Properties

Label 276.2.i.a.85.1
Level $276$
Weight $2$
Character 276.85
Analytic conductor $2.204$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 276 = 2^{2} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 276.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.20387109579\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 43 x^{18} - 165 x^{17} + 538 x^{16} - 1433 x^{15} + 3444 x^{14} - 7370 x^{13} + 15500 x^{12} - 28190 x^{11} + 41920 x^{10} - 33520 x^{9} - 13837 x^{8} + 78980 x^{7} - 92652 x^{6} - 52852 x^{5} + 177374 x^{4} + 151360 x^{3} + 115323 x^{2} + 12834 x + 529\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 85.1
Root \(1.84381 - 0.541390i\) of defining polynomial
Character \(\chi\) \(=\) 276.85
Dual form 276.2.i.a.13.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.841254 - 0.540641i) q^{3} +(-1.21471 - 2.65985i) q^{5} +(0.960219 - 0.281946i) q^{7} +(0.415415 - 0.909632i) q^{9} +O(q^{10})\) \(q+(0.841254 - 0.540641i) q^{3} +(-1.21471 - 2.65985i) q^{5} +(0.960219 - 0.281946i) q^{7} +(0.415415 - 0.909632i) q^{9} +(-1.65056 - 1.90485i) q^{11} +(0.463267 + 0.136028i) q^{13} +(-2.45990 - 1.58088i) q^{15} +(0.446491 - 3.10542i) q^{17} +(-0.0786963 - 0.547345i) q^{19} +(0.655357 - 0.756322i) q^{21} +(3.87251 + 2.82908i) q^{23} +(-2.32496 + 2.68314i) q^{25} +(-0.142315 - 0.989821i) q^{27} +(-0.0173123 + 0.120410i) q^{29} +(6.92752 + 4.45205i) q^{31} +(-2.41838 - 0.710099i) q^{33} +(-1.91632 - 2.21155i) q^{35} +(-3.95959 + 8.67029i) q^{37} +(0.463267 - 0.136028i) q^{39} +(-0.578290 - 1.26628i) q^{41} +(5.21923 - 3.35419i) q^{43} -2.92409 q^{45} +8.69831 q^{47} +(-5.04625 + 3.24303i) q^{49} +(-1.30330 - 2.85383i) q^{51} +(-7.41370 + 2.17686i) q^{53} +(-3.06165 + 6.70407i) q^{55} +(-0.362120 - 0.417909i) q^{57} +(0.227334 + 0.0667513i) q^{59} +(-1.54102 - 0.990353i) q^{61} +(0.142423 - 0.990571i) q^{63} +(-0.200924 - 1.39745i) q^{65} +(1.83195 - 2.11418i) q^{67} +(4.78728 + 0.286340i) q^{69} +(-7.51699 + 8.67507i) q^{71} +(1.94856 + 13.5525i) q^{73} +(-0.505261 + 3.51417i) q^{75} +(-2.12196 - 1.36370i) q^{77} +(16.3977 + 4.81479i) q^{79} +(-0.654861 - 0.755750i) q^{81} +(-3.34983 + 7.33511i) q^{83} +(-8.80229 + 2.58458i) q^{85} +(0.0505345 + 0.110655i) q^{87} +(4.15453 - 2.66995i) q^{89} +0.483191 q^{91} +8.23476 q^{93} +(-1.36026 + 0.874186i) q^{95} +(-6.49214 - 14.2158i) q^{97} +(-2.41838 + 0.710099i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} + O(q^{10}) \) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} - 22q^{13} + 7q^{15} + 7q^{17} + 19q^{19} + 20q^{23} + 20q^{25} - 2q^{27} + 32q^{29} - 3q^{31} + 11q^{33} - 26q^{35} - 10q^{37} - 22q^{39} - 40q^{41} + 8q^{43} - 4q^{45} - 18q^{47} - 34q^{49} - 26q^{51} - 34q^{53} - 17q^{55} - 3q^{57} - 32q^{59} + 32q^{61} + 49q^{65} + 35q^{67} - 2q^{69} + 33q^{71} - q^{73} - 2q^{75} - 50q^{77} + 22q^{79} - 2q^{81} - 14q^{83} - 9q^{85} - 12q^{87} + 10q^{89} - 72q^{91} + 30q^{93} - 51q^{95} - 4q^{97} + 11q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/276\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(139\) \(185\)
\(\chi(n)\) \(e\left(\frac{4}{11}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.841254 0.540641i 0.485698 0.312139i
\(4\) 0 0
\(5\) −1.21471 2.65985i −0.543235 1.18952i −0.959870 0.280445i \(-0.909518\pi\)
0.416635 0.909074i \(-0.363209\pi\)
\(6\) 0 0
\(7\) 0.960219 0.281946i 0.362929 0.106566i −0.0951837 0.995460i \(-0.530344\pi\)
0.458113 + 0.888894i \(0.348526\pi\)
\(8\) 0 0
\(9\) 0.415415 0.909632i 0.138472 0.303211i
\(10\) 0 0
\(11\) −1.65056 1.90485i −0.497662 0.574333i 0.450235 0.892910i \(-0.351340\pi\)
−0.947897 + 0.318578i \(0.896795\pi\)
\(12\) 0 0
\(13\) 0.463267 + 0.136028i 0.128487 + 0.0377273i 0.345344 0.938476i \(-0.387762\pi\)
−0.216857 + 0.976203i \(0.569580\pi\)
\(14\) 0 0
\(15\) −2.45990 1.58088i −0.635144 0.408182i
\(16\) 0 0
\(17\) 0.446491 3.10542i 0.108290 0.753174i −0.861239 0.508199i \(-0.830311\pi\)
0.969529 0.244975i \(-0.0787796\pi\)
\(18\) 0 0
\(19\) −0.0786963 0.547345i −0.0180542 0.125569i 0.978801 0.204813i \(-0.0656586\pi\)
−0.996855 + 0.0792435i \(0.974750\pi\)
\(20\) 0 0
\(21\) 0.655357 0.756322i 0.143011 0.165043i
\(22\) 0 0
\(23\) 3.87251 + 2.82908i 0.807473 + 0.589904i
\(24\) 0 0
\(25\) −2.32496 + 2.68314i −0.464991 + 0.536628i
\(26\) 0 0
\(27\) −0.142315 0.989821i −0.0273885 0.190491i
\(28\) 0 0
\(29\) −0.0173123 + 0.120410i −0.00321482 + 0.0223596i −0.991366 0.131126i \(-0.958141\pi\)
0.988151 + 0.153486i \(0.0490499\pi\)
\(30\) 0 0
