i) q^{7} +(0.415415 - 0.909632i) q^{9} +(3.48648 + 4.02361i) q^{11} +(-3.68628 - 1.08239i) q^{13} +(2.26096 + 1.45303i) q^{15} +(0.947403 - 6.58933i) q^{17} +(0.980961 + 6.82274i) q^{19} +(0.110287 - 0.127278i) q^{21} +(2.24153 - 4.23976i) q^{23} +(-1.45592 + 1.68022i) q^{25} +(-0.142315 - 0.989821i) q^{27} +(0.0811036 - 0.564088i) q^{29} +(-5.85469 - 3.76258i) q^{31} +(5.10834 + 1.49994i) q^{33} +(0.296409 + 0.342074i) q^{35} +(3.67937 - 8.05671i) q^{37} +(-3.68628 + 1.08239i) q^{39} +(2.02205 + 4.42768i) q^{41} +(-5.68465 + 3.65331i) q^{43} +2.68761 q^{45} -2.26730 q^{47} +(-5.86491 + 3.76915i) q^{49} +(-2.76546 - 6.05550i) q^{51} +(-4.67826 + 1.37366i) q^{53} +(-5.94411 + 13.0158i) q^{55} +(4.51389 + 5.20930i) q^{57} +(-2.18859 - 0.642628i) q^{59} +(-11.7447 - 7.54785i) q^{61} +(0.0239677 - 0.166699i) q^{63} +(-1.46948 - 10.2205i) q^{65} +(1.05513 - 1.21768i) q^{67} +(-0.406487 - 4.77857i) q^{69} +(6.21899 - 7.17709i) q^{71} +(-0.545240 - 3.79223i) q^{73} +(-0.316402 + 2.20063i) q^{75} +(0.754293 + 0.484755i) q^{77} +(-2.51952 - 0.739797i) q^{79} +(-0.654861 - 0.755750i) q^{81} +(-3.72608 + 8.15898i) q^{83} +(17.1669 - 5.04067i) q^{85} +(-0.236740 - 0.518389i) q^{87} +(5.28849 - 3.39870i) q^{89} -0.647026 q^{91} -6.95948 q^{93} +(-15.5846 + 10.0156i) q^{95} +(-5.51602 - 12.0784i) q^{97} +(5.10834 - 1.49994i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} + O(q^{10}) \) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} - 22q^{13} + 7q^{15} + 7q^{17} + 19q^{19} + 20q^{23} + 20q^{25} - 2q^{27} + 32q^{29} - 3q^{31} + 11q^{33} - 26q^{35} - 10q^{37} - 22q^{39} - 40q^{41} + 8q^{43} - 4q^{45} - 18q^{47} - 34q^{49} - 26q^{51} - 34q^{53} - 17q^{55} - 3q^{57} - 32q^{59} + 32q^{61} + 49q^{65} + 35q^{67} - 2q^{69} + 33q^{71} - q^{73} - 2q^{75} - 50q^{77} + 22q^{79} - 2q^{81} - 14q^{83} - 9q^{85} - 12q^{87} + 10q^{89} - 72q^{91} + 30q^{93} - 51q^{95} - 4q^{97} + 11q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/276\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(139\) \(185\)
\(\chi(n)\) \(e\left(\frac{4}{11}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.841254 0.540641i 0.485698 0.312139i
\(4\) 0 0
\(5\) 1.11647 + 2.44474i 0.499302 + 1.09332i 0.976695 + 0.214630i \(0.0688545\pi\)
−0.477393 + 0.878690i \(0.658418\pi\)
\(6\) 0 0
\(7\) 0.161591 0.0474474i 0.0610756 0.0179334i −0.251052 0.967974i \(-0.580777\pi\)
0.312128 + 0.950040i \(0.398958\pi\)
\(8\) 0 0
\(9\) 0.415415 0.909632i 0.138472 0.303211i
\(10\) 0 0
\(11\) 3.48648 + 4.02361i 1.05121 + 1.21316i 0.976401 + 0.215966i \(0.0692901\pi\)
0.0748118 + 0.997198i \(0.476164\pi\)
\(12\) 0 0
\(13\) −3.68628 1.08239i −1.02239 0.300201i −0.272777 0.962077i \(-0.587942\pi\)
−0.749613 + 0.661876i \(0.769760\pi\)
\(14\) 0 0
\(15\) 2.26096 + 1.45303i 0.583778 + 0.375171i
\(16\) 0 0
\(17\) 0.947403 6.58933i 0.229779 1.59815i −0.469258 0.883061i \(-0.655478\pi\)
0.699036 0.715086i \(-0.253613\pi\)
\(18\) 0 0
\(19\) 0.980961 + 6.82274i 0.225048 + 1.56524i 0.718536 + 0.695490i \(0.244813\pi\)
−0.493488 + 0.869753i \(0.664278\pi\)
\(20\) 0 0
\(21\) 0.110287 0.127278i 0.0240666 0.0277743i
\(22\) 0 0
\(23\) 2.24153 4.23976i 0.467392 0.884050i
\(24\) 0 0
\(25\) −1.45592 + 1.68022i −0.291185 + 0.336045i
\(26\) 0 0
\(27\) −0.142315 0.989821i −0.0273885 0.190491i
\(28\) 0 0
\(29\) 0.0811036 0.564088i 0.0150606 0.104748i −0.980905 0.194490i \(-0.937695\pi\)
0.995965 + 0.0897412i \(0.0286040\pi\)
\(30\) 0 0
\(31\) −5.85469 3.76258i −1.05153 0.675779i −0.103720 0.994607i \(-0.533075\pi\)
−0.947813 + 0.318827i \(0.896711\pi\)
\(32\) 0 0
\(33\) 5.10834 + 1.49994i 0.889248 + 0.261107i
\(34\) 0 0
\(35\) 0.296409 + 0.342074i 0.0501022 + 0.0578210i
\(36\) 0 0
\(37\) 3.67937 8.05671i 0.604885 1.32451i −0.321132 0.947034i \(-0.604063\pi\)
0.926018 0.377480i \(-0.123209\pi\)
\(38\) 0 0
\(39\) −3.68628 + 1.08239i −0.590277 + 0.173321i
\(40\) 0 0
\(41\) 2.02205 + 4.42768i 0.315792 + 0.691487i 0.999259 0.0384940i \(-0.0122561\pi\)
−0.683467 + 0.729981i \(0.739529\pi\)
\(42\) 0 0
\(43\) −5.68465 + 3.65331i −0.866902 + 0.557124i −0.896804 0.442429i \(-0.854117\pi\)
0.0299019 + 0.999553i \(0.490480\pi\)
\(44\) 0 0
\(45\) 2.68761 0.400645
\(46\) 0 0
\(47\) −2.26730 −0.330720 −0.165360 0.986233i \(-0.552879\pi\)
−0.165360 + 0.986233i \(0.552879\pi\)
\(48\) 0 0
\(49\) −5.86491 + 3.76915i −0.837845 + 0.538450i
\(50\) 0 0
\(51\) −2.76546 6.05550i −0.387241 0.847940i
