Properties

Label 276.2.i.a.73.1
Level $276$
Weight $2$
Character 276.73
Analytic conductor $2.204$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 276 = 2^{2} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 276.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.20387109579\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 43 x^{18} - 165 x^{17} + 538 x^{16} - 1433 x^{15} + 3444 x^{14} - 7370 x^{13} + 15500 x^{12} - 28190 x^{11} + 41920 x^{10} - 33520 x^{9} - 13837 x^{8} + 78980 x^{7} - 92652 x^{6} - 52852 x^{5} + 177374 x^{4} + 151360 x^{3} + 115323 x^{2} + 12834 x + 529\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 73.1
Root \(0.302381 + 2.10310i\) of defining polynomial
Character \(\chi\) \(=\) 276.73
Dual form 276.2.i.a.121.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.959493 + 0.281733i) q^{3} +(-1.52130 - 0.977682i) q^{5} +(0.485296 + 3.37531i) q^{7} +(0.841254 - 0.540641i) q^{9} +O(q^{10})\) \(q+(-0.959493 + 0.281733i) q^{3} +(-1.52130 - 0.977682i) q^{5} +(0.485296 + 3.37531i) q^{7} +(0.841254 - 0.540641i) q^{9} +(-0.800715 + 1.75332i) q^{11} +(-0.753988 + 5.24410i) q^{13} +(1.73512 + 0.509479i) q^{15} +(0.496392 + 0.572867i) q^{17} +(-3.10335 + 3.58146i) q^{19} +(-1.41657 - 3.10186i) q^{21} +(3.36166 + 3.42041i) q^{23} +(-0.718574 - 1.57346i) q^{25} +(-0.654861 + 0.755750i) q^{27} +(-2.79381 - 3.22422i) q^{29} +(3.28356 + 0.964142i) q^{31} +(0.274313 - 1.90789i) q^{33} +(2.56170 - 5.60934i) q^{35} +(-3.09318 + 1.98787i) q^{37} +(-0.753988 - 5.24410i) q^{39} +(-5.92232 - 3.80604i) q^{41} +(3.52444 - 1.03487i) q^{43} -1.80838 q^{45} +10.3519 q^{47} +(-4.44075 + 1.30392i) q^{49} +(-0.637680 - 0.409812i) q^{51} +(-1.11911 - 7.78361i) q^{53} +(2.93232 - 1.88449i) q^{55} +(1.96863 - 4.31070i) q^{57} +(-1.53778 + 10.6955i) q^{59} +(12.3748 + 3.63356i) q^{61} +(2.23309 + 2.57712i) q^{63} +(6.27411 - 7.24071i) q^{65} +(-2.57750 - 5.64394i) q^{67} +(-4.18913 - 2.33477i) q^{69} +(-6.14490 - 13.4555i) q^{71} +(4.97621 - 5.74285i) q^{73} +(1.13276 + 1.30728i) q^{75} +(-6.30658 - 1.85178i) q^{77} +(-0.905219 + 6.29594i) q^{79} +(0.415415 - 0.909632i) q^{81} +(-8.22677 + 5.28702i) q^{83} +(-0.195081 - 1.35682i) q^{85} +(3.58901 + 2.30651i) q^{87} +(-10.6954 + 3.14044i) q^{89} -18.0664 q^{91} -3.42219 q^{93} +(8.22267 - 2.41439i) q^{95} +(6.41054 + 4.11980i) q^{97} +(0.274313 + 1.90789i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} + O(q^{10}) \) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} - 22q^{13} + 7q^{15} + 7q^{17} + 19q^{19} + 20q^{23} + 20q^{25} - 2q^{27} + 32q^{29} - 3q^{31} + 11q^{33} - 26q^{35} - 10q^{37} - 22q^{39} - 40q^{41} + 8q^{43} - 4q^{45} - 18q^{47} - 34q^{49} - 26q^{51} - 34q^{53} - 17q^{55} - 3q^{57} - 32q^{59} + 32q^{61} + 49q^{65} + 35q^{67} - 2q^{69} + 33q^{71} - q^{73} - 2q^{75} - 50q^{77} + 22q^{79} - 2q^{81} - 14q^{83} - 9q^{85} - 12q^{87} + 10q^{89} - 72q^{91} + 30q^{93} - 51q^{95} - 4q^{97} + 11q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/276\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(139\) \(185\)
\(\chi(n)\) \(e\left(\frac{2}{11}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.959493 + 0.281733i −0.553964 + 0.162658i
\(4\) 0 0
\(5\) −1.52130 0.977682i −0.680348 0.437233i 0.154295 0.988025i \(-0.450689\pi\)
−0.834643 + 0.550792i \(0.814326\pi\)
\(6\) 0 0
\(7\) 0.485296 + 3.37531i 0.183425 + 1.27575i 0.848590 + 0.529051i \(0.177452\pi\)
−0.665165 + 0.746696i \(0.731639\pi\)
\(8\) 0 0
\(9\) 0.841254 0.540641i 0.280418 0.180214i
\(10\) 0 0
\(11\) −0.800715 + 1.75332i −0.241425 + 0.528646i −0.991094 0.133167i \(-0.957485\pi\)
0.749669 + 0.661813i \(0.230213\pi\)
\(12\) 0 0
\(13\) −0.753988 + 5.24410i −0.209119 + 1.45445i 0.566923 + 0.823771i \(0.308134\pi\)
−0.776042 + 0.630682i \(0.782775\pi\)
\(14\) 0 0
\(15\) 1.73512 + 0.509479i 0.448007 + 0.131547i
\(16\) 0 0
\(17\) 0.496392 + 0.572867i 0.120393 + 0.138941i 0.812746 0.582618i \(-0.197972\pi\)
−0.692354 + 0.721558i \(0.743426\pi\)
\(18\) 0 0
\(19\) −3.10335 + 3.58146i −0.711958 + 0.821643i −0.990316 0.138834i \(-0.955664\pi\)
0.278358 + 0.960477i \(0.410210\pi\)
\(20\) 0 0
\(21\) −1.41657 3.10186i −0.309122 0.676882i
\(22\) 0 0
\(23\) 3.36166 + 3.42041i 0.700955 + 0.713206i
\(24\) 0 0
\(25\) −0.718574 1.57346i −0.143715 0.314691i
\(26\) 0 0
\(27\) −0.654861 + 0.755750i −0.126028 + 0.145444i
\(28\) 0 0
\(29\) −2.79381 3.22422i −0.518797 0.598723i 0.434532 0.900656i \(-0.356914\pi\)
−0.953329 + 0.301933i \(0.902368\pi\)
\(30\) 0 0