\(31\) 6.92752 + 4.45205i 1.24422 + 0.799611i 0.986044 0.166487i \(-0.0532424\pi\)
0.258175 + 0.966098i \(0.416879\pi\)
\(32\) 0 0
\(33\) −2.41838 0.710099i −0.420985 0.123612i
\(34\) 0 0
\(35\) −1.91632 2.21155i −0.323917 0.373821i
\(36\) 0 0
\(37\) −3.95959 + 8.67029i −0.650952 + 1.42539i 0.239766 + 0.970831i \(0.422929\pi\)
−0.890718 + 0.454556i \(0.849798\pi\)
\(38\) 0 0
\(39\) 0.463267 0.136028i 0.0741822 0.0217818i
\(40\) 0 0
\(41\) −0.578290 1.26628i −0.0903137 0.197760i 0.859085 0.511833i \(-0.171033\pi\)
−0.949399 + 0.314074i \(0.898306\pi\)
\(42\) 0 0
\(43\) 5.21923 3.35419i 0.795925 0.511510i −0.0783589 0.996925i \(-0.524968\pi\)
0.874284 + 0.485415i \(0.161332\pi\)
\(44\) 0 0
\(45\) −2.92409 −0.435898
\(46\) 0 0
\(47\) 8.69831 1.26878 0.634389 0.773014i \(-0.281252\pi\)
0.634389 + 0.773014i \(0.281252\pi\)
\(48\) 0 0
\(49\) −5.04625 + 3.24303i −0.720892 + 0.463289i
\(50\) 0 0
\(51\) −1.30330 2.85383i −0.182499 0.399617i
\(52\) 0 0
\(53\) −7.41370 + 2.17686i −1.01835 + 0.299015i −0.747965 0.663738i \(-0.768969\pi\)
−0.270385 + 0.962752i \(0.587151\pi\)
\(54\) 0 0
\(55\) −3.06165 + 6.70407i −0.412832 + 0.903976i
\(56\) 0 0
\(57\) −0.362120 0.417909i −0.0479640 0.0553534i
\(58\) 0 0
\(59\) 0.227334 + 0.0667513i 0.0295964 + 0.00869028i 0.296497 0.955034i \(-0.404181\pi\)
−0.266901 + 0.963724i \(0.586000\pi\)
\(60\) 0 0
\(61\) −1.54102 0.990353i −0.197307 0.126802i 0.438257 0.898850i \(-0.355596\pi\)
−0.635564 + 0.772048i \(0.719232\pi\)
\(62\) 0 0
\(63\) 0.142423 0.990571i 0.0179436 0.124800i
\(64\) 0 0
\(65\) −0.200924 1.39745i −0.0249215 0.173333i
\(66\) 0 0
\(67\) 1.83195 2.11418i 0.223808 0.258288i −0.632730 0.774373i \(-0.718065\pi\)
0.856538 + 0.516084i \(0.172611\pi\)
\(68\) 0 0
\(69\) 4.78728 + 0.286340i 0.576320 + 0.0344712i
\(70\) 0 0
\(71\) −7.51699 + 8.67507i −0.892103 + 1.02954i 0.107274 + 0.994230i \(0.465788\pi\)
−0.999376 + 0.0353118i \(0.988758\pi\)
\(72\) 0 0
\(73\) 1.94856 + 13.5525i 0.228061 + 1.58620i 0.706261 + 0.707951i \(0.250380\pi\)
−0.478200 + 0.878251i \(0.658711\pi\)
\(74\) 0 0
\(75\) −0.505261 + 3.51417i −0.0583425 + 0.405781i
\(76\) 0 0
\(77\) −2.12196 1.36370i −0.241820 0.155408i
\(78\) 0 0
\(79\) 16.3977 + 4.81479i 1.84488 + 0.541706i 0.999977 + 0.00678681i \(0.00216032\pi\)
0.844903 + 0.534919i \(0.179658\pi\)
\(80\) 0 0
\(81\) −0.654861 0.755750i −0.0727623 0.0839722i
\(82\) 0 0
\(83\) −3.34983 + 7.33511i −0.367692 + 0.805133i 0.631857 + 0.775085i \(0.282293\pi\)
−0.999548 + 0.0300477i \(0.990434\pi\)
\(84\) 0 0
\(85\) −8.80229 + 2.58458i −0.954742 + 0.280338i
\(86\) 0 0
\(87\) 0.0505345 + 0.110655i 0.00541787 + 0.0118635i
\(88\) 0 0
\(89\) 4.15453 2.66995i 0.440379 0.283015i −0.301604 0.953433i \(-0.597522\pi\)
0.741983 + 0.670419i \(0.233886\pi\)
\(90\) 0 0
\(91\) 0.483191 0.0506522
\(92\) 0 0
\(93\) 8.23476 0.853904
\(94\) 0 0
\(95\) −1.36026 + 0.874186i −0.139560 + 0.0896896i
\(96\) 0 0
\(97\) −6.49214 14.2158i −0.659177 1.44340i −0.883287 0.468833i \(-0.844675\pi\)
0.224109 0.974564i \(-0.428053\pi\)
\(98\) 0 0
\(99\) −2.41838 + 0.710099i −0.243056 + 0.0713676i
\(100\) 0 0
\(101\) −1.35100 + 2.95829i −0.134430 + 0.294361i −0.964861 0.262761i \(-0.915367\pi\)
0.830431 + 0.557121i \(0.188094\pi\)
\(102\) 0 0
\(103\) 0.917997 + 1.05943i 0.0904529 + 0.104388i 0.799172 0.601103i \(-0.205272\pi\)
−0.708719 + 0.705491i \(0.750726\pi\)
\(104\) 0 0
\(105\) −2.80777 0.824435i −0.274010 0.0804566i
\(106\) 0 0
\(107\) −8.44978 5.43034i −0.816871 0.524971i 0.0642102 0.997936i \(-0.479547\pi\)
−0.881081 + 0.472965i \(0.843184\pi\)
\(108\) 0 0
\(109\) 0.961777 6.68930i 0.0921215 0.640719i −0.890484 0.455014i \(-0.849634\pi\)
0.982606 0.185705i \(-0.0594568\pi\)
\(110\) 0 0
\(111\) 1.35649 + 9.43463i 0.128753 + 0.895495i
\(112\) 0 0
\(113\) 6.56447 7.57581i 0.617534 0.712672i −0.357703 0.933835i \(-0.616440\pi\)
0.975237 + 0.221164i \(0.0709854\pi\)
\(114\) 0 0
\(115\) 2.82094 13.7368i 0.263054 1.28096i
\(116\) 0 0
\(117\) 0.316183 0.364895i 0.0292312 0.0337346i
\(118\) 0 0
\(119\) −0.446829 3.10777i −0.0409608 0.284889i
\(120\) 0 0
\(121\) 0.661368 4.59992i 0.0601244 0.418174i
\(122\) 0 0
\(123\) −1.17109 0.752614i −0.105594 0.0678609i
\(124\) 0 0
\(125\) −4.06733 1.19428i −0.363793 0.106819i
\(126\) 0 0
\(127\) −10.9350 12.6197i −0.970327 1.11982i −0.992766 0.120069i \(-0.961689\pi\)
0.0224388 0.999748i \(-0.492857\pi\)
\(128\) 0 0
\(129\) 2.57728 5.64345i 0.226917 0.496878i
\(130\) 0 0
\(131\) 13.8070 4.05411i 1.20633 0.354209i 0.384057 0.923309i \(-0.374526\pi\)
0.822268 + 0.569100i \(0.192708\pi\)
\(132\) 0 0
