Properties

Label 276.2.i.a.49.2
Level $276$
Weight $2$
Character 276.49
Analytic conductor $2.204$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 276 = 2^{2} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 276.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.20387109579\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 43 x^{18} - 165 x^{17} + 538 x^{16} - 1433 x^{15} + 3444 x^{14} - 7370 x^{13} + 15500 x^{12} - 28190 x^{11} + 41920 x^{10} - 33520 x^{9} - 13837 x^{8} + 78980 x^{7} - 92652 x^{6} - 52852 x^{5} + 177374 x^{4} + 151360 x^{3} + 115323 x^{2} + 12834 x + 529\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 49.2
Root \(2.31834 - 1.48991i\) of defining polynomial
Character \(\chi\) \(=\) 276.49
Dual form 276.2.i.a.169.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.415415 - 0.909632i) q^{3} +(0.735636 - 0.848969i) q^{5} +(0.891451 - 0.572901i) q^{7} +(-0.654861 - 0.755750i) q^{9} +O(q^{10})\) \(q+(0.415415 - 0.909632i) q^{3} +(0.735636 - 0.848969i) q^{5} +(0.891451 - 0.572901i) q^{7} +(-0.654861 - 0.755750i) q^{9} +(0.347809 - 2.41907i) q^{11} +(1.00126 + 0.643468i) q^{13} +(-0.466655 - 1.02183i) q^{15} +(-0.810376 - 0.237948i) q^{17} +(1.83256 - 0.538087i) q^{19} +(-0.150807 - 1.04888i) q^{21} +(-0.265350 - 4.78849i) q^{23} +(0.531986 + 3.70004i) q^{25} +(-0.959493 + 0.281733i) q^{27} +(-0.551701 - 0.161994i) q^{29} +(0.110721 + 0.242445i) q^{31} +(-2.05598 - 1.32130i) q^{33} +(0.169408 - 1.17826i) q^{35} +(5.68252 + 6.55798i) q^{37} +(1.00126 - 0.643468i) q^{39} +(-3.19380 + 3.68585i) q^{41} +(-1.36978 + 2.99940i) q^{43} -1.12335 q^{45} +0.561056 q^{47} +(-2.44144 + 5.34600i) q^{49} +(-0.553087 + 0.638297i) q^{51} +(-5.21451 + 3.35116i) q^{53} +(-1.79785 - 2.07483i) q^{55} +(0.271810 - 1.89048i) q^{57} +(-1.23668 - 0.794765i) q^{59} +(3.69276 + 8.08602i) q^{61} +(-1.01675 - 0.298543i) q^{63} +(1.28285 - 0.376677i) q^{65} +(0.709022 + 4.93135i) q^{67} +(-4.46599 - 1.74784i) q^{69} +(-0.0399653 - 0.277964i) q^{71} +(-4.93870 + 1.45013i) q^{73} +(3.58667 + 1.05314i) q^{75} +(-1.07583 - 2.35574i) q^{77} +(-4.92920 - 3.16780i) q^{79} +(-0.142315 + 0.989821i) q^{81} +(3.38585 + 3.90747i) q^{83} +(-0.798152 + 0.512941i) q^{85} +(-0.376540 + 0.434550i) q^{87} +(-5.04667 + 11.0507i) q^{89} +1.26121 q^{91} +0.266531 q^{93} +(0.891275 - 1.95162i) q^{95} +(2.64165 - 3.04863i) q^{97} +(-2.05598 + 1.32130i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} + O(q^{10}) \) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} - 22q^{13} + 7q^{15} + 7q^{17} + 19q^{19} + 20q^{23} + 20q^{25} - 2q^{27} + 32q^{29} - 3q^{31} + 11q^{33} - 26q^{35} - 10q^{37} - 22q^{39} - 40q^{41} + 8q^{43} - 4q^{45} - 18q^{47} - 34q^{49} - 26q^{51} - 34q^{53} - 17q^{55} - 3q^{57} - 32q^{59} + 32q^{61} + 49q^{65} + 35q^{67} - 2q^{69} + 33q^{71} - q^{73} - 2q^{75} - 50q^{77} + 22q^{79} - 2q^{81} - 14q^{83} - 9q^{85} - 12q^{87} + 10q^{89} - 72q^{91} + 30q^{93} - 51q^{95} - 4q^{97} + 11q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/276\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(139\) \(185\)