\(31\) 3.28356 + 0.964142i 0.589746 + 0.173165i 0.562971 0.826477i \(-0.309658\pi\)
0.0267745 + 0.999641i \(0.491476\pi\)
\(32\) 0 0
\(33\) 0.274313 1.90789i 0.0477517 0.332120i
\(34\) 0 0
\(35\) 2.56170 5.60934i 0.433006 0.948151i
\(36\) 0 0
\(37\) −3.09318 + 1.98787i −0.508516 + 0.326803i −0.769614 0.638509i \(-0.779552\pi\)
0.261099 + 0.965312i \(0.415915\pi\)
\(38\) 0 0
\(39\) −0.753988 5.24410i −0.120735 0.839728i
\(40\) 0 0
\(41\) −5.92232 3.80604i −0.924911 0.594404i −0.0108322 0.999941i \(-0.503448\pi\)
−0.914079 + 0.405537i \(0.867084\pi\)
\(42\) 0 0
\(43\) 3.52444 1.03487i 0.537472 0.157816i −0.00172068 0.999999i \(-0.500548\pi\)
0.539192 + 0.842183i \(0.318730\pi\)
\(44\) 0 0
\(45\) −1.80838 −0.269577
\(46\) 0 0
\(47\) 10.3519 1.50998 0.754989 0.655738i \(-0.227642\pi\)
0.754989 + 0.655738i \(0.227642\pi\)
\(48\) 0 0
\(49\) −4.44075 + 1.30392i −0.634393 + 0.186275i
\(50\) 0 0
\(51\) −0.637680 0.409812i −0.0892930 0.0573851i
\(52\) 0 0
\(53\) −1.11911 7.78361i −0.153722 1.06916i −0.909910 0.414806i \(-0.863849\pi\)
0.756187 0.654355i \(-0.227060\pi\)
\(54\) 0 0
\(55\) 2.93232 1.88449i 0.395394 0.254104i
\(56\) 0 0
\(57\) 1.96863 4.31070i 0.260751 0.570966i
\(58\) 0 0
\(59\) −1.53778 + 10.6955i −0.200202 + 1.39244i 0.603480 + 0.797378i \(0.293780\pi\)
−0.803682 + 0.595059i \(0.797129\pi\)
\(60\) 0 0
\(61\) 12.3748 + 3.63356i 1.58443 + 0.465229i 0.951158 0.308704i \(-0.0998951\pi\)
0.633268 + 0.773933i \(0.281713\pi\)
\(62\) 0 0
\(63\) 2.23309 + 2.57712i 0.281343 + 0.324687i
\(64\) 0 0
\(65\) 6.27411 7.24071i 0.778208 0.898100i
\(66\) 0 0
\(67\) −2.57750 5.64394i −0.314892 0.689517i 0.684321 0.729181i \(-0.260099\pi\)
−0.999213 + 0.0396637i \(0.987371\pi\)
\(68\) 0 0
\(69\) −4.18913 2.33477i −0.504312 0.281074i
\(70\) 0 0
\(71\) −6.14490 13.4555i −0.729266 1.59687i −0.800445 0.599406i \(-0.795403\pi\)
0.0711790 0.997464i \(-0.477324\pi\)
\(72\) 0 0
\(73\) 4.97621 5.74285i 0.582421 0.672150i −0.385702 0.922623i \(-0.626041\pi\)
0.968124 + 0.250473i \(0.0805862\pi\)
\(74\) 0 0
\(75\) 1.13276 + 1.30728i 0.130800 + 0.150951i
\(76\) 0 0
\(77\) −6.30658 1.85178i −0.718702 0.211030i
\(78\) 0 0
\(79\) −0.905219 + 6.29594i −0.101845 + 0.708348i 0.873365 + 0.487067i \(0.161933\pi\)
−0.975210 + 0.221282i \(0.928976\pi\)
\(80\) 0 0
\(81\) 0.415415 0.909632i 0.0461572 0.101070i
\(82\) 0 0
\(83\) −8.22677 + 5.28702i −0.903005 + 0.580326i −0.907680 0.419663i \(-0.862148\pi\)
0.00467489 + 0.999989i \(0.498512\pi\)
\(84\) 0 0
\(85\) −0.195081 1.35682i −0.0211595 0.147168i
\(86\) 0 0
\(87\) 3.58901 + 2.30651i 0.384782 + 0.247284i
\(88\) 0 0
\(89\) −10.6954 + 3.14044i −1.13371 + 0.332886i −0.794163 0.607704i \(-0.792091\pi\)
−0.339543 + 0.940591i \(0.610272\pi\)
\(90\) 0 0
\(91\) −18.0664 −1.89387
\(92\) 0 0
\(93\) −3.42219 −0.354864
\(94\) 0 0
\(95\) 8.22267 2.41439i 0.843628 0.247712i
\(96\) 0 0
\(97\) 6.41054 + 4.11980i 0.650892 + 0.418303i 0.823992 0.566601i \(-0.191742\pi\)
−0.173100 + 0.984904i \(0.555378\pi\)
\(98\) 0 0
\(99\) 0.274313 + 1.90789i 0.0275695 + 0.191750i
\(100\) 0 0
\(101\) 7.49704 4.81805i 0.745983 0.479414i −0.111604 0.993753i \(-0.535599\pi\)
0.857587 + 0.514339i \(0.171963\pi\)
\(102\) 0 0
\(103\) −0.367699 + 0.805149i −0.0362305 + 0.0793337i −0.926882 0.375353i \(-0.877521\pi\)
0.890651 + 0.454687i \(0.150249\pi\)
\(104\) 0 0
\(105\) −0.877598 + 6.10383i −0.0856448 + 0.595673i
\(106\) 0 0
\(107\) 7.59185 + 2.22917i 0.733932 + 0.215502i 0.627279 0.778794i \(-0.284168\pi\)
0.106653 + 0.994296i \(0.465987\pi\)
\(108\) 0 0
\(109\) 1.15251 + 1.33007i 0.110391 + 0.127398i 0.808256 0.588832i \(-0.200412\pi\)
−0.697865 + 0.716229i \(0.745866\pi\)
\(110\) 0 0
\(111\) 2.40784 2.77879i 0.228542 0.263751i
\(112\) 0 0
\(113\) 6.94750 + 15.2129i 0.653566 + 1.43111i 0.888398 + 0.459074i \(0.151819\pi\)
−0.234832 + 0.972036i \(0.575454\pi\)
\(114\) 0 0
\(115\) −1.77003 8.49012i −0.165056 0.791708i
\(116\) 0 0
\(117\) 2.20088 + 4.81926i 0.203471 + 0.445540i
\(118\) 0 0
\(119\) −1.69271 + 1.95349i −0.155170 + 0.179076i
\(120\) 0 0
\(121\) 4.77048 + 5.50543i 0.433680 + 0.500493i
\(122\) 0 0
\(123\) 6.75471 + 1.98336i 0.609052 + 0.178834i
\(124\) 0 0
\(125\) −1.73197 + 12.0461i −0.154912 + 1.07744i
\(126\) 0 0
\(127\) 0.531324 1.16344i 0.0471473 0.103238i −0.884593 0.466365i \(-0.845563\pi\)
0.931740 + 0.363126i \(0.118291\pi\)
\(128\) 0 0
\(129\) −3.09012 + 1.98590i −0.272070 + 0.174849i
\(130\) 0 0
\(131\) 1.43523 + 9.98224i 0.125397 + 0.872152i 0.951284 + 0.308317i \(0.0997657\pi\)
−0.825887 + 0.563835i \(0.809325\pi\)