\(52\) 0 0
\(53\) −4.67826 + 1.37366i −0.642608 + 0.188687i −0.586771 0.809753i \(-0.699601\pi\)
−0.0558372 + 0.998440i \(0.517783\pi\)
\(54\) 0 0
\(55\) −5.94411 + 13.0158i −0.801503 + 1.75505i
\(56\) 0 0
\(57\) 4.51389 + 5.20930i 0.597879 + 0.689989i
\(58\) 0 0
\(59\) −2.18859 0.642628i −0.284930 0.0836631i 0.136145 0.990689i \(-0.456529\pi\)
−0.421075 + 0.907026i \(0.638347\pi\)
\(60\) 0 0
\(61\) −11.7447 7.54785i −1.50375 0.966404i −0.994381 0.105857i \(-0.966241\pi\)
−0.509372 0.860547i \(-0.670122\pi\)
\(62\) 0 0
\(63\) 0.0239677 0.166699i 0.00301964 0.0210021i
\(64\) 0 0
\(65\) −1.46948 10.2205i −0.182266 1.26769i
\(66\) 0 0
\(67\) 1.05513 1.21768i 0.128904 0.148763i −0.687628 0.726063i \(-0.741348\pi\)
0.816532 + 0.577300i \(0.195894\pi\)
\(68\) 0 0
\(69\) −0.406487 4.77857i −0.0489353 0.575273i
\(70\) 0 0
\(71\) 6.21899 7.17709i 0.738058 0.851764i −0.255296 0.966863i \(-0.582173\pi\)
0.993354 + 0.115099i \(0.0367184\pi\)
\(72\) 0 0
\(73\) −0.545240 3.79223i −0.0638156 0.443847i −0.996530 0.0832317i \(-0.973476\pi\)
0.932715 0.360615i \(-0.117433\pi\)
\(74\) 0 0
\(75\) −0.316402 + 2.20063i −0.0365350 + 0.254106i
\(76\) 0 0
\(77\) 0.754293 + 0.484755i 0.0859597 + 0.0552429i
\(78\) 0 0
\(79\) −2.51952 0.739797i −0.283468 0.0832336i 0.136908 0.990584i \(-0.456284\pi\)
−0.420376 + 0.907350i \(0.638102\pi\)
\(80\) 0 0
\(81\) −0.654861 0.755750i −0.0727623 0.0839722i
\(82\) 0 0
\(83\) −3.72608 + 8.15898i −0.408991 + 0.895565i 0.587288 + 0.809378i \(0.300195\pi\)
−0.996279 + 0.0861869i \(0.972532\pi\)
\(84\) 0 0
\(85\) 17.1669 5.04067i 1.86202 0.546737i
\(86\) 0 0
\(87\) −0.236740 0.518389i −0.0253812 0.0555771i
\(88\) 0 0
\(89\) 5.28849 3.39870i 0.560578 0.360262i −0.229461 0.973318i \(-0.573696\pi\)
0.790039 + 0.613056i \(0.210060\pi\)
\(90\) 0 0
\(91\) −0.647026 −0.0678268
\(92\) 0 0
\(93\) −6.95948 −0.721665
\(94\) 0 0
\(95\) −15.5846 + 10.0156i −1.59894 + 1.02758i
\(96\) 0 0
\(97\) −5.51602 12.0784i −0.560067 1.22638i −0.951920 0.306348i \(-0.900893\pi\)
0.391853 0.920028i \(-0.371834\pi\)
\(98\) 0 0
\(99\) 5.10834 1.49994i 0.513407 0.150750i
\(100\) 0 0
\(101\) −3.01867 + 6.60995i −0.300368 + 0.657715i −0.998290 0.0584593i \(-0.981381\pi\)
0.697921 + 0.716174i \(0.254108\pi\)
\(102\) 0 0
\(103\) 2.80445 + 3.23651i 0.276331 + 0.318903i 0.876903 0.480668i \(-0.159606\pi\)
−0.600572 + 0.799571i \(0.705060\pi\)
\(104\) 0 0
\(105\) 0.434294 + 0.127520i 0.0423827 + 0.0124447i
\(106\) 0 0
\(107\) 8.16992 + 5.25049i 0.789816 + 0.507584i 0.872278 0.489010i \(-0.162642\pi\)
−0.0824617 + 0.996594i \(0.526278\pi\)
\(108\) 0 0
\(109\) 1.25949 8.75997i 0.120638 0.839053i −0.836199 0.548426i \(-0.815227\pi\)
0.956836 0.290627i \(-0.0938638\pi\)
\(110\) 0 0
\(111\) −1.26050 8.76695i −0.119641 0.832122i
\(112\) 0 0
\(113\) −5.59605 + 6.45819i −0.526432 + 0.607535i −0.955230 0.295865i \(-0.904392\pi\)
0.428797 + 0.903401i \(0.358937\pi\)
\(114\) 0 0
\(115\) 12.8677 + 0.746382i 1.19992 + 0.0696005i
\(116\) 0 0
\(117\) −2.51591 + 2.90352i −0.232596 + 0.268430i
\(118\) 0 0
\(119\) −0.159555 1.10973i −0.0146264 0.101729i
\(120\) 0 0
\(121\) −2.46845 + 17.1684i −0.224404 + 1.56077i
\(122\) 0 0
\(123\) 4.09484 + 2.63160i 0.369220 + 0.237283i
\(124\) 0 0
\(125\) 7.16051 + 2.10252i 0.640456 + 0.188055i
\(126\) 0 0
\(127\) 9.93153 + 11.4616i 0.881281 + 1.01705i 0.999710 + 0.0240899i \(0.00766880\pi\)
−0.118429 + 0.992963i \(0.537786\pi\)
\(128\) 0 0
\(129\) −2.80711 + 6.14671i −0.247152 + 0.541188i
\(130\) 0 0
\(131\) 1.68835 0.495744i 0.147512 0.0433133i −0.207143 0.978311i \(-0.566417\pi\)
0.354655 + 0.934997i \(0.384598\pi\)
\(132\) 0 0
\(133\) 0.482235 + 1.05595i 0.0418151 + 0.0915623i
\(134\) 0 0
\(135\) 2.26096 1.45303i 0.194593 0.125057i
\(136\) 0 0
\(137\) 14.6865 1.25475 0.627375 0.778717i \(-0.284129\pi\)
0.627375 + 0.778717i \(0.284129\pi\)
\(138\) 0 0
\(139\) 22.3528 1.89594 0.947972 0.318355i \(-0.103130\pi\)
0.947972 + 0.318355i \(0.103130\pi\)
\(140\) 0 0
\(141\) −1.90737 + 1.22580i −0.160630 + 0.103231i
\(142\) 0 0
\(143\) −8.49702 18.6059i −0.710557 1.55590i
\(144\) 0 0
\(145\) 1.46960 0.431512i 0.122043 0.0358352i
\(146\) 0 0
\(147\) −2.89612 + 6.34162i −0.238868 + 0.523048i
\(148\) 0 0
\(149\) 4.49440 + 5.18681i 0.368195 + 0.424920i 0.909369 0.415991i \(-0.136565\pi\)
−0.541173 + 0.840911i \(0.682020\pi\)
\(150\) 0 0
\(151\) 1.45687 + 0.427777i 0.118559 + 0.0348120i 0.340474 0.940254i \(-0.389413\pi\)