\(\chi(n)\) \(e\left(\frac{8}{11}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.415415 0.909632i 0.239840 0.525176i
\(4\) 0 0
\(5\) 0.735636 0.848969i 0.328986 0.379671i −0.567026 0.823700i \(-0.691906\pi\)
0.896012 + 0.444030i \(0.146451\pi\)
\(6\) 0 0
\(7\) 0.891451 0.572901i 0.336937 0.216536i −0.361221 0.932480i \(-0.617640\pi\)
0.698157 + 0.715944i \(0.254004\pi\)
\(8\) 0 0
\(9\) −0.654861 0.755750i −0.218287 0.251917i
\(10\) 0 0
\(11\) 0.347809 2.41907i 0.104868 0.729376i −0.867756 0.496991i \(-0.834438\pi\)
0.972624 0.232385i \(-0.0746528\pi\)
\(12\) 0 0
\(13\) 1.00126 + 0.643468i 0.277699 + 0.178466i 0.672075 0.740483i \(-0.265403\pi\)
−0.394377 + 0.918949i \(0.629039\pi\)
\(14\) 0 0
\(15\) −0.466655 1.02183i −0.120490 0.263836i
\(16\) 0 0
\(17\) −0.810376 0.237948i −0.196545 0.0577108i 0.181978 0.983303i \(-0.441750\pi\)
−0.378523 + 0.925592i \(0.623568\pi\)
\(18\) 0 0
\(19\) 1.83256 0.538087i 0.420417 0.123446i −0.0646796 0.997906i \(-0.520603\pi\)
0.485097 + 0.874460i \(0.338784\pi\)
\(20\) 0 0
\(21\) −0.150807 1.04888i −0.0329087 0.228885i
\(22\) 0 0
\(23\) −0.265350 4.78849i −0.0553292 0.998468i
\(24\) 0 0
\(25\) 0.531986 + 3.70004i 0.106397 + 0.740009i
\(26\) 0 0
\(27\) −0.959493 + 0.281733i −0.184655 + 0.0542195i
\(28\) 0 0
\(29\) −0.551701 0.161994i −0.102448 0.0300815i 0.230107 0.973165i \(-0.426092\pi\)
−0.332555 + 0.943084i \(0.607911\pi\)
\(30\) 0 0
\(31\) 0.110721 + 0.242445i 0.0198861 + 0.0435444i 0.919314 0.393524i \(-0.128744\pi\)
−0.899428 + 0.437068i \(0.856017\pi\)
\(32\) 0 0
\(33\) −2.05598 1.32130i −0.357899 0.230008i
\(34\) 0 0
\(35\) 0.169408 1.17826i 0.0286352 0.199162i
\(36\) 0 0
\(37\) 5.68252 + 6.55798i 0.934201 + 1.07812i 0.996788 + 0.0800854i \(0.0255193\pi\)
−0.0625874 + 0.998039i \(0.519935\pi\)
\(38\) 0 0
\(39\) 1.00126 0.643468i 0.160329 0.103037i
\(40\) 0 0
\(41\) −3.19380 + 3.68585i −0.498788 + 0.575632i −0.948193 0.317696i \(-0.897091\pi\)
0.449404 + 0.893328i \(0.351636\pi\)
\(42\) 0 0
\(43\) −1.36978 + 2.99940i −0.208889 + 0.457404i −0.984857 0.173369i \(-0.944535\pi\)
0.775968 + 0.630773i \(0.217262\pi\)
\(44\) 0 0
\(45\) −1.12335 −0.167459
\(46\) 0 0
\(47\) 0.561056 0.0818384 0.0409192 0.999162i \(-0.486971\pi\)
0.0409192 + 0.999162i \(0.486971\pi\)
\(48\) 0 0
\(49\) −2.44144 + 5.34600i −0.348777 + 0.763714i
\(50\) 0 0
\(51\) −0.553087 + 0.638297i −0.0774477 + 0.0893794i
\(52\) 0 0
\(53\) −5.21451 + 3.35116i −0.716268 + 0.460318i −0.847337 0.531056i \(-0.821796\pi\)
0.131069 + 0.991373i \(0.458159\pi\)
\(54\) 0 0
\(55\) −1.79785 2.07483i −0.242422 0.279770i
\(56\) 0 0
\(57\) 0.271810 1.89048i 0.0360021 0.250400i
\(58\) 0 0
\(59\) −1.23668 0.794765i −0.161002 0.103470i 0.457659 0.889128i \(-0.348688\pi\)