\(132\) 0 0
\(133\) −13.5946 8.73670i −1.17880 0.757568i
\(134\) 0 0
\(135\) 1.73512 0.509479i 0.149336 0.0438489i
\(136\) 0 0
\(137\) 6.53140 0.558015 0.279007 0.960289i \(-0.409995\pi\)
0.279007 + 0.960289i \(0.409995\pi\)
\(138\) 0 0
\(139\) −8.55305 −0.725461 −0.362730 0.931894i \(-0.618155\pi\)
−0.362730 + 0.931894i \(0.618155\pi\)
\(140\) 0 0
\(141\) −9.93256 + 2.91646i −0.836473 + 0.245610i
\(142\) 0 0
\(143\) −8.59086 5.52101i −0.718404 0.461690i
\(144\) 0 0
\(145\) 1.09796 + 7.63648i 0.0911806 + 0.634175i
\(146\) 0 0
\(147\) 3.89351 2.50221i 0.321132 0.206379i
\(148\) 0 0
\(149\) 1.34464 2.94435i 0.110157 0.241211i −0.846523 0.532353i \(-0.821308\pi\)
0.956680 + 0.291142i \(0.0940352\pi\)
\(150\) 0 0
\(151\) −1.00038 + 6.95781i −0.0814100 + 0.566219i 0.907765 + 0.419479i \(0.137787\pi\)
−0.989175 + 0.146740i \(0.953122\pi\)
\(152\) 0 0
\(153\) 0.727307 + 0.213556i 0.0587993 + 0.0172650i
\(154\) 0 0
\(155\) −4.05267 4.67704i −0.325519 0.375668i
\(156\) 0 0
\(157\) 13.1324 15.1556i 1.04808 1.20955i 0.0708217 0.997489i \(-0.477438\pi\)
0.977257 0.212058i \(-0.0680167\pi\)
\(158\) 0 0
\(159\) 3.26668 + 7.15303i 0.259065 + 0.567272i
\(160\) 0 0
\(161\) −9.91356 + 13.0066i −0.781298 + 1.02506i
\(162\) 0 0
\(163\) −6.16725 13.5044i −0.483056 1.05775i −0.981612 0.190888i \(-0.938863\pi\)
0.498556 0.866858i \(-0.333864\pi\)
\(164\) 0 0
\(165\) −2.28262 + 2.63428i −0.177702 + 0.205079i
\(166\) 0 0
\(167\) 16.1307 + 18.6159i 1.24823 + 1.44054i 0.852961 + 0.521974i \(0.174804\pi\)
0.395272 + 0.918564i \(0.370650\pi\)
\(168\) 0 0
\(169\) −14.4587 4.24546i −1.11221 0.326574i
\(170\) 0 0
\(171\) −0.674423 + 4.69071i −0.0515744 + 0.358708i
\(172\) 0 0
\(173\) −6.48345 + 14.1968i −0.492928 + 1.07936i 0.485776 + 0.874083i \(0.338537\pi\)
−0.978704 + 0.205278i \(0.934190\pi\)
\(174\) 0 0
\(175\) 4.96218 3.18900i 0.375106 0.241066i
\(176\) 0 0
\(177\) −1.53778 10.6955i −0.115587 0.803924i
\(178\) 0 0
\(179\) −15.2621 9.80838i −1.14075 0.733113i −0.172970 0.984927i \(-0.555336\pi\)
−0.967775 + 0.251815i \(0.918973\pi\)
\(180\) 0 0
\(181\) 25.5232 7.49429i 1.89712 0.557046i 0.906157 0.422942i \(-0.139003\pi\)
0.990967 0.134103i \(-0.0428154\pi\)
\(182\) 0 0
\(183\) −12.8972 −0.953388
\(184\) 0 0
\(185\) 6.64917 0.488856
\(186\) 0 0
\(187\) −1.40189 + 0.411631i −0.102516 + 0.0301015i
\(188\) 0 0
\(189\) −2.86869 1.84360i −0.208667 0.134102i
\(190\) 0 0
\(191\) 3.52838 + 24.5404i 0.255305 + 1.77568i 0.565240 + 0.824927i \(0.308784\pi\)
−0.309935 + 0.950758i \(0.600307\pi\)
\(192\) 0 0
\(193\) −3.96991 + 2.55131i −0.285761 + 0.183647i −0.675666 0.737208i \(-0.736144\pi\)
0.389906 + 0.920855i \(0.372508\pi\)
\(194\) 0 0
\(195\) −3.98002 + 8.71503i −0.285015 + 0.624096i
\(196\) 0 0
\(197\) 1.58426 11.0188i 0.112874 0.785055i −0.852226 0.523174i \(-0.824748\pi\)
0.965100 0.261882i \(-0.0843430\pi\)
\(198\) 0 0
\(199\) 7.56852 + 2.22232i 0.536518 + 0.157536i 0.538756 0.842462i \(-0.318894\pi\)
−0.00223844 + 0.999997i \(0.500713\pi\)
\(200\) 0 0
\(201\) 4.06318 + 4.68915i 0.286594 + 0.330747i
\(202\) 0 0
\(203\) 9.52693 10.9947i 0.668660 0.771674i
\(204\) 0 0
\(205\) 5.28854 + 11.5803i 0.369368 + 0.808803i
\(206\) 0 0
\(207\) 4.67722 + 1.05999i 0.325090 + 0.0736741i
\(208\) 0 0
\(209\) −3.79455 8.30890i −0.262474 0.574738i
\(210\) 0 0
\(211\) 12.2185 14.1009i 0.841159 0.970749i −0.158704 0.987326i \(-0.550732\pi\)
0.999863 + 0.0165774i \(0.00527698\pi\)
\(212\) 0 0
\(213\) 9.68683 + 11.1792i 0.663731 + 0.765986i
\(214\) 0 0
\(215\) −6.37351 1.87143i −0.434670 0.127631i
\(216\) 0 0
\(217\) −1.66077 + 11.5509i −0.112741 + 0.784129i
\(218\) 0 0
\(219\) −3.15669 + 6.91219i −0.213309 + 0.467082i
\(220\) 0 0
\(221\) −3.37845 + 2.17120i −0.227259 + 0.146050i
\(222\) 0 0
\(223\) −3.29264 22.9008i −0.220491 1.53355i −0.736186 0.676779i \(-0.763375\pi\)
0.515694 0.856773i \(-0.327534\pi\)
\(224\) 0 0
\(225\) −1.45518 0.935186i −0.0970119 0.0623457i
\(226\) 0 0
\(227\) −11.8332 + 3.47453i −0.785394 + 0.230613i −0.649753 0.760145i \(-0.725128\pi\)
−0.135641 + 0.990758i \(0.543309\pi\)
\(228\) 0 0
\(229\) −11.4857 −0.758998 −0.379499 0.925192i \(-0.623904\pi\)
−0.379499 + 0.925192i \(0.623904\pi\)
\(230\) 0 0
\(231\) 6.57283 0.432460
\(232\) 0 0
\(233\) 5.13434 1.50758i 0.336362 0.0987647i −0.109190 0.994021i \(-0.534826\pi\)
0.445552 + 0.895256i \(0.353008\pi\)
\(234\) 0 0
\(235\) −15.7484 10.1209i −1.02731 0.660212i
\(236\) 0 0
\(237\) −0.905219 6.29594i −0.0588003 0.408965i
\(238\) 0 0
\(239\) 9.62507 6.18565i 0.622594 0.400117i −0.190967 0.981596i \(-0.561162\pi\)