\(133\) −0.229887 0.503383i −0.0199338 0.0436488i
\(134\) 0 0
\(135\) −2.45990 + 1.58088i −0.211715 + 0.136061i
\(136\) 0 0
\(137\) 1.88176 0.160769 0.0803847 0.996764i \(-0.474385\pi\)
0.0803847 + 0.996764i \(0.474385\pi\)
\(138\) 0 0
\(139\) 3.46292 0.293721 0.146860 0.989157i \(-0.453083\pi\)
0.146860 + 0.989157i \(0.453083\pi\)
\(140\) 0 0
\(141\) 7.31748 4.70266i 0.616243 0.396035i
\(142\) 0 0
\(143\) −0.505538 1.10697i −0.0422752 0.0925699i
\(144\) 0 0
\(145\) 0.341302 0.100215i 0.0283436 0.00832242i
\(146\) 0 0
\(147\) −2.49186 + 5.45641i −0.205525 + 0.450037i
\(148\) 0 0
\(149\) 14.1256 + 16.3019i 1.15722 + 1.33550i 0.932540 + 0.361067i \(0.117588\pi\)
0.224678 + 0.974433i \(0.427867\pi\)
\(150\) 0 0
\(151\) −3.13983 0.921937i −0.255516 0.0750262i 0.151466 0.988462i \(-0.451601\pi\)
−0.406982 + 0.913436i \(0.633419\pi\)
\(152\) 0 0
\(153\) −2.63931 1.69618i −0.213375 0.137128i
\(154\) 0 0
\(155\) 3.42682 23.8341i 0.275249 1.91440i
\(156\) 0 0
\(157\) −3.24424 22.5642i −0.258919 1.80082i −0.540567 0.841301i \(-0.681790\pi\)
0.281649 0.959518i \(-0.409119\pi\)
\(158\) 0 0
\(159\) −5.05990 + 5.83944i −0.401277 + 0.463098i
\(160\) 0 0
\(161\) 4.51610 + 1.62470i 0.355919 + 0.128044i
\(162\) 0 0
\(163\) 7.91542 9.13488i 0.619984 0.715499i −0.355720 0.934592i \(-0.615764\pi\)
0.975704 + 0.219093i \(0.0703099\pi\)
\(164\) 0 0
\(165\) 1.04887 + 7.29507i 0.0816547 + 0.567921i
\(166\) 0 0
\(167\) −1.18059 + 8.21115i −0.0913565 + 0.635398i 0.891772 + 0.452484i \(0.149462\pi\)
−0.983129 + 0.182914i \(0.941447\pi\)
\(168\) 0 0
\(169\) −10.7402 6.90230i −0.826168 0.530946i
\(170\) 0 0
\(171\) −0.530574 0.155791i −0.0405740 0.0119136i
\(172\) 0 0
\(173\) 13.5301 + 15.6146i 1.02868 + 1.18716i 0.982123 + 0.188241i \(0.0602786\pi\)
0.0465543 + 0.998916i \(0.485176\pi\)
\(174\) 0 0
\(175\) −1.47597 + 3.23192i −0.111573 + 0.244310i
\(176\) 0 0
\(177\) 0.227334 0.0667513i 0.0170875 0.00501733i
\(178\) 0 0
\(179\) 1.61211 + 3.53002i 0.120494 + 0.263846i 0.960262 0.279100i \(-0.0900361\pi\)
−0.839768 + 0.542946i \(0.817309\pi\)
\(180\) 0 0
\(181\) 6.70576 4.30953i 0.498435 0.320325i −0.267155 0.963654i \(-0.586083\pi\)
0.765590 + 0.643329i \(0.222447\pi\)
\(182\) 0 0
\(183\) −1.83181 −0.135412
\(184\) 0 0
\(185\) 27.8714 2.04915
\(186\) 0 0
\(187\) −6.65230 + 4.27517i −0.486464 + 0.312632i
\(188\) 0 0
\(189\) −0.415730 0.910321i −0.0302399 0.0662161i
\(190\) 0 0
\(191\) −16.2019 + 4.75730i −1.17233 + 0.344226i −0.809211 0.587518i \(-0.800105\pi\)
−0.363116 + 0.931744i \(0.618287\pi\)
\(192\) 0 0
\(193\) −8.84842 + 19.3753i −0.636923 + 1.39467i 0.265624 + 0.964077i \(0.414422\pi\)
−0.902547 + 0.430591i \(0.858305\pi\)
\(194\) 0 0
\(195\) −0.924549 1.06699i −0.0662083 0.0764084i
\(196\) 0 0
\(197\) −25.8424 7.58802i −1.84120 0.540624i −0.841196 0.540731i \(-0.818148\pi\)
−1.00000 0.000106800i \(0.999966\pi\)
\(198\) 0 0
\(199\) −6.12918 3.93898i −0.434486 0.279227i 0.305060 0.952333i \(-0.401323\pi\)
−0.739546 + 0.673106i \(0.764960\pi\)
\(200\) 0 0
\(201\) 0.398121 2.76899i 0.0280813 0.195309i
\(202\) 0 0
\(203\) 0.0173255 + 0.120501i 0.00121601 + 0.00845752i
\(204\) 0 0
\(205\) −2.66565 + 3.07633i −0.186177 + 0.214860i
\(206\) 0 0
\(207\) 4.18212 2.34731i 0.290677 0.163149i
\(208\) 0 0
\(209\) −0.912714 + 1.05333i −0.0631338 + 0.0728603i
\(210\) 0 0
\(211\) −2.22131 15.4495i −0.152921 1.06359i −0.911290 0.411765i \(-0.864913\pi\)
0.758369 0.651825i \(-0.225997\pi\)
\(212\) 0 0
\(213\) −1.63360 + 11.3619i −0.111932 + 0.778506i
\(214\) 0 0
\(215\) −15.2615 9.80797i −1.04083 0.668898i
\(216\) 0 0
\(217\) 7.90717 + 2.32176i 0.536774 + 0.157611i
\(218\) 0 0
\(219\) 8.96628 + 10.3476i 0.605885 + 0.699228i
\(220\) 0 0
\(221\) 0.629267 1.37790i 0.0423291 0.0926878i
\(222\) 0 0
\(223\) 1.34888 0.396066i 0.0903274 0.0265225i −0.236257 0.971691i \(-0.575921\pi\)
0.326584 + 0.945168i \(0.394102\pi\)
\(224\) 0 0
\(225\) 1.47485 + 3.22947i 0.0983233 + 0.215298i
\(226\) 0 0
\(227\) −3.73511 + 2.40041i −0.247908 + 0.159321i −0.658694 0.752411i \(-0.728891\pi\)
0.410786 + 0.911732i \(0.365254\pi\)
\(228\) 0 0
\(229\) −1.67523 −0.110702 −0.0553512 0.998467i \(-0.517628\pi\)
−0.0553512 + 0.998467i \(0.517628\pi\)
\(230\) 0 0
\(231\) −2.52238 −0.165960
\(232\) 0 0
\(233\) −18.3038 + 11.7632i −1.19912 + 0.770630i −0.978804 0.204798i \(-0.934346\pi\)
−0.220319 + 0.975428i \(0.570710\pi\)
\(234\) 0 0
\(235\) −10.5659 23.1362i −0.689245 1.50924i
\(236\) 0 0
\(237\) 16.3977 4.81479i 1.06514 0.312754i
\(238\) 0 0
\(239\) −8.72594 + 19.1071i −0.564434 + 1.23594i 0.385274 + 0.922802i \(0.374107\pi\)