−0.221915 + 0.975066i \(0.571231\pi\)
\(152\) 0 0
\(153\) −5.60030 3.59909i −0.452757 0.290970i
\(154\) 0 0
\(155\) 2.66191 18.5140i 0.213810 1.48708i
\(156\) 0 0
\(157\) 0.937916 + 6.52335i 0.0748538 + 0.520620i 0.992406 + 0.123005i \(0.0392530\pi\)
−0.917552 + 0.397615i \(0.869838\pi\)
\(158\) 0 0
\(159\) −3.19294 + 3.68485i −0.253217 + 0.292228i
\(160\) 0 0
\(161\) 0.161046 0.791461i 0.0126922 0.0623759i
\(162\) 0 0
\(163\) −1.60484 + 1.85208i −0.125701 + 0.145066i −0.815111 0.579305i \(-0.803324\pi\)
0.689411 + 0.724371i \(0.257870\pi\)
\(164\) 0 0
\(165\) 2.03636 + 14.1632i 0.158530 + 1.10260i
\(166\) 0 0
\(167\) −1.46665 + 10.2008i −0.113493 + 0.789362i 0.850983 + 0.525193i \(0.176007\pi\)
−0.964476 + 0.264169i \(0.914902\pi\)
\(168\) 0 0
\(169\) 1.48081 + 0.951657i 0.113908 + 0.0732044i
\(170\) 0 0
\(171\) 6.61368 + 1.94195i 0.505761 + 0.148505i
\(172\) 0 0
\(173\) 1.97409 + 2.27822i 0.150088 + 0.173210i 0.825815 0.563942i \(-0.190716\pi\)
−0.675727 + 0.737152i \(0.736170\pi\)
\(174\) 0 0
\(175\) −0.155542 + 0.340589i −0.0117578 + 0.0257461i
\(176\) 0 0
\(177\) −2.18859 + 0.642628i −0.164505 + 0.0483029i
\(178\) 0 0
\(179\) −5.61315 12.2911i −0.419547 0.918679i −0.994909 0.100780i \(-0.967866\pi\)
0.575362 0.817899i \(-0.304861\pi\)
\(180\) 0 0
\(181\) 11.6931 7.51470i 0.869141 0.558563i −0.0283489 0.999598i \(-0.509025\pi\)
0.897490 + 0.441035i \(0.145389\pi\)
\(182\) 0 0
\(183\) −13.9609 −1.03202
\(184\) 0 0
\(185\) 23.8045 1.75014
\(186\) 0 0
\(187\) 29.8160 19.1616i 2.18036 1.40123i
\(188\) 0 0
\(189\) −0.0699612 0.153194i −0.00508893 0.0111432i
\(190\) 0 0
\(191\) −12.2796 + 3.60563i −0.888524 + 0.260894i −0.693975 0.719999i \(-0.744142\pi\)
−0.194549 + 0.980893i \(0.562324\pi\)
\(192\) 0 0
\(193\) 6.70400 14.6797i 0.482564 1.05667i −0.499186 0.866495i \(-0.666368\pi\)
0.981750 0.190174i \(-0.0609052\pi\)
\(194\) 0 0
\(195\) −6.76180 7.80353i −0.484222 0.558822i
\(196\) 0 0
\(197\) −12.6411 3.71175i −0.900639 0.264451i −0.201543 0.979480i \(-0.564596\pi\)
−0.699095 + 0.715028i \(0.746414\pi\)
\(198\) 0 0
\(199\) −7.78674 5.00423i −0.551987 0.354741i 0.234724 0.972062i \(-0.424581\pi\)
−0.786711 + 0.617321i \(0.788218\pi\)
\(200\) 0 0
\(201\) 0.229301 1.59482i 0.0161736 0.112490i
\(202\) 0 0
\(203\) −0.0136589 0.0949996i −0.000958666 0.00666767i
\(204\) 0 0
\(205\) −8.56694 + 9.88678i −0.598341 + 0.690522i
\(206\) 0 0
\(207\) −2.92545 3.80023i −0.203333 0.264134i
\(208\) 0 0
\(209\) −24.0319 + 27.7343i −1.66232 + 1.91842i
\(210\) 0 0
\(211\) 2.10427 + 14.6355i 0.144864 + 1.00755i 0.924463 + 0.381271i \(0.124514\pi\)
−0.779599 + 0.626279i \(0.784577\pi\)
\(212\) 0 0
\(213\) 1.35152 9.39999i 0.0926043 0.644077i
\(214\) 0 0
\(215\) −15.2781 9.81866i −1.04196 0.669627i
\(216\) 0 0
\(217\) −1.12459 0.330209i −0.0763421 0.0224161i
\(218\) 0 0
\(219\) −2.50892 2.89545i −0.169537 0.195656i
\(220\) 0 0
\(221\) −10.6246 + 23.2647i −0.714689 + 1.56495i
\(222\) 0 0
\(223\) −14.3582 + 4.21594i −0.961495 + 0.282320i −0.724565 0.689206i \(-0.757959\pi\)
−0.236930 + 0.971527i \(0.576141\pi\)
\(224\) 0 0
\(225\) 0.923574 + 2.02234i 0.0615716 + 0.134823i
\(226\) 0 0
\(227\) 16.2385 10.4358i 1.07779 0.692651i 0.123741 0.992315i \(-0.460511\pi\)
0.954045 + 0.299664i \(0.0968744\pi\)
\(228\) 0 0
\(229\) −26.6442 −1.76070 −0.880349 0.474326i \(-0.842692\pi\)
−0.880349 + 0.474326i \(0.842692\pi\)
\(230\) 0 0
\(231\) 0.896630 0.0589939
\(232\) 0 0
\(233\) −12.1545 + 7.81123i −0.796269 + 0.511731i −0.874396 0.485212i \(-0.838742\pi\)
0.0781274 + 0.996943i \(0.475106\pi\)
\(234\) 0 0
\(235\) −2.53138 5.54295i −0.165129 0.361582i
\(236\) 0 0
\(237\) −2.51952 + 0.739797i −0.163660 + 0.0480550i
\(238\) 0 0
\(239\) −10.0163 + 21.9326i −0.647901 + 1.41870i 0.245479 + 0.969402i \(0.421055\pi\)
−0.893380 + 0.449303i \(0.851672\pi\)
\(240\) 0 0
\(241\) 7.34261 + 8.47382i 0.472979 + 0.545847i 0.941238 0.337745i \(-0.109664\pi\)
−0.468259 + 0.883591i \(0.655119\pi\)
\(242\) 0 0
\(243\) −0.959493 0.281733i −0.0615515 0.0180732i
\(244\) 0 0
\(245\) −15.7626 10.1300i −1.00704 0.647183i
\(246\) 0 0
\(247\) 3.76876 26.2123i 0.239801 1.66785i
\(248\) 0 0
\(249\) 1.27650 + 8.87825i 0.0808948 + 0.562636i
\(250\) 0 0
\(251\) 18.7772 21.6700i 1.18520 1.36780i 0.270983 0.962584i \(-0.412651\pi\)
0.914221 0.405215i \(-0.132803\pi\)
\(252\) 0 0
\(253\) 24.8742 5.76276i 1.56383 0.362302i
\(254\) 0 0