0.813561 + 0.581480i \(0.197526\pi\)
\(240\) 0 0
\(241\) 1.45687 3.19010i 0.0938452 0.205492i −0.856888 0.515503i \(-0.827605\pi\)
0.950733 + 0.310010i \(0.100333\pi\)
\(242\) 0 0
\(243\) −0.142315 + 0.989821i −0.00912950 + 0.0634971i
\(244\) 0 0
\(245\) 8.03055 + 2.35798i 0.513053 + 0.150646i
\(246\) 0 0
\(247\) −16.4416 18.9747i −1.04616 1.20733i
\(248\) 0 0
\(249\) 6.40400 7.39061i 0.405837 0.468361i
\(250\) 0 0
\(251\) −4.91943 10.7720i −0.310512 0.679925i 0.688460 0.725275i \(-0.258287\pi\)
−0.998971 + 0.0453492i \(0.985560\pi\)
\(252\) 0 0
\(253\) −8.68881 + 3.15529i −0.546261 + 0.198371i
\(254\) 0 0
\(255\) 0.569439 + 1.24690i 0.0356596 + 0.0780837i
\(256\) 0 0
\(257\) 16.7144 19.2895i 1.04262 1.20324i 0.0639142 0.997955i \(-0.479642\pi\)
0.978702 0.205287i \(-0.0658129\pi\)
\(258\) 0 0
\(259\) −8.21077 9.47573i −0.510192 0.588794i
\(260\) 0 0
\(261\) −4.09345 1.20194i −0.253378 0.0743985i
\(262\) 0 0
\(263\) 0.511613 3.55835i 0.0315474 0.219417i −0.967949 0.251147i \(-0.919192\pi\)
0.999496 + 0.0317294i \(0.0101015\pi\)
\(264\) 0 0
\(265\) −5.90739 + 12.9354i −0.362888 + 0.794614i
\(266\) 0 0
\(267\) 9.37736 6.02646i 0.573885 0.368814i
\(268\) 0 0
\(269\) −2.30719 16.0468i −0.140672 0.978393i −0.930820 0.365478i \(-0.880906\pi\)
0.790148 0.612915i \(-0.210003\pi\)
\(270\) 0 0
\(271\) −3.65183 2.34689i −0.221833 0.142563i 0.425005 0.905191i \(-0.360272\pi\)
−0.646838 + 0.762628i \(0.723909\pi\)
\(272\) 0 0
\(273\) 17.3346 5.08989i 1.04914 0.308054i
\(274\) 0 0
\(275\) 3.33415 0.201057
\(276\) 0 0
\(277\) 28.6009 1.71846 0.859230 0.511589i \(-0.170943\pi\)
0.859230 + 0.511589i \(0.170943\pi\)
\(278\) 0 0
\(279\) 3.28356 0.964142i 0.196582 0.0577216i
\(280\) 0 0
\(281\) −9.53062 6.12496i −0.568549 0.365384i 0.224563 0.974459i \(-0.427904\pi\)
−0.793113 + 0.609075i \(0.791541\pi\)
\(282\) 0 0
\(283\) 0.759137 + 5.27992i 0.0451260 + 0.313858i 0.999865 + 0.0164143i \(0.00522508\pi\)
−0.954739 + 0.297444i \(0.903866\pi\)
\(284\) 0 0
\(285\) −7.20938 + 4.63319i −0.427047 + 0.274446i
\(286\) 0 0
\(287\) 9.97249 21.8367i 0.588658 1.28898i
\(288\) 0 0
\(289\) 2.33758 16.2582i 0.137505 0.956367i
\(290\) 0 0
\(291\) −7.31155 2.14687i −0.428611 0.125851i
\(292\) 0 0
\(293\) 15.4905 + 17.8770i 0.904963 + 1.04438i 0.998809 + 0.0487965i \(0.0155386\pi\)
−0.0938455 + 0.995587i \(0.529916\pi\)
\(294\) 0 0
\(295\) 12.7963 14.7677i 0.745027 0.859806i
\(296\) 0 0
\(297\) −0.800715 1.75332i −0.0464622 0.101738i
\(298\) 0 0
\(299\) −20.4717 + 15.0499i −1.18391 + 0.870361i
\(300\) 0 0
\(301\) 5.20340 + 11.3939i 0.299919 + 0.656731i
\(302\) 0 0
\(303\) −5.83595 + 6.73505i −0.335267 + 0.386918i
\(304\) 0 0
\(305\) −15.2733 17.6263i −0.874547 1.00928i
\(306\) 0 0
\(307\) 18.7890 + 5.51696i 1.07235 + 0.314870i 0.769813 0.638269i \(-0.220349\pi\)
0.302534 + 0.953139i \(0.402167\pi\)
\(308\) 0 0
\(309\) 0.125968 0.876128i 0.00716608 0.0498412i
\(310\) 0 0
\(311\) −0.797463 + 1.74620i −0.0452200 + 0.0990179i −0.930894 0.365290i \(-0.880970\pi\)
0.885674 + 0.464308i \(0.153697\pi\)
\(312\) 0 0
\(313\) −10.6720 + 6.85849i −0.603219 + 0.387665i −0.806309 0.591495i \(-0.798538\pi\)
0.203090 + 0.979160i \(0.434902\pi\)
\(314\) 0 0
\(315\) −0.877598 6.10383i −0.0494471 0.343912i
\(316\) 0 0
\(317\) 2.62869 + 1.68936i 0.147642 + 0.0948838i 0.612376 0.790566i \(-0.290214\pi\)
−0.464734 + 0.885450i \(0.653850\pi\)
\(318\) 0 0
\(319\) 7.89014 2.31675i 0.441763 0.129713i
\(320\) 0 0
\(321\) −7.91236 −0.441625
\(322\) 0 0
\(323\) −3.59218 −0.199874
\(324\) 0 0
\(325\) 8.79317 2.58191i 0.487757 0.143218i
\(326\) 0 0
\(327\) −1.48055 0.951493i −0.0818747 0.0526177i
\(328\) 0 0
\(329\) 5.02373 + 34.9408i 0.276967 + 1.92635i
\(330\) 0 0
\(331\) −10.8260 + 6.95744i −0.595050 + 0.382415i −0.803225 0.595676i \(-0.796884\pi\)
0.208175 + 0.978092i \(0.433248\pi\)
\(332\) 0 0
\(333\) −1.52743 + 3.34460i −0.0837025 + 0.183283i
\(334\) 0 0
\(335\) −1.59682 + 11.1061i −0.0872436 + 0.606792i
\(336\) 0 0
\(337\) 14.8281 + 4.35393i 0.807739 + 0.237174i 0.659429 0.751767i \(-0.270798\pi\)
0.148311 + 0.988941i \(0.452616\pi\)
\(338\) 0 0
\(339\) −10.9520 12.6393i −0.594834 0.686475i
\(340\) 0 0
\(341\) −4.31965 + 4.98514i −0.233922 + 0.269960i
\(342\) 0 0
\(343\) 3.35979 + 7.35691i 0.181412 + 0.397236i
\(344\) 0 0
\(345\) 4.09027 + 7.64754i 0.220213 + 0.411730i
\(346\) 0 0
\(347\) −7.54167 16.5140i −0.404858 0.886516i −0.996754 0.0805017i \(-0.974348\pi\)
0.591896 0.806014i \(-0.298380\pi\)
\(348\) 0 0