−0.949708 + 0.313136i \(0.898620\pi\)
\(240\) 0 0
\(241\) 17.2462 + 19.9032i 1.11093 + 1.28208i 0.955746 + 0.294194i \(0.0950510\pi\)
0.155182 + 0.987886i \(0.450404\pi\)
\(242\) 0 0
\(243\) −0.959493 0.281733i −0.0615515 0.0180732i
\(244\) 0 0
\(245\) 14.7557 + 9.48290i 0.942706 + 0.605840i
\(246\) 0 0
\(247\) 0.0379966 0.264272i 0.00241766 0.0168152i
\(248\) 0 0
\(249\) 1.14760 + 7.98174i 0.0727263 + 0.505823i
\(250\) 0 0
\(251\) −17.0613 + 19.6898i −1.07690 + 1.24281i −0.108318 + 0.994116i \(0.534547\pi\)
−0.968582 + 0.248693i \(0.919999\pi\)
\(252\) 0 0
\(253\) −1.00283 12.0461i −0.0630476 0.757331i
\(254\) 0 0
\(255\) −6.00762 + 6.93317i −0.376212 + 0.434172i
\(256\) 0 0
\(257\) −1.12414 7.81860i −0.0701222 0.487711i −0.994374 0.105927i \(-0.966219\pi\)
0.924252 0.381784i \(-0.124690\pi\)
\(258\) 0 0
\(259\) −1.35752 + 9.44177i −0.0843523 + 0.586683i
\(260\) 0 0
\(261\) 0.102337 + 0.0657680i 0.00633450 + 0.00407094i
\(262\) 0 0
\(263\) 11.8421 + 3.47716i 0.730216 + 0.214411i 0.625646 0.780107i \(-0.284835\pi\)
0.104570 + 0.994518i \(0.466653\pi\)
\(264\) 0 0
\(265\) 14.7956 + 17.0751i 0.908888 + 1.04891i
\(266\) 0 0
\(267\) 2.05153 4.49222i 0.125551 0.274919i
\(268\) 0 0
\(269\) 10.7364 3.15249i 0.654610 0.192211i 0.0624710 0.998047i \(-0.480102\pi\)
0.592139 + 0.805836i \(0.298284\pi\)
\(270\) 0 0
\(271\) 9.90135 + 21.6809i 0.601464 + 1.31702i 0.928261 + 0.371929i \(0.121303\pi\)
−0.326797 + 0.945095i \(0.605969\pi\)
\(272\) 0 0
\(273\) 0.406486 0.261233i 0.0246016 0.0158105i
\(274\) 0 0
\(275\) 8.94844 0.539612
\(276\) 0 0
\(277\) −17.8542 −1.07275 −0.536376 0.843979i \(-0.680207\pi\)
−0.536376 + 0.843979i \(0.680207\pi\)
\(278\) 0 0
\(279\) 6.92752 4.45205i 0.414740 0.266537i
\(280\) 0 0
\(281\) −0.687581 1.50559i −0.0410176 0.0898161i 0.888014 0.459817i \(-0.152085\pi\)
−0.929032 + 0.370000i \(0.879358\pi\)
\(282\) 0 0
\(283\) 1.30907 0.384378i 0.0778161 0.0228489i −0.242593 0.970128i \(-0.577998\pi\)
0.320409 + 0.947279i \(0.396180\pi\)
\(284\) 0 0
\(285\) −0.671703 + 1.47082i −0.0397882 + 0.0871241i
\(286\) 0 0
\(287\) −0.912307 1.05286i −0.0538518 0.0621483i
\(288\) 0 0
\(289\) 6.86713 + 2.01637i 0.403949 + 0.118610i
\(290\) 0 0
\(291\) −13.1472 8.44918i −0.770702 0.495300i
\(292\) 0 0
\(293\) 1.50932 10.4975i 0.0881752 0.613272i −0.897040 0.441950i \(-0.854287\pi\)
0.985215 0.171322i \(-0.0548039\pi\)
\(294\) 0 0
\(295\) −0.0985970 0.685757i −0.00574054 0.0399263i
\(296\) 0 0
\(297\) −1.65056 + 1.90485i −0.0957751 + 0.110530i
\(298\) 0 0
\(299\) 1.40917 + 1.83739i 0.0814946 + 0.106259i
\(300\) 0 0
\(301\) 4.06590 4.69230i 0.234355 0.270460i
\(302\) 0 0
\(303\) 0.462834 + 3.21908i 0.0265891 + 0.184931i
\(304\) 0 0
\(305\) −0.762294 + 5.30187i −0.0436488 + 0.303584i
\(306\) 0 0
\(307\) −8.68375 5.58071i −0.495608 0.318508i 0.268849 0.963182i \(-0.413357\pi\)
−0.764457 + 0.644674i \(0.776993\pi\)
\(308\) 0 0
\(309\) 1.34504 + 0.394938i 0.0765165 + 0.0224673i
\(310\) 0 0
\(311\) 4.61609 + 5.32725i 0.261755 + 0.302081i 0.871380 0.490609i \(-0.163226\pi\)
−0.609625 + 0.792690i \(0.708680\pi\)
\(312\) 0 0
\(313\) 0.939900 2.05809i 0.0531263 0.116330i −0.881207 0.472730i \(-0.843269\pi\)
0.934334 + 0.356400i \(0.115996\pi\)
\(314\) 0 0
\(315\) −2.80777 + 0.824435i −0.158200 + 0.0464517i
\(316\) 0 0
\(317\) −1.31835 2.88679i −0.0740460 0.162138i 0.868989 0.494831i \(-0.164770\pi\)
−0.943035 + 0.332693i \(0.892043\pi\)
\(318\) 0 0
\(319\) 0.257938 0.165766i 0.0144417 0.00928114i
\(320\) 0 0
\(321\) −10.0443 −0.560616
\(322\) 0 0
\(323\) −1.73487 −0.0965308
\(324\) 0 0
\(325\) −1.44206 + 0.926754i −0.0799909 + 0.0514071i
\(326\) 0 0
\(327\) −2.80741 6.14738i −0.155250 0.339951i
\(328\) 0 0
\(329\) 8.35228 2.45245i 0.460476 0.135208i
\(330\) 0 0
\(331\) −8.63436 + 18.9066i −0.474587 + 1.03920i 0.509329 + 0.860572i \(0.329894\pi\)
−0.983916 + 0.178629i \(0.942834\pi\)
\(332\) 0 0
\(333\) 6.24190 + 7.20354i 0.342054 + 0.394751i
\(334\) 0 0
\(335\) −7.84869 2.30458i −0.428820 0.125913i
\(336\) 0 0
\(337\) −21.9636 14.1152i −1.19644 0.768902i −0.218099 0.975927i \(-0.569986\pi\)
−0.978336 + 0.207024i \(0.933622\pi\)
\(338\) 0 0
\(339\) 1.42660 9.92220i 0.0774821 0.538900i
\(340\) 0 0
\(341\) −2.95381 20.5442i −0.159958 1.11253i
\(342\) 0 0
\(343\) −8.51864 + 9.83104i −0.459963 + 0.530826i
\(344\) 0 0
\(345\) −5.05354 13.0812i −0.272073 0.704270i
\(346\) 0 0
\(347\) 7.52379 8.68291i 0.403898 0.466123i −0.516967 0.856006i \(-0.672939\pi\)
0.920865 + 0.389882i \(0.127484\pi\)
\(348\) 0 0