\(255\) 11.7166 13.5216i 0.733719 0.846757i
\(256\) 0 0
\(257\) −2.64973 18.4293i −0.165286 1.14959i −0.888471 0.458934i \(-0.848232\pi\)
0.723185 0.690655i \(-0.242678\pi\)
\(258\) 0 0
\(259\) 0.212284 1.47647i 0.0131907 0.0917432i
\(260\) 0 0
\(261\) −0.479421 0.308105i −0.0296754 0.0190712i
\(262\) 0 0
\(263\) 13.7309 + 4.03175i 0.846683 + 0.248608i 0.676169 0.736747i \(-0.263639\pi\)
0.170514 + 0.985355i \(0.445457\pi\)
\(264\) 0 0
\(265\) −8.58139 9.90345i −0.527151 0.608364i
\(266\) 0 0
\(267\) 2.61148 5.71834i 0.159820 0.349957i
\(268\) 0 0
\(269\) 6.73185 1.97665i 0.410448 0.120518i −0.0699888 0.997548i \(-0.522296\pi\)
0.480437 + 0.877029i \(0.340478\pi\)
\(270\) 0 0
\(271\) 4.44140 + 9.72532i 0.269796 + 0.590771i 0.995234 0.0975167i \(-0.0310899\pi\)
−0.725438 + 0.688288i \(0.758363\pi\)
\(272\) 0 0
\(273\) −0.544313 + 0.349809i −0.0329433 + 0.0211714i
\(274\) 0 0
\(275\) −11.8366 −0.713774
\(276\) 0 0
\(277\) 22.1540 1.33111 0.665553 0.746351i \(-0.268196\pi\)
0.665553 + 0.746351i \(0.268196\pi\)
\(278\) 0 0
\(279\) −5.85469 + 3.76258i −0.350511 + 0.225260i
\(280\) 0 0
\(281\) 2.93397 + 6.42449i 0.175026 + 0.383253i 0.976731 0.214466i \(-0.0688012\pi\)
−0.801706 + 0.597719i \(0.796074\pi\)
\(282\) 0 0
\(283\) −25.8425 + 7.58804i −1.53618 + 0.451062i −0.936934 0.349505i \(-0.886350\pi\)
−0.599243 + 0.800567i \(0.704532\pi\)
\(284\) 0 0
\(285\) −7.69574 + 16.8513i −0.455856 + 0.998186i
\(286\) 0 0
\(287\) 0.536827 + 0.619532i 0.0316879 + 0.0365698i
\(288\) 0 0
\(289\) −26.2103 7.69605i −1.54178 0.452709i
\(290\) 0 0
\(291\) −11.1704 7.17881i −0.654823 0.420829i
\(292\) 0 0
\(293\) −4.06035 + 28.2404i −0.237208 + 1.64982i 0.428451 + 0.903565i \(0.359059\pi\)
−0.665659 + 0.746256i \(0.731850\pi\)
\(294\) 0 0
\(295\) −0.872448 6.06801i −0.0507959 0.353293i
\(296\) 0 0
\(297\) 3.48648 4.02361i 0.202306 0.233474i
\(298\) 0 0
\(299\) −12.8520 + 13.2027i −0.743250 + 0.763533i
\(300\) 0 0
\(301\) −0.745249 + 0.860063i −0.0429554 + 0.0495732i
\(302\) 0 0
\(303\) 1.03415 + 7.19266i 0.0594103 + 0.413208i
\(304\) 0 0
\(305\) 5.33988 37.1397i 0.305760 2.12661i
\(306\) 0 0
\(307\) −9.78399 6.28779i −0.558402 0.358863i 0.230796 0.973002i \(-0.425867\pi\)
−0.789198 + 0.614139i \(0.789503\pi\)
\(308\) 0 0
\(309\) 4.10904 + 1.20652i 0.233755 + 0.0686367i
\(310\) 0 0
\(311\) −17.1917 19.8402i −0.974850 1.12504i −0.992133 0.125186i \(-0.960047\pi\)
0.0172830 0.999851i \(-0.494498\pi\)
\(312\) 0 0
\(313\) −10.6415 + 23.3016i −0.601491 + 1.31708i 0.326753 + 0.945110i \(0.394046\pi\)
−0.928244 + 0.371972i \(0.878682\pi\)
\(314\) 0 0
\(315\) 0.434294 0.127520i 0.0244697 0.00718495i
\(316\) 0 0
\(317\) 8.38985 + 18.3712i 0.471221 + 1.03183i 0.984785 + 0.173778i \(0.0555976\pi\)
−0.513564 + 0.858051i \(0.671675\pi\)
\(318\) 0 0
\(319\) 2.55243 1.64035i 0.142909 0.0918420i
\(320\) 0 0
\(321\) 9.71161 0.542049
\(322\) 0 0
\(323\) 45.8866 2.55320
\(324\) 0 0
\(325\) 7.18560 4.61790i 0.398585 0.256155i
\(326\) 0 0
\(327\) −3.67644 8.05029i −0.203308 0.445182i
\(328\) 0 0
\(329\) −0.366375 + 0.107577i −0.0201989 + 0.00593094i
\(330\) 0 0
\(331\) −8.94888 + 19.5953i −0.491875 + 1.07706i 0.487150 + 0.873318i \(0.338036\pi\)
−0.979025 + 0.203738i \(0.934691\pi\)
\(332\) 0 0
\(333\) −5.80017 6.69375i −0.317847 0.366815i
\(334\) 0 0
\(335\) 4.15493 + 1.22000i 0.227008 + 0.0666556i
\(336\) 0 0
\(337\) 1.64816 + 1.05921i 0.0897811 + 0.0576988i 0.584761 0.811206i \(-0.301188\pi\)
−0.494980 + 0.868904i \(0.664825\pi\)
\(338\) 0 0
\(339\) −1.21614 + 8.45843i −0.0660516 + 0.459399i
\(340\) 0 0
\(341\) −5.27309 36.6751i −0.285554 1.98607i
\(342\) 0 0
\(343\) −1.54089 + 1.77828i −0.0832002 + 0.0960182i
\(344\) 0 0
\(345\) 11.2285 6.32891i 0.604523 0.340737i
\(346\) 0 0
\(347\) −6.39079 + 7.37537i −0.343076 + 0.395931i −0.900899 0.434029i \(-0.857091\pi\)
0.557823 + 0.829960i \(0.311637\pi\)
\(348\) 0 0
\(349\) 2.32886 + 16.1975i 0.124661 + 0.867035i 0.952167 + 0.305578i \(0.0988497\pi\)
−0.827506 + 0.561457i \(0.810241\pi\)
\(350\) 0 0
\(351\) −0.546760 + 3.80280i −0.0291839 + 0.202978i
\(352\) 0 0
\(353\) −15.8365 10.1775i −0.842894 0.541695i 0.0464568 0.998920i \(-0.485207\pi\)
−0.889351 + 0.457225i \(0.848843\pi\)
\(354\) 0 0
\(355\) 24.4894 + 7.19075i 1.29976 + 0.381645i
\(356\) 0 0
\(357\) −0.734190 0.847301i −0.0388575 0.0448439i
\(358\) 0 0
\(359\) −5.47158 + 11.9811i −0.288779 + 0.632338i −0.997307 0.0733451i \(-0.976633\pi\)