\(349\) −14.3287 + 16.5361i −0.766995 + 0.885160i −0.996099 0.0882423i \(-0.971875\pi\)
0.229104 + 0.973402i \(0.426420\pi\)
\(350\) 0 0
\(351\) −3.46947 4.00398i −0.185187 0.213717i
\(352\) 0 0
\(353\) −11.6096 3.40888i −0.617916 0.181436i −0.0422305 0.999108i \(-0.513446\pi\)
−0.575685 + 0.817672i \(0.695265\pi\)
\(354\) 0 0
\(355\) −3.80691 + 26.4776i −0.202050 + 1.40529i
\(356\) 0 0
\(357\) 1.07378 2.35125i 0.0568304 0.124441i
\(358\) 0 0
\(359\) −2.98260 + 1.91680i −0.157415 + 0.101165i −0.616977 0.786981i \(-0.711643\pi\)
0.459562 + 0.888146i \(0.348007\pi\)
\(360\) 0 0
\(361\) −0.492073 3.42244i −0.0258986 0.180129i
\(362\) 0 0
\(363\) −6.12830 3.93842i −0.321652 0.206713i
\(364\) 0 0
\(365\) −13.1850 + 3.87147i −0.690135 + 0.202642i
\(366\) 0 0
\(367\) −26.1379 −1.36439 −0.682194 0.731171i \(-0.738974\pi\)
−0.682194 + 0.731171i \(0.738974\pi\)
\(368\) 0 0
\(369\) −7.03987 −0.366481
\(370\) 0 0
\(371\) 25.7290 7.55472i 1.33578 0.392221i
\(372\) 0 0
\(373\) 12.1660 + 7.81858i 0.629929 + 0.404831i 0.816283 0.577652i \(-0.196031\pi\)
−0.186354 + 0.982483i \(0.559667\pi\)
\(374\) 0 0
\(375\) −1.73197 12.0461i −0.0894384 0.622058i
\(376\) 0 0
\(377\) 19.0147 12.2200i 0.979305 0.629361i
\(378\) 0 0
\(379\) −11.6229 + 25.4505i −0.597026 + 1.30730i 0.334076 + 0.942546i \(0.391576\pi\)
−0.931102 + 0.364758i \(0.881152\pi\)
\(380\) 0 0
\(381\) −0.182023 + 1.26600i −0.00932534 + 0.0648592i
\(382\) 0 0
\(383\) 17.7316 + 5.20645i 0.906040 + 0.266037i 0.701373 0.712794i \(-0.252571\pi\)
0.204667 + 0.978832i \(0.434389\pi\)
\(384\) 0 0
\(385\) 7.78377 + 8.98295i 0.396698 + 0.457814i
\(386\) 0 0
\(387\) 2.40545 2.77604i 0.122276 0.141114i
\(388\) 0 0
\(389\) 10.6824 + 23.3913i 0.541621 + 1.18598i 0.960586 + 0.277982i \(0.0896656\pi\)
−0.418965 + 0.908002i \(0.637607\pi\)
\(390\) 0 0
\(391\) −0.290741 + 3.62365i −0.0147034 + 0.183256i
\(392\) 0 0
\(393\) −4.18941 9.17354i −0.211328 0.462744i
\(394\) 0 0
\(395\) 7.53254 8.69302i 0.379003 0.437393i
\(396\) 0 0
\(397\) 18.2955 + 21.1141i 0.918225 + 1.05969i 0.998021 + 0.0628775i \(0.0200277\pi\)
−0.0797958 + 0.996811i \(0.525427\pi\)
\(398\) 0 0
\(399\) 15.5053 + 4.55277i 0.776237 + 0.227924i
\(400\) 0 0
\(401\) −3.47619 + 24.1775i −0.173593 + 1.20737i 0.697623 + 0.716465i \(0.254241\pi\)
−0.871216 + 0.490900i \(0.836668\pi\)
\(402\) 0 0
\(403\) −7.53183 + 16.4924i −0.375187 + 0.821545i
\(404\) 0 0
\(405\) −1.52130 + 0.977682i −0.0755942 + 0.0485814i
\(406\) 0 0
\(407\) −1.00861 7.01505i −0.0499950 0.347723i
\(408\) 0 0
\(409\) −30.4357 19.5599i −1.50495 0.967173i −0.994212 0.107437i \(-0.965736\pi\)
−0.510738 0.859736i \(-0.670628\pi\)
\(410\) 0 0
\(411\) −6.26683 + 1.84011i −0.309120 + 0.0907658i
\(412\) 0 0
\(413\) −36.8470 −1.81312
\(414\) 0 0
\(415\) 17.6844 0.868095
\(416\) 0 0
\(417\) 8.20660 2.40967i 0.401879 0.118002i
\(418\) 0 0
\(419\) 6.96574 + 4.47661i 0.340299 + 0.218697i 0.699617 0.714519i \(-0.253354\pi\)
−0.359318 + 0.933215i \(0.616991\pi\)
\(420\) 0 0
\(421\) −5.08820 35.3892i −0.247984 1.72476i −0.609836 0.792528i \(-0.708765\pi\)
0.361852 0.932236i \(-0.382145\pi\)
\(422\) 0 0
\(423\) 8.70856 5.59665i 0.423425 0.272119i
\(424\) 0 0
\(425\) 0.544687 1.19270i 0.0264212 0.0578544i
\(426\) 0 0
\(427\) −6.25896 + 43.5320i −0.302892 + 2.10666i
\(428\) 0 0
\(429\) 9.79832 + 2.87705i 0.473067 + 0.138905i
\(430\) 0 0
\(431\) −14.2907 16.4924i −0.688361 0.794411i 0.298770 0.954325i \(-0.403424\pi\)
−0.987131 + 0.159914i \(0.948878\pi\)
\(432\) 0 0
\(433\) −19.9066 + 22.9735i −0.956651 + 1.10403i 0.0378476 + 0.999284i \(0.487950\pi\)
−0.994499 + 0.104751i \(0.966596\pi\)
\(434\) 0 0
\(435\) −3.20493 7.01782i −0.153665 0.336479i
\(436\) 0 0
\(437\) −22.6825 + 1.42490i −1.08505 + 0.0681621i
\(438\) 0 0
\(439\) 8.60356 + 18.8392i 0.410626 + 0.899145i 0.996081 + 0.0884405i \(0.0281883\pi\)
−0.585456 + 0.810704i \(0.699084\pi\)
\(440\) 0 0
\(441\) −3.03084 + 3.49778i −0.144326 + 0.166561i
\(442\) 0 0
\(443\) −16.1133 18.5958i −0.765567 0.883512i 0.230412 0.973093i \(-0.425993\pi\)
−0.995980 + 0.0895812i \(0.971447\pi\)
\(444\) 0 0
\(445\) 19.3412 + 5.67910i 0.916863 + 0.269215i
\(446\) 0 0
\(447\) −0.460654 + 3.20392i −0.0217882 + 0.151540i
\(448\) 0 0
\(449\) 16.3387 35.7767i 0.771070 1.68841i 0.0467864 0.998905i \(-0.485102\pi\)
0.724283 0.689502i \(-0.242171\pi\)
\(450\) 0 0
\(451\) 11.4153 7.33617i 0.537525 0.345447i
\(452\) 0 0
\(453\) −1.00038 6.95781i −0.0470021 0.326907i
\(454\) 0 0
\(455\) 27.4844 + 17.6632i 1.28849 + 0.828063i
\(456\) 0 0