\(349\) 4.15887 + 28.9256i 0.222619 + 1.54835i 0.728075 + 0.685497i \(0.240415\pi\)
−0.505456 + 0.862852i \(0.668676\pi\)
\(350\) 0 0
\(351\) 0.0687132 0.477911i 0.00366764 0.0255090i
\(352\) 0 0
\(353\) −27.4206 17.6221i −1.45945 0.937932i −0.998730 0.0503875i \(-0.983954\pi\)
−0.460721 0.887545i \(-0.652409\pi\)
\(354\) 0 0
\(355\) 32.2053 + 9.45634i 1.70928 + 0.501890i
\(356\) 0 0
\(357\) −2.05608 2.37285i −0.108819 0.125584i
\(358\) 0 0
\(359\) −12.1092 + 26.5155i −0.639101 + 1.39944i 0.261678 + 0.965155i \(0.415724\pi\)
−0.900778 + 0.434280i \(0.857003\pi\)
\(360\) 0 0
\(361\) 17.9370 5.26677i 0.944051 0.277198i
\(362\) 0 0
\(363\) −1.93052 4.22726i −0.101326 0.221874i
\(364\) 0 0
\(365\) 33.6807 21.6453i 1.76293 1.13296i
\(366\) 0 0
\(367\) −22.4367 −1.17119 −0.585593 0.810605i \(-0.699138\pi\)
−0.585593 + 0.810605i \(0.699138\pi\)
\(368\) 0 0
\(369\) −1.39208 −0.0724687
\(370\) 0 0
\(371\) −6.50502 + 4.18053i −0.337724 + 0.217042i
\(372\) 0 0
\(373\) −5.65832 12.3900i −0.292977 0.641530i 0.704711 0.709495i \(-0.251077\pi\)
−0.997688 + 0.0679649i \(0.978349\pi\)
\(374\) 0 0
\(375\) −4.06733 + 1.19428i −0.210036 + 0.0616721i
\(376\) 0 0
\(377\) −0.0243993 + 0.0534271i −0.00125663 + 0.00275163i
\(378\) 0 0
\(379\) −3.03505 3.50264i −0.155900 0.179918i 0.672426 0.740164i \(-0.265252\pi\)
−0.828327 + 0.560246i \(0.810707\pi\)
\(380\) 0 0
\(381\) −16.0219 4.70444i −0.820824 0.241016i
\(382\) 0 0
\(383\) 25.6052 + 16.4555i 1.30837 + 0.840836i 0.994097 0.108498i \(-0.0346042\pi\)
0.314269 + 0.949334i \(0.398241\pi\)
\(384\) 0 0
\(385\) −1.04967 + 7.30060i −0.0534960 + 0.372073i
\(386\) 0 0
\(387\) −0.882937 6.14096i −0.0448822 0.312162i
\(388\) 0 0
\(389\) −1.96796 + 2.27115i −0.0997797 + 0.115152i −0.803443 0.595382i \(-0.797001\pi\)
0.703663 + 0.710534i \(0.251546\pi\)
\(390\) 0 0
\(391\) 10.5145 10.7626i 0.531742 0.544287i
\(392\) 0 0
\(393\) 9.42339 10.8752i 0.475347 0.548580i
\(394\) 0 0
\(395\) −7.11182 49.4638i −0.357835 2.48879i
\(396\) 0 0
\(397\) 1.38627 9.64170i 0.0695747 0.483903i −0.925007 0.379949i \(-0.875942\pi\)
0.994582 0.103954i \(-0.0331494\pi\)
\(398\) 0 0
\(399\) −0.465543 0.299186i −0.0233063 0.0149780i
\(400\) 0 0
\(401\) −19.1560 5.62470i −0.956603 0.280884i −0.234069 0.972220i \(-0.575204\pi\)
−0.722533 + 0.691336i \(0.757022\pi\)
\(402\) 0 0
\(403\) 2.60369 + 3.00482i 0.129699 + 0.149681i
\(404\) 0 0
\(405\) −1.21471 + 2.65985i −0.0603595 + 0.132169i
\(406\) 0 0
\(407\) 23.0511 6.76841i 1.14260 0.335498i
\(408\) 0 0
\(409\) 10.1075 + 22.1323i 0.499784 + 1.09437i 0.976540 + 0.215338i \(0.0690853\pi\)
−0.476756 + 0.879036i \(0.658187\pi\)
\(410\) 0 0
\(411\) 1.58303 1.01735i 0.0780853 0.0501824i
\(412\) 0 0
\(413\) 0.237111 0.0116675
\(414\) 0 0
\(415\) 23.5793 1.15746
\(416\) 0 0
\(417\) 2.91319 1.87219i 0.142660 0.0916818i
\(418\) 0 0
\(419\) 5.43702 + 11.9054i 0.265616 + 0.581618i 0.994702 0.102805i \(-0.0327817\pi\)
−0.729086 + 0.684422i \(0.760054\pi\)
\(420\) 0 0
\(421\) 5.86675 1.72263i 0.285928 0.0839560i −0.135624 0.990760i \(-0.543304\pi\)
0.421552 + 0.906804i \(0.361486\pi\)
\(422\) 0 0
\(423\) 3.61341 7.91226i 0.175690 0.384707i
\(424\) 0 0
\(425\) 7.29420 + 8.41795i 0.353821 + 0.408331i
\(426\) 0 0
\(427\) −1.75894 0.516472i −0.0851212 0.0249938i
\(428\) 0 0
\(429\) −1.02376 0.657932i −0.0494277 0.0317652i
\(430\) 0 0
\(431\) 3.47655 24.1799i 0.167459 1.16471i −0.716653 0.697430i \(-0.754327\pi\)
0.884112 0.467275i \(-0.154764\pi\)
\(432\) 0 0
\(433\) 2.34204 + 16.2892i 0.112551 + 0.782810i 0.965423 + 0.260690i \(0.0839499\pi\)
−0.852872 + 0.522121i \(0.825141\pi\)
\(434\) 0 0
\(435\) 0.232941 0.268828i 0.0111687 0.0128893i
\(436\) 0 0
\(437\) 1.24373 2.34223i 0.0594957 0.112044i
\(438\) 0 0
\(439\) 0.691787 0.798365i 0.0330172 0.0381039i −0.739001 0.673705i \(-0.764702\pi\)
0.772018 + 0.635601i \(0.219247\pi\)
\(440\) 0 0
\(441\) 0.853673 + 5.93743i 0.0406511 + 0.282735i
\(442\) 0 0
\(443\) 2.83450 19.7144i 0.134671 0.936659i −0.804681 0.593707i \(-0.797664\pi\)
0.939353 0.342953i \(-0.111427\pi\)
\(444\) 0 0
\(445\) −12.1482 7.80719i −0.575881 0.370096i
\(446\) 0 0
\(447\) 20.6967 + 6.07710i 0.978920 + 0.287437i
\(448\) 0 0
\(449\) −16.0130 18.4800i −0.755702 0.872127i 0.239406 0.970920i \(-0.423047\pi\)
−0.995108 + 0.0987927i \(0.968502\pi\)
\(450\) 0 0
\(451\) −1.45756 + 3.19162i −0.0686340 + 0.150288i
\(452\) 0 0
\(453\) −3.13983 + 0.921937i −0.147522 + 0.0433164i
\(454\) 0 0
\(455\) −0.586937 1.28521i −0.0275160 0.0602517i
\(456\) 0 0
\(457\) 8.21331 5.27838i 0.384203 0.246912i −0.334255 0.942483i \(-0.608485\pi\)