0.708527 + 0.705683i \(0.249360\pi\)
\(360\) 0 0
\(361\) −27.3571 + 8.03276i −1.43985 + 0.422777i
\(362\) 0 0
\(363\) 7.20536 + 15.7775i 0.378183 + 0.828106i
\(364\) 0 0
\(365\) 8.66226 5.56690i 0.453403 0.291385i
\(366\) 0 0
\(367\) 12.2223 0.638000 0.319000 0.947755i \(-0.396653\pi\)
0.319000 + 0.947755i \(0.396653\pi\)
\(368\) 0 0
\(369\) 4.86755 0.253394
\(370\) 0 0
\(371\) −0.690787 + 0.443942i −0.0358639 + 0.0230483i
\(372\) 0 0
\(373\) −10.6821 23.3904i −0.553096 1.21111i −0.955321 0.295571i \(-0.904490\pi\)
0.402225 0.915541i \(-0.368237\pi\)
\(374\) 0 0
\(375\) 7.16051 2.10252i 0.369767 0.108573i
\(376\) 0 0
\(377\) −0.909533 + 1.99160i −0.0468434 + 0.102573i
\(378\) 0 0
\(379\) −12.6498 14.5987i −0.649779 0.749884i 0.331293 0.943528i \(-0.392515\pi\)
−0.981072 + 0.193643i \(0.937970\pi\)
\(380\) 0 0
\(381\) 14.5515 + 4.27272i 0.745498 + 0.218898i
\(382\) 0 0
\(383\) 22.4745 + 14.4435i 1.14839 + 0.738027i 0.969318 0.245808i \(-0.0790534\pi\)
0.179074 + 0.983836i \(0.442690\pi\)
\(384\) 0 0
\(385\) −0.342949 + 2.38526i −0.0174783 + 0.121564i
\(386\) 0 0
\(387\) 0.961673 + 6.68858i 0.0488846 + 0.340000i
\(388\) 0 0
\(389\) 3.70667 4.27773i 0.187936 0.216889i −0.653961 0.756528i \(-0.726894\pi\)
0.841896 + 0.539639i \(0.181439\pi\)
\(390\) 0 0
\(391\) −25.8135 18.7870i −1.30545 0.950097i
\(392\) 0 0
\(393\) 1.15231 1.32984i 0.0581263 0.0670813i
\(394\) 0 0
\(395\) −1.00437 6.98552i −0.0505351 0.351480i
\(396\) 0 0
\(397\) −1.11388 + 7.74722i −0.0559041 + 0.388822i 0.942590 + 0.333954i \(0.108383\pi\)
−0.998494 + 0.0548680i \(0.982526\pi\)
\(398\) 0 0
\(399\) 0.976571 + 0.627604i 0.0488897 + 0.0314195i
\(400\) 0 0
\(401\) 8.50273 + 2.49663i 0.424606 + 0.124676i 0.487053 0.873373i \(-0.338072\pi\)
−0.0624463 + 0.998048i \(0.519890\pi\)
\(402\) 0 0
\(403\) 17.5094 + 20.2070i 0.872208 + 1.00658i
\(404\) 0 0
\(405\) 1.11647 2.44474i 0.0554780 0.121480i
\(406\) 0 0
\(407\) 45.2451 13.2852i 2.24272 0.658521i
\(408\) 0 0
\(409\) 5.62678 + 12.3209i 0.278226 + 0.609231i 0.996225 0.0868141i \(-0.0276686\pi\)
−0.717998 + 0.696045i \(0.754941\pi\)
\(410\) 0 0
\(411\) 12.3550 7.94011i 0.609429 0.391657i
\(412\) 0 0
\(413\) −0.384147 −0.0189027
\(414\) 0 0
\(415\) −24.1066 −1.18335
\(416\) 0 0
\(417\) 18.8044 12.0849i 0.920856 0.591798i
\(418\) 0 0
\(419\) 3.92505 + 8.59466i 0.191751 + 0.419877i 0.980950 0.194261i \(-0.0622310\pi\)
−0.789199 + 0.614138i \(0.789504\pi\)
\(420\) 0 0
\(421\) 29.8747 8.77200i 1.45600 0.427521i 0.544481 0.838773i \(-0.316727\pi\)
0.911522 + 0.411252i \(0.134908\pi\)
\(422\) 0 0
\(423\) −0.941871 + 2.06241i −0.0457953 + 0.100278i
\(424\) 0 0
\(425\) 9.69221 + 11.1854i 0.470141 + 0.542572i
\(426\) 0 0
\(427\) −2.25596 0.662410i −0.109174 0.0320563i
\(428\) 0 0
\(429\) −17.2073 11.0584i −0.830774 0.533906i
\(430\) 0 0
\(431\) 3.07047 21.3556i 0.147900 1.02866i −0.771751 0.635925i \(-0.780619\pi\)
0.919650 0.392739i \(-0.128472\pi\)
\(432\) 0 0
\(433\) 0.0751560 + 0.522721i 0.00361176 + 0.0251204i 0.991548 0.129743i \(-0.0414153\pi\)
−0.987936 + 0.154864i \(0.950506\pi\)
\(434\) 0 0
\(435\) 1.00301 1.15754i 0.0480906 0.0554996i
\(436\) 0 0
\(437\) 31.1256 + 11.1344i 1.48894 + 0.532628i
\(438\) 0 0
\(439\) −14.1594 + 16.3408i −0.675790 + 0.779903i −0.985271 0.171003i \(-0.945299\pi\)
0.309481 + 0.950906i \(0.399845\pi\)
\(440\) 0 0
\(441\) 0.992167 + 6.90068i 0.0472461 + 0.328604i
\(442\) 0 0
\(443\) −3.16475 + 22.0113i −0.150362 + 1.04579i 0.765252 + 0.643731i \(0.222615\pi\)
−0.915614 + 0.402059i \(0.868295\pi\)
\(444\) 0 0
\(445\) 14.2134 + 9.13439i 0.673779 + 0.433012i
\(446\) 0 0
\(447\) 6.58513 + 1.93357i 0.311466 + 0.0914547i
\(448\) 0 0
\(449\) 27.3177 + 31.5263i 1.28920 + 1.48782i 0.777858 + 0.628440i \(0.216306\pi\)
0.511343 + 0.859377i \(0.329148\pi\)
\(450\) 0 0
\(451\) −10.7654 + 23.5730i −0.506923 + 1.11001i
\(452\) 0 0
\(453\) 1.45687 0.427777i 0.0684500 0.0200987i
\(454\) 0 0
\(455\) −0.722388 1.58181i −0.0338661 0.0741564i
\(456\) 0 0
\(457\) 16.5228 10.6185i 0.772903 0.496714i −0.0937686 0.995594i \(-0.529891\pi\)
0.866671 + 0.498880i \(0.166255\pi\)
\(458\) 0 0
\(459\) −6.65709 −0.310726
\(460\) 0 0
\(461\) −14.8017 −0.689383 −0.344692 0.938716i \(-0.612017\pi\)
−0.344692 + 0.938716i \(0.612017\pi\)
\(462\) 0 0
\(463\) 12.8377 8.25026i 0.596617 0.383422i −0.207201 0.978298i \(-0.566435\pi\)
0.803817 + 0.594876i \(0.202799\pi\)
\(464\) 0 0