\(457\) −16.4781 + 4.83841i −0.770814 + 0.226331i −0.643412 0.765520i \(-0.722482\pi\)
−0.127401 + 0.991851i \(0.540664\pi\)
\(458\) 0 0
\(459\) −0.758011 −0.0353809
\(460\) 0 0
\(461\) 1.59212 0.0741524 0.0370762 0.999312i \(-0.488196\pi\)
0.0370762 + 0.999312i \(0.488196\pi\)
\(462\) 0 0
\(463\) 14.0004 4.11088i 0.650653 0.191049i 0.0602827 0.998181i \(-0.480800\pi\)
0.590371 + 0.807132i \(0.298982\pi\)
\(464\) 0 0
\(465\) 5.20619 + 3.34581i 0.241431 + 0.155158i
\(466\) 0 0
\(467\) 4.20501 + 29.2465i 0.194585 + 1.35337i 0.819681 + 0.572820i \(0.194150\pi\)
−0.625097 + 0.780547i \(0.714940\pi\)
\(468\) 0 0
\(469\) 17.7992 11.4388i 0.821890 0.528197i
\(470\) 0 0
\(471\) −8.33061 + 18.2415i −0.383854 + 0.840524i
\(472\) 0 0
\(473\) −1.00761 + 7.00810i −0.0463301 + 0.322233i
\(474\) 0 0
\(475\) 7.86526 + 2.30945i 0.360883 + 0.105965i
\(476\) 0 0
\(477\) −5.14960 5.94295i −0.235784 0.272109i
\(478\) 0 0
\(479\) −2.07544 + 2.39519i −0.0948293 + 0.109439i −0.801181 0.598423i \(-0.795794\pi\)
0.706351 + 0.707861i \(0.250340\pi\)
\(480\) 0 0
\(481\) −8.09235 17.7198i −0.368979 0.807952i
\(482\) 0 0
\(483\) 5.84762 15.2727i 0.266076 0.694931i
\(484\) 0 0
\(485\) −5.72452 12.5349i −0.259937 0.569183i
\(486\) 0 0
\(487\) −20.8452 + 24.0567i −0.944586 + 1.09011i 0.0512256 + 0.998687i \(0.483687\pi\)
−0.995812 + 0.0914238i \(0.970858\pi\)
\(488\) 0 0
\(489\) 9.72205 + 11.2198i 0.439647 + 0.507379i
\(490\) 0 0
\(491\) −10.7015 3.14225i −0.482953 0.141808i 0.0311880 0.999514i \(-0.490071\pi\)
−0.514141 + 0.857706i \(0.671889\pi\)
\(492\) 0 0
\(493\) 0.460228 3.20096i 0.0207276 0.144164i
\(494\) 0 0
\(495\) 1.44799 3.17066i 0.0650825 0.142511i
\(496\) 0 0
\(497\) 42.4343 27.2708i 1.90344 1.22326i
\(498\) 0 0
\(499\) −0.553581 3.85024i −0.0247817 0.172360i 0.973672 0.227955i \(-0.0732038\pi\)
−0.998453 + 0.0555942i \(0.982295\pi\)
\(500\) 0 0
\(501\) −20.7220 13.3172i −0.925791 0.594970i
\(502\) 0 0
\(503\) −36.0920 + 10.5976i −1.60926 + 0.472523i −0.958105 0.286418i \(-0.907536\pi\)
−0.651160 + 0.758940i \(0.725717\pi\)
\(504\) 0 0
\(505\) −16.1158 −0.717143
\(506\) 0 0
\(507\) 15.0691 0.669243
\(508\) 0 0
\(509\) −18.9608 + 5.56740i −0.840424 + 0.246771i −0.673489 0.739197i \(-0.735205\pi\)
−0.166935 + 0.985968i \(0.553387\pi\)
\(510\) 0 0
\(511\) 21.7988 + 14.0093i 0.964324 + 0.619733i
\(512\) 0 0
\(513\) −0.674423 4.69071i −0.0297765 0.207100i
\(514\) 0 0
\(515\) 1.34656 0.865383i 0.0593366 0.0381333i
\(516\) 0 0
\(517\) −8.28891 + 18.1502i −0.364546 + 0.798244i
\(518\) 0 0
\(519\) 2.22113 15.4483i 0.0974969 0.678106i
\(520\) 0 0
\(521\) −26.3779 7.74525i −1.15564 0.339326i −0.352901 0.935660i \(-0.614805\pi\)
−0.802736 + 0.596335i \(0.796623\pi\)
\(522\) 0 0
\(523\) 5.32266 + 6.14267i 0.232744 + 0.268600i 0.860093 0.510138i \(-0.170406\pi\)
−0.627349 + 0.778738i \(0.715860\pi\)
\(524\) 0 0
\(525\) −3.86274 + 4.45783i −0.168584 + 0.194556i
\(526\) 0 0
\(527\) 1.07761 + 2.35964i 0.0469414 + 0.102787i
\(528\) 0 0
\(529\) −0.398477 + 22.9965i −0.0173251 + 0.999850i
\(530\) 0 0
\(531\) 4.48877 + 9.82903i 0.194796 + 0.426544i
\(532\) 0 0
\(533\) 24.4246 28.1875i 1.05795 1.22094i
\(534\) 0 0
\(535\) −9.37009 10.8137i −0.405104 0.467515i
\(536\) 0 0
\(537\) 17.4072 + 5.11123i 0.751178 + 0.220566i
\(538\) 0 0
\(539\) 1.26958 8.83013i 0.0546847 0.380341i
\(540\) 0 0
\(541\) 9.72352 21.2915i 0.418047 0.915395i −0.577070 0.816695i \(-0.695804\pi\)
0.995117 0.0987006i \(-0.0314686\pi\)
\(542\) 0 0
\(543\) −22.3779 + 14.3814i −0.960329 + 0.617166i
\(544\) 0 0
\(545\) −0.452935 3.15023i −0.0194016 0.134941i
\(546\) 0 0
\(547\) 13.7794 + 8.85546i 0.589163 + 0.378632i 0.800992 0.598675i \(-0.204306\pi\)
−0.211829 + 0.977307i \(0.567942\pi\)
\(548\) 0 0
\(549\) 12.3748 3.63356i 0.528142 0.155076i
\(550\) 0 0
\(551\) 20.2176 0.861298
\(552\) 0 0
\(553\) −21.6900 −0.922354
\(554\) 0 0
\(555\) −6.37983 + 1.87329i −0.270809 + 0.0795166i
\(556\) 0 0
\(557\) 16.0768 + 10.3319i 0.681196 + 0.437778i 0.834946 0.550332i \(-0.185499\pi\)
−0.153750 + 0.988110i \(0.549135\pi\)
\(558\) 0 0
\(559\) 2.76957 + 19.2628i 0.117140 + 0.814729i
\(560\) 0 0
\(561\) 1.22913 0.789915i 0.0518940 0.0333502i
\(562\) 0 0
\(563\) 8.42062 18.4386i 0.354887 0.777094i −0.645030 0.764158i \(-0.723155\pi\)
0.999916 0.0129360i \(-0.00411778\pi\)
\(564\) 0 0
\(565\) 4.30413 29.9359i 0.181076 1.25941i
\(566\) 0 0
\(567\) 3.27189 + 0.960713i 0.137406 + 0.0403462i
\(568\) 0 0
\(569\) 12.1549 + 14.0276i 0.509562 + 0.588066i 0.950986 0.309233i \(-0.100072\pi\)
−0.441425 + 0.897298i \(0.645527\pi\)