0.718458 + 0.695571i \(0.244848\pi\)
\(458\) 0 0
\(459\) −3.13735 −0.146439
\(460\) 0 0
\(461\) 28.8585 1.34408 0.672038 0.740517i \(-0.265419\pi\)
0.672038 + 0.740517i \(0.265419\pi\)
\(462\) 0 0
\(463\) 17.0636 10.9661i 0.793014 0.509639i −0.0803151 0.996770i \(-0.525593\pi\)
0.873329 + 0.487130i \(0.161956\pi\)
\(464\) 0 0
\(465\) −10.0028 21.9032i −0.463871 1.01574i
\(466\) 0 0
\(467\) −26.5386 + 7.79244i −1.22806 + 0.360591i −0.830518 0.556993i \(-0.811955\pi\)
−0.397543 + 0.917584i \(0.630137\pi\)
\(468\) 0 0
\(469\) 1.16299 2.54659i 0.0537018 0.117591i
\(470\) 0 0
\(471\) −14.9284 17.2282i −0.687862 0.793835i
\(472\) 0 0
\(473\) −15.0039 4.40553i −0.689878 0.202567i
\(474\) 0 0
\(475\) 1.65157 + 1.06140i 0.0757792 + 0.0487003i
\(476\) 0 0
\(477\) −1.09962 + 7.64804i −0.0503482 + 0.350180i
\(478\) 0 0
\(479\) −2.91070 20.2444i −0.132993 0.924988i −0.941623 0.336670i \(-0.890699\pi\)
0.808630 0.588318i \(-0.200210\pi\)
\(480\) 0 0
\(481\) −3.01375 + 3.47805i −0.137415 + 0.158585i
\(482\) 0 0
\(483\) 4.67757 1.07480i 0.212837 0.0489053i
\(484\) 0 0
\(485\) −29.9258 + 34.5362i −1.35886 + 1.56821i
\(486\) 0 0
\(487\) −0.443196 3.08250i −0.0200831 0.139681i 0.977313 0.211801i \(-0.0679328\pi\)
−0.997396 + 0.0721195i \(0.977024\pi\)
\(488\) 0 0
\(489\) 1.72019 11.9642i 0.0777895 0.541038i
\(490\) 0 0
\(491\) −4.62679 2.97346i −0.208804 0.134190i 0.432059 0.901845i \(-0.357787\pi\)
−0.640863 + 0.767655i \(0.721424\pi\)
\(492\) 0 0
\(493\) 0.366193 + 0.107524i 0.0164925 + 0.00484264i
\(494\) 0 0
\(495\) 4.82638 + 5.56994i 0.216930 + 0.250350i
\(496\) 0 0
\(497\) −4.77206 + 10.4494i −0.214056 + 0.468718i
\(498\) 0 0
\(499\) −8.04956 + 2.36356i −0.360348 + 0.105808i −0.456895 0.889521i \(-0.651038\pi\)
0.0965470 + 0.995328i \(0.469220\pi\)
\(500\) 0 0
\(501\) 3.44611 + 7.54594i 0.153961 + 0.337128i
\(502\) 0 0
\(503\) −1.42347 + 0.914807i −0.0634693 + 0.0407892i −0.571991 0.820260i \(-0.693829\pi\)
0.508521 + 0.861049i \(0.330192\pi\)
\(504\) 0 0
\(505\) 9.50967 0.423175
\(506\) 0 0
\(507\) −12.7669 −0.566997
\(508\) 0 0
\(509\) −12.2843 + 7.89467i −0.544494 + 0.349925i −0.783794 0.621021i \(-0.786718\pi\)
0.239300 + 0.970946i \(0.423082\pi\)
\(510\) 0 0
\(511\) 5.69212 + 12.4640i 0.251805 + 0.551375i
\(512\) 0 0
\(513\) −0.530574 + 0.155791i −0.0234254 + 0.00687832i
\(514\) 0 0
\(515\) 1.70281 3.72863i 0.0750346 0.164303i
\(516\) 0 0
\(517\) −14.3571 16.5689i −0.631423 0.728701i
\(518\) 0 0
\(519\) 19.8242 + 5.82090i 0.870184 + 0.255509i
\(520\) 0 0
\(521\) −21.6860 13.9368i −0.950083 0.610581i −0.0288462 0.999584i \(-0.509183\pi\)
−0.921237 + 0.389003i \(0.872820\pi\)
\(522\) 0 0
\(523\) −2.00234 + 13.9266i −0.0875563 + 0.608967i 0.898048 + 0.439898i \(0.144985\pi\)
−0.985604 + 0.169070i \(0.945924\pi\)
\(524\) 0 0
\(525\) 0.505644 + 3.51683i 0.0220681 + 0.153487i
\(526\) 0 0
\(527\) 16.9185 19.5250i 0.736983 0.850524i
\(528\) 0 0
\(529\) 6.99260 + 21.9113i 0.304026 + 0.952664i
\(530\) 0 0
\(531\) 0.155157 0.179061i 0.00673324 0.00777058i
\(532\) 0 0
\(533\) −0.0956541 0.665289i −0.00414324 0.0288169i
\(534\) 0 0
\(535\) −4.17984 + 29.0714i −0.180710 + 1.25687i
\(536\) 0 0
\(537\) 3.26466 + 2.09807i 0.140881 + 0.0905385i
\(538\) 0 0
\(539\) 14.5066 + 4.25952i 0.624843 + 0.183470i
\(540\) 0 0
\(541\) 11.8199 + 13.6409i 0.508177 + 0.586468i 0.950631 0.310324i \(-0.100437\pi\)
−0.442454 + 0.896791i \(0.645892\pi\)
\(542\) 0 0
\(543\) 3.31134 7.25082i 0.142103 0.311162i
\(544\) 0 0
\(545\) −18.9608 + 5.56739i −0.812191 + 0.238481i
\(546\) 0 0
\(547\) −6.77596 14.8373i −0.289719 0.634396i 0.707675 0.706538i \(-0.249744\pi\)
−0.997394 + 0.0721416i \(0.977017\pi\)
\(548\) 0 0
\(549\) −1.54102 + 0.990353i −0.0657691 + 0.0422672i
\(550\) 0 0
\(551\) 0.0672682 0.00286572
\(552\) 0 0
\(553\) 17.1029 0.727287
\(554\) 0 0
\(555\) 23.4469 15.0684i 0.995266 0.639619i
\(556\) 0 0
\(557\) 9.28190 + 20.3245i 0.393287 + 0.861178i 0.997907 + 0.0646639i \(0.0205975\pi\)
−0.604620 + 0.796514i \(0.706675\pi\)
\(558\) 0 0
\(559\) 2.87416 0.843930i 0.121564 0.0356944i
\(560\) 0 0
\(561\) −3.28494 + 7.19301i −0.138690 + 0.303689i
\(562\) 0 0
\(563\) 9.19015 + 10.6060i 0.387318 + 0.446989i 0.915606 0.402076i \(-0.131711\pi\)
−0.528288 + 0.849065i \(0.677166\pi\)
\(564\) 0 0
\(565\) −28.1244 8.25807i −1.18320 0.347420i
\(566\) 0 0
\(567\) −0.841890 0.541050i −0.0353561 0.0227220i
\(568\) 0 0
\(569\) −5.30762 + 36.9153i −0.222507 + 1.54757i 0.506002 + 0.862532i \(0.331123\pi\)
−0.728509 + 0.685037i \(0.759786\pi\)
\(570\) 0 0