\(465\) −7.77008 17.0141i −0.360329 0.789010i
\(466\) 0 0
\(467\) −14.8229 + 4.35240i −0.685923 + 0.201405i −0.606082 0.795402i \(-0.707260\pi\)
−0.0798415 + 0.996808i \(0.525441\pi\)
\(468\) 0 0
\(469\) 0.112723 0.246829i 0.00520507 0.0113975i
\(470\) 0 0
\(471\) 4.31581 + 4.98071i 0.198862 + 0.229499i
\(472\) 0 0
\(473\) −34.5189 10.1357i −1.58718 0.466038i
\(474\) 0 0
\(475\) −12.8919 8.28514i −0.591522 0.380148i
\(476\) 0 0
\(477\) −0.693893 + 4.82613i −0.0317712 + 0.220973i
\(478\) 0 0
\(479\) −2.68993 18.7089i −0.122906 0.854832i −0.954237 0.299053i \(-0.903329\pi\)
0.831330 0.555779i \(-0.187580\pi\)
\(480\) 0 0
\(481\) −22.2837 + 25.7168i −1.01605 + 1.17258i
\(482\) 0 0
\(483\) −0.292416 0.752888i −0.0133054 0.0342576i
\(484\) 0 0
\(485\) 23.3700 26.9704i 1.06118 1.22466i
\(486\) 0 0
\(487\) −1.46822 10.2117i −0.0665313 0.462735i −0.995667 0.0929953i \(-0.970356\pi\)
0.929135 0.369740i \(-0.120553\pi\)
\(488\) 0 0
\(489\) −0.348765 + 2.42571i −0.0157717 + 0.109694i
\(490\) 0 0
\(491\) 5.85642 + 3.76369i 0.264296 + 0.169853i 0.666077 0.745883i \(-0.267972\pi\)
−0.401781 + 0.915736i \(0.631609\pi\)
\(492\) 0 0
\(493\) −3.64012 1.06884i −0.163943 0.0481380i
\(494\) 0 0
\(495\) 9.37030 + 10.8139i 0.421164 + 0.486049i
\(496\) 0 0
\(497\) 0.664398 1.45483i 0.0298023 0.0652580i
\(498\) 0 0
\(499\) 0.979391 0.287575i 0.0438435 0.0128736i −0.259737 0.965679i \(-0.583636\pi\)
0.303581 + 0.952806i \(0.401818\pi\)
\(500\) 0 0
\(501\) 4.28114 + 9.37440i 0.191267 + 0.418817i
\(502\) 0 0
\(503\) −12.1305 + 7.79581i −0.540873 + 0.347598i −0.782380 0.622801i \(-0.785995\pi\)
0.241507 + 0.970399i \(0.422358\pi\)
\(504\) 0 0
\(505\) −19.5299 −0.869068
\(506\) 0 0
\(507\) 1.76024 0.0781750
\(508\) 0 0
\(509\) −21.0513 + 13.5289i −0.933084 + 0.599657i −0.916426 0.400204i \(-0.868939\pi\)
−0.0166583 + 0.999861i \(0.505303\pi\)
\(510\) 0 0
\(511\) −0.268037 0.586920i −0.0118573 0.0259638i
\(512\) 0 0
\(513\) 6.61368 1.94195i 0.292001 0.0857393i
\(514\) 0 0
\(515\) −4.78132 + 10.4696i −0.210690 + 0.461347i
\(516\) 0 0
\(517\) −7.90489 9.12273i −0.347657 0.401217i
\(518\) 0 0
\(519\) 2.89241 + 0.849289i 0.126963 + 0.0372797i
\(520\) 0 0
\(521\) 29.0057 + 18.6408i 1.27076 + 0.816670i 0.989719 0.143024i \(-0.0456827\pi\)
0.281045 + 0.959695i \(0.409319\pi\)
\(522\) 0 0
\(523\) 1.78837 12.4384i 0.0781998 0.543892i −0.912631 0.408784i \(-0.865953\pi\)
0.990831 0.135108i \(-0.0431380\pi\)
\(524\) 0 0
\(525\) 0.0532862 + 0.370614i 0.00232560 + 0.0161749i
\(526\) 0 0
\(527\) −30.3396 + 35.0138i −1.32161 + 1.52522i
\(528\) 0 0
\(529\) −12.9511 19.0071i −0.563090 0.826396i
\(530\) 0 0
\(531\) −1.49373 + 1.72385i −0.0648223 + 0.0748089i
\(532\) 0 0
\(533\) −2.66138 18.5103i −0.115277 0.801771i
\(534\) 0 0
\(535\) −3.71456 + 25.8354i −0.160595 + 1.11696i
\(536\) 0 0
\(537\) −11.3672 7.30523i −0.490529 0.315244i
\(538\) 0 0
\(539\) −35.6135 10.4571i −1.53398 0.450418i
\(540\) 0 0
\(541\) 8.60529 + 9.93103i 0.369970 + 0.426969i 0.909955 0.414706i \(-0.136116\pi\)
−0.539985 + 0.841675i \(0.681570\pi\)
\(542\) 0 0
\(543\) 5.77411 12.6435i 0.247791 0.542586i
\(544\) 0 0
\(545\) 22.8220 6.70115i 0.977588 0.287046i
\(546\) 0 0
\(547\) −14.5743 31.9134i −0.623154 1.36452i −0.913203 0.407505i \(-0.866399\pi\)
0.290049 0.957012i \(-0.406328\pi\)
\(548\) 0 0
\(549\) −11.7447 + 7.54785i −0.501251 + 0.322135i
\(550\) 0 0
\(551\) 3.92818 0.167346
\(552\) 0 0
\(553\) −0.442233 −0.0188056
\(554\) 0 0
\(555\) 20.0256 12.8697i 0.850039 0.546287i
\(556\) 0 0
\(557\) −0.267339 0.585391i −0.0113275 0.0248038i 0.903884 0.427778i \(-0.140704\pi\)
−0.915211 + 0.402974i \(0.867976\pi\)
\(558\) 0 0
\(559\) 24.9095 7.31410i 1.05356 0.309353i
\(560\) 0 0
\(561\) 14.7233 32.2395i 0.621617 1.36115i
\(562\) 0 0
\(563\) 7.62376 + 8.79829i 0.321303 + 0.370804i 0.893307 0.449447i \(-0.148379\pi\)
−0.572004 + 0.820251i \(0.693834\pi\)
\(564\) 0 0
\(565\) −22.0364 6.47048i −0.927079 0.272215i
\(566\) 0 0
\(567\) −0.141678 0.0910509i −0.00594991 0.00382378i
\(568\) 0 0
\(569\) 5.06376 35.2193i 0.212284 1.47647i −0.553219 0.833036i \(-0.686601\pi\)
0.765503 0.643432i \(-0.222490\pi\)
\(570\) 0 0
\(571\) −0.588588 4.09372i −0.0246316 0.171317i 0.973792 0.227439i \(-0.0730353\pi\)
−0.998424 + 0.0561226i \(0.982126\pi\)
\(572\) 0 0
\(573\) −8.38095 + 9.67213i −0.350119 + 0.404059i
\(574\) 0 0
\(575\) 3.86024 + 9.93904i 0.160983 + 0.414486i
\(576\) 0 0