\(570\) 0 0
\(571\) 30.6110 35.3269i 1.28103 1.47839i 0.483191 0.875515i \(-0.339478\pi\)
0.797838 0.602872i \(-0.205977\pi\)
\(572\) 0 0
\(573\) −10.2993 22.5523i −0.430260 0.942137i
\(574\) 0 0
\(575\) 2.96628 7.74725i 0.123702 0.323083i
\(576\) 0 0
\(577\) −14.8811 32.5851i −0.619509 1.35653i −0.915876 0.401461i \(-0.868503\pi\)
0.296368 0.955074i \(-0.404225\pi\)
\(578\) 0 0
\(579\) 3.09032 3.56642i 0.128429 0.148215i
\(580\) 0 0
\(581\) −21.8378 25.2021i −0.905983 1.04556i
\(582\) 0 0
\(583\) 14.5433 + 4.27029i 0.602320 + 0.176857i
\(584\) 0 0
\(585\) 1.36349 9.48331i 0.0563736 0.392087i
\(586\) 0 0
\(587\) 0.00770622 0.0168743i 0.000318070 0.000696476i −0.909473 0.415763i \(-0.863515\pi\)
0.909791 + 0.415067i \(0.136242\pi\)
\(588\) 0 0
\(589\) −13.6431 + 8.76788i −0.562154 + 0.361274i
\(590\) 0 0
\(591\) 1.58426 + 11.0188i 0.0651678 + 0.453252i
\(592\) 0 0
\(593\) −5.46726 3.51359i −0.224513 0.144286i 0.423549 0.905873i \(-0.360784\pi\)
−0.648063 + 0.761587i \(0.724420\pi\)
\(594\) 0 0
\(595\) 4.48501 1.31692i 0.183867 0.0539883i
\(596\) 0 0
\(597\) −7.88804 −0.322836
\(598\) 0 0
\(599\) −7.49989 −0.306437 −0.153219 0.988192i \(-0.548964\pi\)
−0.153219 + 0.988192i \(0.548964\pi\)
\(600\) 0 0
\(601\) −24.6872 + 7.24882i −1.00701 + 0.295686i −0.743331 0.668924i \(-0.766755\pi\)
−0.263682 + 0.964610i \(0.584937\pi\)
\(602\) 0 0
\(603\) −5.21968 3.35448i −0.212562 0.136605i
\(604\) 0 0
\(605\) −1.87479 13.0394i −0.0762210 0.530129i
\(606\) 0 0
\(607\) 24.3740 15.6642i 0.989309 0.635790i 0.0573502 0.998354i \(-0.481735\pi\)
0.931959 + 0.362564i \(0.118098\pi\)
\(608\) 0 0
\(609\) −6.04347 + 13.2334i −0.244894 + 0.536242i
\(610\) 0 0
\(611\) −7.80520 + 54.2863i −0.315765 + 2.19619i
\(612\) 0 0
\(613\) −2.25859 0.663181i −0.0912235 0.0267856i 0.235802 0.971801i \(-0.424228\pi\)
−0.327026 + 0.945015i \(0.606046\pi\)
\(614\) 0 0
\(615\) −8.33686 9.62125i −0.336175 0.387966i
\(616\) 0 0
\(617\) −9.99989 + 11.5405i −0.402580 + 0.464603i −0.920452 0.390856i \(-0.872179\pi\)
0.517871 + 0.855458i \(0.326725\pi\)
\(618\) 0 0
\(619\) −4.77631 10.4587i −0.191976 0.420369i 0.789028 0.614358i \(-0.210585\pi\)
−0.981004 + 0.193988i \(0.937858\pi\)
\(620\) 0 0
\(621\) −4.78640 + 0.300678i −0.192071 + 0.0120658i
\(622\) 0 0
\(623\) −15.7904 34.5761i −0.632628 1.38526i
\(624\) 0 0
\(625\) 8.74830 10.0961i 0.349932 0.403843i
\(626\) 0 0
\(627\) 5.98173 + 6.90328i 0.238887 + 0.275690i
\(628\) 0 0
\(629\) −2.67421 0.785219i −0.106628 0.0313087i
\(630\) 0 0
\(631\) 2.01067 13.9845i 0.0800436 0.556715i −0.909854 0.414929i \(-0.863806\pi\)
0.989897 0.141786i \(-0.0452845\pi\)
\(632\) 0 0
\(633\) −7.75090 + 16.9721i −0.308071 + 0.674581i
\(634\) 0 0
\(635\) −1.94578 + 1.25047i −0.0772158 + 0.0496235i
\(636\) 0 0
\(637\) −3.48963 24.2709i −0.138264 0.961648i
\(638\) 0 0
\(639\) −12.4440 7.99727i −0.492277 0.316367i
\(640\) 0 0
\(641\) 23.8830 7.01267i 0.943320 0.276984i 0.226317 0.974054i \(-0.427331\pi\)
0.717003 + 0.697070i \(0.245513\pi\)
\(642\) 0 0
\(643\) 23.5235 0.927678 0.463839 0.885919i \(-0.346472\pi\)
0.463839 + 0.885919i \(0.346472\pi\)
\(644\) 0 0
\(645\) 6.64258 0.261551
\(646\) 0 0
\(647\) 19.2110 5.64087i 0.755264 0.221766i 0.118637 0.992938i \(-0.462147\pi\)
0.636627 + 0.771172i \(0.280329\pi\)
\(648\) 0 0
\(649\) −17.5213 11.2603i −0.687773 0.442005i
\(650\) 0 0
\(651\) −1.66077 11.5509i −0.0650909 0.452717i
\(652\) 0 0
\(653\) −6.28245 + 4.03749i −0.245851 + 0.157999i −0.657764 0.753224i \(-0.728497\pi\)
0.411912 + 0.911224i \(0.364861\pi\)
\(654\) 0 0
\(655\) 7.57604 16.5892i 0.296020 0.648194i
\(656\) 0 0
\(657\) 1.08143 7.52154i 0.0421907 0.293443i
\(658\) 0 0
\(659\) −10.4634 3.07234i −0.407597 0.119681i 0.0715057 0.997440i \(-0.477220\pi\)
−0.479102 + 0.877759i \(0.659038\pi\)
\(660\) 0 0
\(661\) −11.3039 13.0454i −0.439672 0.507409i 0.492057 0.870563i \(-0.336245\pi\)
−0.931729 + 0.363154i \(0.881700\pi\)
\(662\) 0 0
\(663\) 2.62990 3.03506i 0.102137 0.117872i
\(664\) 0 0
\(665\) 12.1398 + 26.5824i 0.470759 + 1.03082i
\(666\) 0 0
\(667\) 1.63636 20.3947i 0.0633600 0.789687i
\(668\) 0 0
\(669\) 9.61117 + 21.0455i 0.371589 + 0.813667i
\(670\) 0 0
\(671\) −16.2794 + 18.7875i −0.628461 + 0.725283i
\(672\) 0 0
\(673\) 4.61892 + 5.33051i 0.178046 + 0.205476i 0.837757 0.546043i \(-0.183867\pi\)
−0.659711 + 0.751520i \(0.729321\pi\)
\(674\) 0 0
\(675\) 1.65971 + 0.487333i 0.0638821 + 0.0187575i
\(676\) 0 0
\(677\) −3.71912 + 25.8671i −0.142937 + 0.994152i 0.784488 + 0.620144i \(0.212926\pi\)