\(571\) 5.24484 + 36.4787i 0.219490 + 1.52659i 0.739928 + 0.672686i \(0.234860\pi\)
−0.520438 + 0.853899i \(0.674231\pi\)
\(572\) 0 0
\(573\) −11.0579 + 12.7615i −0.461950 + 0.533119i
\(574\) 0 0
\(575\) −16.5942 + 3.81299i −0.692027 + 0.159013i
\(576\) 0 0
\(577\) −13.7946 + 15.9198i −0.574278 + 0.662752i −0.966364 0.257177i \(-0.917208\pi\)
0.392087 + 0.919928i \(0.371753\pi\)
\(578\) 0 0
\(579\) 3.03133 + 21.0834i 0.125978 + 0.876196i
\(580\) 0 0
\(581\) −1.14847 + 7.98779i −0.0476466 + 0.331389i
\(582\) 0 0
\(583\) 16.3833 + 10.5289i 0.678528 + 0.436064i
\(584\) 0 0
\(585\) −1.35464 0.397757i −0.0560073 0.0164452i
\(586\) 0 0
\(587\) −0.0269562 0.0311092i −0.00111260 0.00128401i 0.755193 0.655503i \(-0.227543\pi\)
−0.756306 + 0.654218i \(0.772998\pi\)
\(588\) 0 0
\(589\) 1.89163 4.14210i 0.0779434 0.170672i
\(590\) 0 0
\(591\) −25.8424 + 7.58802i −1.06301 + 0.312129i
\(592\) 0 0
\(593\) 6.17509 + 13.5216i 0.253580 + 0.555264i 0.993018 0.117961i \(-0.0376358\pi\)
−0.739438 + 0.673225i \(0.764909\pi\)
\(594\) 0 0
\(595\) −7.72341 + 4.96354i −0.316629 + 0.203485i
\(596\) 0 0
\(597\) −7.28577 −0.298187
\(598\) 0 0
\(599\) 44.0448 1.79962 0.899811 0.436280i \(-0.143704\pi\)
0.899811 + 0.436280i \(0.143704\pi\)
\(600\) 0 0
\(601\) 37.1322 23.8634i 1.51465 0.973409i 0.521932 0.852987i \(-0.325212\pi\)
0.992723 0.120422i \(-0.0384248\pi\)
\(602\) 0 0
\(603\) −1.16211 2.54466i −0.0473247 0.103627i
\(604\) 0 0
\(605\) −13.0384 + 3.82843i −0.530088 + 0.155648i
\(606\) 0 0
\(607\) −8.82155 + 19.3165i −0.358056 + 0.784032i 0.641797 + 0.766874i \(0.278189\pi\)
−0.999853 + 0.0171579i \(0.994538\pi\)
\(608\) 0 0
\(609\) 0.0797229 + 0.0920052i 0.00323054 + 0.00372824i
\(610\) 0 0
\(611\) 4.02964 + 1.18321i 0.163022 + 0.0478676i
\(612\) 0 0
\(613\) −28.7218 18.4584i −1.16006 0.745527i −0.188445 0.982084i \(-0.560345\pi\)
−0.971618 + 0.236557i \(0.923981\pi\)
\(614\) 0 0
\(615\) −0.579301 + 4.02913i −0.0233597 + 0.162470i
\(616\) 0 0
\(617\) −5.83677 40.5956i −0.234980 1.63432i −0.676057 0.736849i \(-0.736313\pi\)
0.441077 0.897469i \(-0.354596\pi\)
\(618\) 0 0
\(619\) −4.61337 + 5.32411i −0.185427 + 0.213994i −0.840851 0.541267i \(-0.817945\pi\)
0.655424 + 0.755262i \(0.272490\pi\)
\(620\) 0 0
\(621\) 2.24917 4.23571i 0.0902561 0.169973i
\(622\) 0 0
\(623\) 3.23648 3.73510i 0.129667 0.149643i
\(624\) 0 0
\(625\) 4.29035 + 29.8400i 0.171614 + 1.19360i
\(626\) 0 0
\(627\) −0.198352 + 1.37957i −0.00792141 + 0.0550946i
\(628\) 0 0
\(629\) 25.1569 + 16.1674i 1.00307 + 0.644636i
\(630\) 0 0
\(631\) −22.4420 6.58958i −0.893403 0.262327i −0.197364 0.980330i \(-0.563238\pi\)
−0.696040 + 0.718003i \(0.745056\pi\)
\(632\) 0 0
\(633\) −10.2213 11.7961i −0.406262 0.468851i
\(634\) 0 0
\(635\) −20.2835 + 44.4148i −0.804928 + 1.76255i
\(636\) 0 0
\(637\) −2.77890 + 0.815959i −0.110104 + 0.0323295i
\(638\) 0 0
\(639\) 4.76845 + 10.4414i 0.188637 + 0.413057i
\(640\) 0 0
\(641\) 13.9034 8.93518i 0.549152 0.352919i −0.236457 0.971642i \(-0.575986\pi\)
0.785609 + 0.618723i \(0.212350\pi\)
\(642\) 0 0
\(643\) −34.1400 −1.34635 −0.673176 0.739482i \(-0.735070\pi\)
−0.673176 + 0.739482i \(0.735070\pi\)
\(644\) 0 0
\(645\) −18.1414 −0.714316
\(646\) 0 0
\(647\) −8.12978 + 5.22469i −0.319614 + 0.205404i −0.690604 0.723233i \(-0.742655\pi\)
0.370989 + 0.928637i \(0.379019\pi\)
\(648\) 0 0
\(649\) −0.248077 0.543213i −0.00973788 0.0213230i
\(650\) 0 0
\(651\) 7.90717 2.32176i 0.309907 0.0909968i
\(652\) 0 0
\(653\) 2.47632 5.42237i 0.0969057 0.212194i −0.854971 0.518677i \(-0.826425\pi\)
0.951876 + 0.306483i \(0.0991522\pi\)
\(654\) 0 0
\(655\) −27.5549 31.8000i −1.07666 1.24253i
\(656\) 0 0
\(657\) 13.1373 + 3.85745i 0.512534 + 0.150493i
\(658\) 0 0
\(659\) 31.7171 + 20.3833i 1.23552 + 0.794021i 0.984742 0.174023i \(-0.0556766\pi\)
0.250780 + 0.968044i \(0.419313\pi\)
\(660\) 0 0
\(661\) 4.57689 31.8330i 0.178020 1.23816i −0.683316 0.730123i \(-0.739463\pi\)
0.861336 0.508036i \(-0.169628\pi\)
\(662\) 0 0
\(663\) −0.215577 1.49937i −0.00837233 0.0582308i
\(664\) 0 0
\(665\) −1.05967 + 1.22293i −0.0410924 + 0.0474232i
\(666\) 0 0
\(667\) −0.407692 + 0.417310i −0.0157859 + 0.0161583i
\(668\) 0 0
\(669\) 0.920617 1.06245i 0.0355931 0.0410766i
\(670\) 0 0
\(671\) 0.657073 + 4.57004i 0.0253660 + 0.176424i
\(672\) 0 0
\(673\) 4.44939 30.9462i 0.171511 1.19289i −0.704181 0.710020i \(-0.748686\pi\)
0.875693 0.482868i \(-0.160405\pi\)
\(674\) 0 0
\(675\) 2.98671 + 1.91944i 0.114958 + 0.0738793i
\(676\) 0 0
\(677\) −5.24755 1.54082i −0.201680 0.0592185i 0.179332 0.983789i \(-0.442606\pi\)