\(577\) 2.18302 2.51934i 0.0908803 0.104881i −0.708488 0.705723i \(-0.750622\pi\)
0.799368 + 0.600842i \(0.205168\pi\)
\(578\) 0 0
\(579\) −2.29669 15.9738i −0.0954471 0.663849i
\(580\) 0 0
\(581\) −0.214979 + 1.49521i −0.00891883 + 0.0620318i
\(582\) 0 0
\(583\) −21.8377 14.0342i −0.904425 0.581239i
\(584\) 0 0
\(585\) −9.90729 2.90904i −0.409616 0.120274i
\(586\) 0 0
\(587\) −9.03818 10.4306i −0.373045 0.430517i 0.537923 0.842994i \(-0.319209\pi\)
−0.910968 + 0.412477i \(0.864664\pi\)
\(588\) 0 0
\(589\) 19.9279 43.6359i 0.821113 1.79799i
\(590\) 0 0
\(591\) −12.6411 + 3.71175i −0.519984 + 0.152681i
\(592\) 0 0
\(593\) −15.0251 32.9004i −0.617006 1.35106i −0.917677 0.397328i \(-0.869938\pi\)
0.300670 0.953728i \(-0.402790\pi\)
\(594\) 0 0
\(595\) 2.53485 1.62905i 0.103919 0.0667846i
\(596\) 0 0
\(597\) −9.25611 −0.378828
\(598\) 0 0
\(599\) 18.8219 0.769041 0.384520 0.923117i \(-0.374367\pi\)
0.384520 + 0.923117i \(0.374367\pi\)
\(600\) 0 0
\(601\) −37.3898 + 24.0289i −1.52516 + 0.980161i −0.534296 + 0.845297i \(0.679423\pi\)
−0.990864 + 0.134864i \(0.956940\pi\)
\(602\) 0 0
\(603\) −0.669326 1.46562i −0.0272571 0.0596846i
\(604\) 0 0
\(605\) −44.7282 + 13.1334i −1.81846 + 0.533948i
\(606\) 0 0
\(607\) −10.1913 + 22.3159i −0.413654 + 0.905775i 0.582048 + 0.813154i \(0.302252\pi\)
−0.995701 + 0.0926204i \(0.970476\pi\)
\(608\) 0 0
\(609\) −0.0628513 0.0725342i −0.00254686 0.00293924i
\(610\) 0 0
\(611\) 8.35791 + 2.45410i 0.338125 + 0.0992824i
\(612\) 0 0
\(613\) −1.91550 1.23102i −0.0773665 0.0497204i 0.501386 0.865224i \(-0.332824\pi\)
−0.578752 + 0.815503i \(0.696460\pi\)
\(614\) 0 0
\(615\) −1.86177 + 12.9489i −0.0750740 + 0.522151i
\(616\) 0 0
\(617\) 1.75141 + 12.1813i 0.0705091 + 0.490402i 0.994224 + 0.107322i \(0.0342275\pi\)
−0.923715 + 0.383080i \(0.874863\pi\)
\(618\) 0 0
\(619\) −5.84291 + 6.74307i −0.234846 + 0.271027i −0.860924 0.508734i \(-0.830114\pi\)
0.626078 + 0.779761i \(0.284659\pi\)
\(620\) 0 0
\(621\) −4.51560 1.61534i −0.181205 0.0648213i
\(622\) 0 0
\(623\) 0.693312 0.800125i 0.0277770 0.0320563i
\(624\) 0 0
\(625\) 4.43644 + 30.8561i 0.177458 + 1.23424i
\(626\) 0 0
\(627\) −5.22264 + 36.3242i −0.208572 + 1.45065i
\(628\) 0 0
\(629\) −49.6025 31.8776i −1.97778 1.27104i
\(630\) 0 0
\(631\) 31.7431 + 9.32063i 1.26367 + 0.371048i 0.843861 0.536562i \(-0.180277\pi\)
0.419814 + 0.907610i \(0.362095\pi\)
\(632\) 0 0
\(633\) 9.68278 + 11.1745i 0.384856 + 0.444147i
\(634\) 0 0
\(635\) −16.9323 + 37.0766i −0.671938 + 1.47134i
\(636\) 0 0
\(637\) 25.6994 7.54603i 1.01825 0.298985i
\(638\) 0 0
\(639\) −3.94505 8.63846i −0.156064 0.341732i
\(640\) 0 0
\(641\) 38.3241 24.6294i 1.51371 0.972802i 0.520832 0.853659i \(-0.325622\pi\)
0.992877 0.119143i \(-0.0380147\pi\)
\(642\) 0 0
\(643\) −6.72806 −0.265329 −0.132664 0.991161i \(-0.542353\pi\)
−0.132664 + 0.991161i \(0.542353\pi\)
\(644\) 0 0
\(645\) −18.1612 −0.715095
\(646\) 0 0
\(647\) −4.02439 + 2.58632i −0.158215 + 0.101679i −0.617353 0.786687i \(-0.711795\pi\)
0.459138 + 0.888365i \(0.348158\pi\)
\(648\) 0 0
\(649\) −5.04479 11.0465i −0.198025 0.433615i
\(650\) 0 0
\(651\) −1.12459 + 0.330209i −0.0440761 + 0.0129419i
\(652\) 0 0
\(653\) 13.0075 28.4825i 0.509023 1.11460i −0.464407 0.885622i \(-0.653733\pi\)
0.973430 0.228983i \(-0.0735401\pi\)
\(654\) 0 0
\(655\) 3.09696 + 3.57408i 0.121008 + 0.139651i
\(656\) 0 0
\(657\) −3.67603 1.07938i −0.143416 0.0421107i
\(658\) 0 0
\(659\) −6.56570 4.21952i −0.255763 0.164369i 0.406476 0.913661i \(-0.366757\pi\)
−0.662239 + 0.749292i \(0.730394\pi\)
\(660\) 0 0
\(661\) −6.64686 + 46.2299i −0.258533 + 1.79814i 0.284767 + 0.958597i \(0.408084\pi\)
−0.543300 + 0.839539i \(0.682825\pi\)
\(662\) 0 0
\(663\) 3.63983 + 25.3156i 0.141359 + 0.983176i
\(664\) 0 0
\(665\) −2.04311 + 2.35788i −0.0792285 + 0.0914346i
\(666\) 0 0
\(667\) −2.20980 1.60828i −0.0855637 0.0622729i
\(668\) 0 0
\(669\) −9.79956 + 11.3093i −0.378873 + 0.437243i
\(670\) 0 0
\(671\) −10.5780 73.5715i −0.408358 2.84019i
\(672\) 0 0
\(673\) 6.23439 43.3611i 0.240318 1.67145i −0.410229 0.911982i \(-0.634551\pi\)
0.650547 0.759466i \(-0.274540\pi\)
\(674\) 0 0
\(675\) 1.87032 + 1.20198i 0.0719887 + 0.0462643i
\(676\) 0 0
\(677\) −24.9943 7.33900i −0.960610 0.282061i −0.236412 0.971653i \(-0.575972\pi\)
−0.724198 + 0.689592i \(0.757790\pi\)
\(678\) 0 0
\(679\) −1.46443 1.69004i −0.0561996 0.0648578i
\(680\) 0 0