−0.927426 + 0.374008i \(0.877983\pi\)
\(678\) 0 0
\(679\) −10.7946 + 23.6369i −0.414259 + 0.907100i
\(680\) 0 0
\(681\) 10.3749 6.66757i 0.397569 0.255502i
\(682\) 0 0
\(683\) 0.601211 + 4.18151i 0.0230047 + 0.160001i 0.998086 0.0618487i \(-0.0196996\pi\)
−0.975081 + 0.221850i \(0.928791\pi\)
\(684\) 0 0
\(685\) −9.93623 6.38563i −0.379644 0.243982i
\(686\) 0 0
\(687\) 11.0205 3.23590i 0.420457 0.123457i
\(688\) 0 0
\(689\) 41.6619 1.58719
\(690\) 0 0
\(691\) 35.2154 1.33966 0.669829 0.742516i \(-0.266367\pi\)
0.669829 + 0.742516i \(0.266367\pi\)
\(692\) 0 0
\(693\) −6.30658 + 1.85178i −0.239567 + 0.0703433i
\(694\) 0 0
\(695\) 13.0118 + 8.36217i 0.493565 + 0.317195i
\(696\) 0 0
\(697\) −0.759435 5.28199i −0.0287657 0.200070i
\(698\) 0 0
\(699\) −4.50163 + 2.89302i −0.170267 + 0.109424i
\(700\) 0 0
\(701\) 16.0954 35.2441i 0.607917 1.33115i −0.316073 0.948735i \(-0.602365\pi\)
0.923990 0.382417i \(-0.124908\pi\)
\(702\) 0 0
\(703\) 2.47976 17.2471i 0.0935261 0.650488i
\(704\) 0 0
\(705\) 17.9618 + 5.27406i 0.676481 + 0.198633i
\(706\) 0 0
\(707\) 19.9007 + 22.9666i 0.748443 + 0.863749i
\(708\) 0 0
\(709\) 9.24611 10.6706i 0.347245 0.400742i −0.555081 0.831796i \(-0.687313\pi\)
0.902326 + 0.431054i \(0.141858\pi\)
\(710\) 0 0
\(711\) 2.64232 + 5.78588i 0.0990948 + 0.216987i
\(712\) 0 0
\(713\) 7.74047 + 14.4723i 0.289883 + 0.541991i
\(714\) 0 0
\(715\) 7.67151 + 16.7983i 0.286898 + 0.628220i
\(716\) 0 0
\(717\) −7.49248 + 8.64679i −0.279812 + 0.322920i
\(718\) 0 0
\(719\) −31.2454 36.0591i −1.16526 1.34478i −0.927666 0.373412i \(-0.878188\pi\)
−0.237590 0.971365i \(-0.576358\pi\)
\(720\) 0 0
\(721\) −2.89607 0.850363i −0.107855 0.0316692i
\(722\) 0 0
\(723\) −0.499101 + 3.47132i −0.0185618 + 0.129100i
\(724\) 0 0
\(725\) −3.06562 + 6.71278i −0.113854 + 0.249306i
\(726\) 0 0
\(727\) −30.9527 + 19.8921i −1.14797 + 0.737756i −0.969234 0.246141i \(-0.920837\pi\)
−0.178736 + 0.983897i \(0.557201\pi\)
\(728\) 0 0
\(729\) −0.142315 0.989821i −0.00527092 0.0366601i
\(730\) 0 0
\(731\) 2.34234 + 1.50533i 0.0866347 + 0.0556768i
\(732\) 0 0
\(733\) −23.7585 + 6.97613i −0.877541 + 0.257669i −0.689320 0.724457i \(-0.742090\pi\)
−0.188221 + 0.982127i \(0.560272\pi\)
\(734\) 0 0
\(735\) −8.36958 −0.308717
\(736\) 0 0
\(737\) 11.9595 0.440533
\(738\) 0 0
\(739\) −18.0128 + 5.28903i −0.662611 + 0.194560i −0.595710 0.803199i \(-0.703129\pi\)
−0.0669010 + 0.997760i \(0.521311\pi\)
\(740\) 0 0
\(741\) 21.1214 + 13.5739i 0.775915 + 0.498650i
\(742\) 0 0
\(743\) 4.33086 + 30.1218i 0.158884 + 1.10506i 0.900695 + 0.434452i \(0.143058\pi\)
−0.741811 + 0.670609i \(0.766033\pi\)
\(744\) 0 0
\(745\) −4.92425 + 3.16462i −0.180411 + 0.115943i
\(746\) 0 0
\(747\) −4.06242 + 8.89545i −0.148636 + 0.325468i
\(748\) 0 0
\(749\) −3.83984 + 26.7067i −0.140305 + 0.975840i
\(750\) 0 0
\(751\) −34.7928 10.2161i −1.26961 0.372790i −0.423545 0.905875i \(-0.639215\pi\)
−0.846062 + 0.533085i \(0.821033\pi\)
\(752\) 0 0
\(753\) 7.75499 + 8.94974i 0.282608 + 0.326147i
\(754\) 0 0
\(755\) 8.32442 9.60689i 0.302957 0.349631i
\(756\) 0 0
\(757\) −18.1304 39.7001i −0.658961 1.44292i −0.883487 0.468456i \(-0.844811\pi\)
0.224526 0.974468i \(-0.427917\pi\)
\(758\) 0 0
\(759\) 7.44791 5.47540i 0.270342 0.198744i
\(760\) 0 0
\(761\) −1.29149 2.82797i −0.0468164 0.102514i 0.884779 0.466012i \(-0.154310\pi\)
−0.931595 + 0.363498i \(0.881582\pi\)
\(762\) 0 0
\(763\) −3.93009 + 4.53557i −0.142279 + 0.164198i
\(764\) 0 0
\(765\) −0.897664 1.03596i −0.0324551 0.0374552i
\(766\) 0 0
\(767\) −54.9289 16.1286i −1.98337 0.582369i
\(768\) 0 0
\(769\) 6.34944 44.1613i 0.228967 1.59250i −0.473508 0.880790i \(-0.657012\pi\)
0.702475 0.711709i \(-0.252078\pi\)
\(770\) 0 0
\(771\) −10.6029 + 23.2171i −0.381854 + 0.836143i
\(772\) 0 0
\(773\) 14.3965 9.25209i 0.517807 0.332774i −0.255497 0.966810i \(-0.582239\pi\)
0.773304 + 0.634035i \(0.218603\pi\)
\(774\) 0 0
\(775\) −0.842448 5.85936i −0.0302616 0.210474i
\(776\) 0 0
\(777\) 10.5478 + 6.77866i 0.378400 + 0.243183i
\(778\) 0 0
\(779\) 32.0102 9.39905i 1.14689 0.336756i
\(780\) 0 0
\(781\) 28.5121 1.02024
\(782\) 0 0
\(783\) 4.26626 0.152464
\(784\) 0 0
\(785\) −34.7957 + 10.2169i −1.24191 + 0.364658i
\(786\) 0 0
\(787\) −36.8248 23.6658i −1.31266 0.843596i −0.318131 0.948047i \(-0.603055\pi\)
−0.994530 + 0.104451i \(0.966692\pi\)
\(788\) 0 0
\(789\) 0.511613 + 3.55835i 0.0182139 + 0.126681i
\(790\) 0 0
\(791\) −47.9767 + 30.8327i −1.70585 + 1.09629i
\(792\) 0 0
\(793\) −28.3852 + 62.1549i −1.00799 + 2.20718i
\(794\) 0