−0.381012 + 0.924570i \(0.624424\pi\)
\(678\) 0 0
\(679\) −10.2420 11.8199i −0.393051 0.453605i
\(680\) 0 0
\(681\) −1.84442 + 4.03871i −0.0706782 + 0.154764i
\(682\) 0 0
\(683\) 31.9778 9.38953i 1.22360 0.359280i 0.394767 0.918781i \(-0.370825\pi\)
0.828830 + 0.559501i \(0.189007\pi\)
\(684\) 0 0
\(685\) −2.28579 5.00518i −0.0873356 0.191238i
\(686\) 0 0
\(687\) −1.40929 + 0.905699i −0.0537679 + 0.0345546i
\(688\) 0 0
\(689\) −3.73064 −0.142126
\(690\) 0 0
\(691\) 23.4533 0.892206 0.446103 0.894982i \(-0.352811\pi\)
0.446103 + 0.894982i \(0.352811\pi\)
\(692\) 0 0
\(693\) −2.12196 + 1.36370i −0.0806067 + 0.0518028i
\(694\) 0 0
\(695\) −4.20644 9.21083i −0.159560 0.349387i
\(696\) 0 0
\(697\) −4.19052 + 1.23045i −0.158727 + 0.0466066i
\(698\) 0 0
\(699\) −9.03851 + 19.7916i −0.341868 + 0.748586i
\(700\) 0 0
\(701\) −9.67059 11.1605i −0.365253 0.421525i 0.543140 0.839642i \(-0.317235\pi\)
−0.908393 + 0.418118i \(0.862690\pi\)
\(702\) 0 0
\(703\) 5.05724 + 1.48494i 0.190737 + 0.0560056i
\(704\) 0 0
\(705\) −21.3970 13.7510i −0.805857 0.517893i
\(706\) 0 0
\(707\) −0.463184 + 3.22152i −0.0174198 + 0.121158i
\(708\) 0 0
\(709\) −1.84594 12.8388i −0.0693258 0.482172i −0.994675 0.103057i \(-0.967138\pi\)
0.925350 0.379115i \(-0.123771\pi\)
\(710\) 0 0
\(711\) 11.1915 12.9157i 0.419715 0.484376i
\(712\) 0 0
\(713\) 14.2317 + 36.8391i 0.532980 + 1.37963i
\(714\) 0 0
\(715\) −2.33030 + 2.68931i −0.0871482 + 0.100574i
\(716\) 0 0
\(717\) 2.98937 + 20.7916i 0.111640 + 0.776475i
\(718\) 0 0
\(719\) 2.59209 18.0284i 0.0966687 0.672345i −0.882651 0.470028i \(-0.844244\pi\)
0.979320 0.202317i \(-0.0648472\pi\)
\(720\) 0 0
\(721\) 1.18018 + 0.758455i 0.0439522 + 0.0282463i
\(722\) 0 0
\(723\) 25.2690 + 7.41964i 0.939763 + 0.275939i
\(724\) 0 0
\(725\) −0.282827 0.326399i −0.0105039 0.0121222i
\(726\) 0 0
\(727\) 3.56341 7.80279i 0.132160 0.289389i −0.831970 0.554820i \(-0.812787\pi\)
0.964130 + 0.265431i \(0.0855143\pi\)
\(728\) 0 0
\(729\) −0.959493 + 0.281733i −0.0355368 + 0.0104345i
\(730\) 0 0
\(731\) −8.08583 17.7055i −0.299065 0.654861i
\(732\) 0 0
\(733\) −2.64399 + 1.69919i −0.0976579 + 0.0627609i −0.588558 0.808455i \(-0.700304\pi\)
0.490900 + 0.871216i \(0.336668\pi\)
\(734\) 0 0
\(735\) 17.5401 0.646977
\(736\) 0 0
\(737\) −7.05093 −0.259724
\(738\) 0 0
\(739\) 18.9339 12.1681i 0.696494 0.447610i −0.143895 0.989593i \(-0.545963\pi\)
0.840389 + 0.541983i \(0.182326\pi\)
\(740\) 0 0
\(741\) −0.110911 0.242862i −0.00407443 0.00892176i
\(742\) 0 0
\(743\) −4.72970 + 1.38877i −0.173516 + 0.0509489i −0.367336 0.930088i \(-0.619730\pi\)
0.193821 + 0.981037i \(0.437912\pi\)
\(744\) 0 0
\(745\) 26.2019 57.3741i 0.959962 2.10202i
\(746\) 0 0
\(747\) 5.28068 + 6.09423i 0.193210 + 0.222976i
\(748\) 0 0
\(749\) −9.64470 2.83194i −0.352410 0.103477i
\(750\) 0 0
\(751\) 0.881369 + 0.566421i 0.0321616 + 0.0206690i 0.556623 0.830765i \(-0.312097\pi\)
−0.524461 + 0.851434i \(0.675733\pi\)
\(752\) 0 0
\(753\) −3.70778 + 25.7882i −0.135119 + 0.939773i
\(754\) 0 0
\(755\) 1.36178 + 9.47135i 0.0495601 + 0.344698i
\(756\) 0 0
\(757\) 1.85765 2.14384i 0.0675173 0.0779192i −0.720986 0.692950i \(-0.756311\pi\)
0.788503 + 0.615030i \(0.210856\pi\)
\(758\) 0 0
\(759\) −7.35625 9.59164i −0.267015 0.348155i
\(760\) 0 0
\(761\) 19.1081 22.0519i 0.692666 0.799380i −0.295076 0.955474i \(-0.595345\pi\)
0.987742 + 0.156094i \(0.0498904\pi\)
\(762\) 0 0
\(763\) −0.962505 6.69437i −0.0348450 0.242352i
\(764\) 0 0
\(765\) −1.30558 + 9.08052i −0.0472034 + 0.328307i
\(766\) 0 0
\(767\) 0.0962364 + 0.0618474i 0.00347490 + 0.00223318i
\(768\) 0 0
\(769\) −19.4993 5.72551i −0.703163 0.206467i −0.0894441 0.995992i \(-0.528509\pi\)
−0.613719 + 0.789525i \(0.710327\pi\)
\(770\) 0 0
\(771\) −5.17274 5.96966i −0.186292 0.214992i
\(772\) 0 0
\(773\) −9.32220 + 20.4128i −0.335296 + 0.734196i −0.999916 0.0129858i \(-0.995866\pi\)
0.664620 + 0.747182i \(0.268594\pi\)
\(774\) 0 0
\(775\) −28.0516 + 8.23670i −1.00764 + 0.295871i
\(776\) 0 0
\(777\) 3.96259 + 8.67685i 0.142157 + 0.311280i
\(778\) 0 0
\(779\) −0.647582 + 0.416175i −0.0232020 + 0.0149110i
\(780\) 0 0
\(781\) 28.9319 1.03526
\(782\) 0 0
\(783\) 0.121648 0.00434735
\(784\) 0 0
\(785\) −56.0765 + 36.0382i −2.00145 + 1.28626i
\(786\) 0 0
\(787\) −5.82947 12.7648i −0.207798 0.455015i 0.776823 0.629720i \(-0.216830\pi\)
−0.984621 + 0.174705i \(0.944103\pi\)
\(788\) 0 0
\(789\) 11.8421 3.47716i 0.421591 0.123790i
\(790\) 0 0
\(791\) 4.16737 9.12526i 0.148175 0.324457i
\(792\) 0 0
\(793\) −0.579189 0.668420i −0.0205676 0.0237363i