\(681\) 8.01864 17.5584i 0.307275 0.672838i
\(682\) 0 0
\(683\) −11.5806 + 3.40037i −0.443119 + 0.130111i −0.495678 0.868506i \(-0.665080\pi\)
0.0525591 + 0.998618i \(0.483262\pi\)
\(684\) 0 0
\(685\) 16.3971 + 35.9046i 0.626500 + 1.37184i
\(686\) 0 0
\(687\) −22.4145 + 14.4049i −0.855168 + 0.549583i
\(688\) 0 0
\(689\) 18.7322 0.713640
\(690\) 0 0
\(691\) −41.2368 −1.56872 −0.784360 0.620305i \(-0.787009\pi\)
−0.784360 + 0.620305i \(0.787009\pi\)
\(692\) 0 0
\(693\) 0.754293 0.484755i 0.0286532 0.0184143i
\(694\) 0 0
\(695\) 24.9564 + 54.6468i 0.946649 + 2.07287i
\(696\) 0 0
\(697\) 31.0911 9.12918i 1.17766 0.345792i
\(698\) 0 0
\(699\) −6.00196 + 13.1425i −0.227015 + 0.497093i
\(700\) 0 0
\(701\) 10.4429 + 12.0517i 0.394422 + 0.455187i 0.917876 0.396867i \(-0.129902\pi\)
−0.523454 + 0.852054i \(0.675357\pi\)
\(702\) 0 0
\(703\) 58.5781 + 17.2001i 2.20932 + 0.648713i
\(704\) 0 0
\(705\) −5.12628 3.29446i −0.193067 0.124077i
\(706\) 0 0
\(707\) −0.174164 + 1.21134i −0.00655011 + 0.0455570i
\(708\) 0 0
\(709\) 0.774067 + 5.38375i 0.0290707 + 0.202191i 0.999181 0.0404751i \(-0.0128871\pi\)
−0.970110 + 0.242666i \(0.921978\pi\)
\(710\) 0 0
\(711\) −1.71959 + 1.98451i −0.0644896 + 0.0744249i
\(712\) 0 0
\(713\) −29.0759 + 16.3885i −1.08890 + 0.613754i
\(714\) 0 0
\(715\) 35.9998 41.5460i 1.34632 1.55373i
\(716\) 0 0
\(717\) 3.43143 + 23.8661i 0.128149 + 0.891297i
\(718\) 0 0
\(719\) 0.797299 5.54533i 0.0297342 0.206806i −0.969538 0.244939i \(-0.921232\pi\)
0.999273 + 0.0381331i \(0.0121411\pi\)
\(720\) 0 0
\(721\) 0.606738 + 0.389927i 0.0225961 + 0.0145216i
\(722\) 0 0
\(723\) 10.7583 + 3.15892i 0.400105 + 0.117481i
\(724\) 0 0
\(725\) 0.829713 + 0.957540i 0.0308148 + 0.0355622i
\(726\) 0 0
\(727\) 16.3042 35.7013i 0.604691 1.32409i −0.321456 0.946925i \(-0.604172\pi\)
0.926147 0.377164i \(-0.123101\pi\)
\(728\) 0 0
\(729\) −0.959493 + 0.281733i −0.0355368 + 0.0104345i
\(730\) 0 0
\(731\) 18.6872 + 40.9192i 0.691170 + 1.51345i
\(732\) 0 0
\(733\) −25.4156 + 16.3336i −0.938748 + 0.603297i −0.918040 0.396489i \(-0.870229\pi\)
−0.0207088 + 0.999786i \(0.506592\pi\)
\(734\) 0 0
\(735\) −18.7371 −0.691127
\(736\) 0 0
\(737\) 8.57814 0.315980
\(738\) 0 0
\(739\) −11.4468 + 7.35638i −0.421076 + 0.270609i −0.733974 0.679178i \(-0.762337\pi\)
0.312898 + 0.949787i \(0.398700\pi\)
\(740\) 0 0
\(741\) −11.0010 24.0887i −0.404130 0.884922i
\(742\) 0 0
\(743\) 3.15632 0.926778i 0.115794 0.0340002i −0.223322 0.974745i \(-0.571690\pi\)
0.339116 + 0.940744i \(0.389872\pi\)
\(744\) 0 0
\(745\) −7.66251 + 16.7786i −0.280733 + 0.614719i
\(746\) 0 0
\(747\) 5.87380 + 6.77873i 0.214911 + 0.248021i
\(748\) 0 0
\(749\) 1.56931 + 0.460790i 0.0573413 + 0.0168369i
\(750\) 0 0
\(751\) −17.2369 11.0775i −0.628984 0.404223i 0.186949 0.982370i \(-0.440140\pi\)
−0.815933 + 0.578146i \(0.803776\pi\)
\(752\) 0 0
\(753\) 4.08067 28.3817i 0.148708 1.03429i
\(754\) 0 0
\(755\) 0.580761 + 4.03928i 0.0211360 + 0.147004i
\(756\) 0 0
\(757\) 31.2769 36.0955i 1.13678 1.31191i 0.193052 0.981189i \(-0.438162\pi\)
0.943727 0.330724i \(-0.107293\pi\)
\(758\) 0 0
\(759\) 17.8099 18.2959i 0.646459 0.664100i
\(760\) 0 0
\(761\) −9.27655 + 10.7057i −0.336275 + 0.388081i −0.898552 0.438867i \(-0.855380\pi\)
0.562277 + 0.826949i \(0.309925\pi\)
\(762\) 0 0
\(763\) −0.212115 1.47529i −0.00767908 0.0534092i
\(764\) 0 0
\(765\) 2.54625 17.7096i 0.0920599 0.640291i
\(766\) 0 0
\(767\) 7.37219 + 4.73782i 0.266194 + 0.171073i
\(768\) 0 0
\(769\) 43.1487 + 12.6696i 1.55598 + 0.456878i 0.942882 0.333126i \(-0.108104\pi\)
0.613101 + 0.790004i \(0.289922\pi\)
\(770\) 0 0
\(771\) −12.1927 14.0712i −0.439110 0.506761i
\(772\) 0 0
\(773\) 12.9716 28.4038i 0.466555 1.02161i −0.519389 0.854538i \(-0.673841\pi\)
0.985944 0.167075i \(-0.0534322\pi\)
\(774\) 0 0
\(775\) 14.8460 4.35916i 0.533282 0.156586i
\(776\) 0 0
\(777\) −0.619654 1.35685i −0.0222300 0.0486768i
\(778\) 0 0
\(779\) −28.2253 + 18.1393i −1.01128 + 0.649908i
\(780\) 0 0
\(781\) 50.5602 1.80919
\(782\) 0 0
\(783\) −0.569888 −0.0203661
\(784\) 0 0
\(785\) −14.9007 + 9.57611i −0.531829 + 0.341786i
\(786\) 0 0
\(787\) −2.90152 6.35343i −0.103428 0.226475i 0.850842 0.525421i \(-0.176092\pi\)
−0.954270 + 0.298946i \(0.903365\pi\)
\(788\) 0 0
\(789\) 13.7309 4.03175i 0.488832 0.143534i
\(790\) 0 0
\(791\) −0.597847 + 1.30910i −0.0212570 + 0.0465463i
\(792\) 0 0
\(793\) 35.1245 + 40.5358i 1.24731 + 1.43947i
\(794\)