−0.618661 + 0.785658i \(0.712324\pi\)
\(60\) 0 0
\(61\) 3.69276 + 8.08602i 0.472810 + 1.03531i 0.984378 + 0.176067i \(0.0563374\pi\)
−0.511568 + 0.859243i \(0.670935\pi\)
\(62\) 0 0
\(63\) −1.01675 0.298543i −0.128098 0.0376129i
\(64\) 0 0
\(65\) 1.28285 0.376677i 0.159117 0.0467211i
\(66\) 0 0
\(67\) 0.709022 + 4.93135i 0.0866208 + 0.602461i 0.986182 + 0.165666i \(0.0529773\pi\)
−0.899561 + 0.436795i \(0.856114\pi\)
\(68\) 0 0
\(69\) −4.46599 1.74784i −0.537642 0.210415i
\(70\) 0 0
\(71\) −0.0399653 0.277964i −0.00474300 0.0329883i 0.987313 0.158789i \(-0.0507590\pi\)
−0.992056 + 0.125801i \(0.959850\pi\)
\(72\) 0 0
\(73\) −4.93870 + 1.45013i −0.578031 + 0.169725i −0.557663 0.830067i \(-0.688302\pi\)
−0.0203679 + 0.999793i \(0.506484\pi\)
\(74\) 0 0
\(75\) 3.58667 + 1.05314i 0.414153 + 0.121606i
\(76\) 0 0
\(77\) −1.07583 2.35574i −0.122602 0.268461i
\(78\) 0 0
\(79\) −4.92920 3.16780i −0.554578 0.356406i 0.233139 0.972444i \(-0.425100\pi\)
−0.787716 + 0.616038i \(0.788737\pi\)
\(80\) 0 0
\(81\) −0.142315 + 0.989821i −0.0158128 + 0.109980i
\(82\) 0 0
\(83\) 3.38585 + 3.90747i 0.371645 + 0.428901i 0.910507 0.413493i \(-0.135691\pi\)
−0.538863 + 0.842394i \(0.681146\pi\)
\(84\) 0 0
\(85\) −0.798152 + 0.512941i −0.0865718 + 0.0556363i
\(86\) 0 0
\(87\) −0.376540 + 0.434550i −0.0403693 + 0.0465887i
\(88\) 0 0
\(89\) −5.04667 + 11.0507i −0.534946 + 1.17137i 0.428519 + 0.903533i \(0.359036\pi\)
−0.963465 + 0.267835i \(0.913692\pi\)
\(90\) 0 0
\(91\) 1.26121 0.132211
\(92\) 0 0
\(93\) 0.266531 0.0276380
\(94\) 0 0
\(95\) 0.891275 1.95162i 0.0914429 0.200232i
\(96\) 0 0
\(97\) 2.64165 3.04863i 0.268219 0.309542i −0.605622 0.795752i \(-0.707076\pi\)
0.873842 + 0.486211i \(0.161621\pi\)
\(98\) 0 0
\(99\) −2.05598 + 1.32130i −0.206633 + 0.132795i
\(100\) 0 0
\(101\) −7.90660 9.12470i −0.786736 0.907942i 0.210840 0.977521i \(-0.432380\pi\)
−0.997576 + 0.0695785i \(0.977835\pi\)
\(102\) 0 0
\(103\) 2.41213 16.7767i 0.237674 1.65306i −0.425770 0.904831i \(-0.639997\pi\)
0.663444 0.748226i \(-0.269094\pi\)
\(104\) 0 0
\(105\) −1.00141 0.643566i −0.0977275 0.0628056i
\(106\) 0 0
\(107\) 5.19217 + 11.3693i 0.501946 + 1.09911i 0.975832 + 0.218522i \(0.0701235\pi\)
−0.473886 + 0.880586i \(0.657149\pi\)
\(108\) 0 0
\(109\) 0.535214 + 0.157153i 0.0512642 + 0.0150525i 0.307264 0.951624i \(-0.400586\pi\)
−0.256000 + 0.966677i \(0.582405\pi\)
\(110\) 0 0
\(111\) 8.32595 2.44472i 0.790264 0.232043i
\(112\) 0 0
\(113\) −1.19921 8.34069i −0.112812 0.784626i −0.965162 0.261654i \(-0.915732\pi\)
0.852350 0.522973i \(-0.175177\pi\)
\(114\) 0 0
\(115\) −4.26048 3.29731i −0.397292 0.307476i
\(116\) 0 0
\(117\) −0.169383 1.17808i −0.0156594 0.108914i
\(118\) 0 0
\(119\) −0.858731 + 0.252146i −0.0787197 + 0.0231142i
\(120\) 0 0
\(121\) 4.82351 + 1.41631i 0.438501 + 0.128756i
\(122\) 0 0
\(123\) 2.02601 + 4.43634i 0.182679 + 0.400011i
\(124\) 0 0
\(125\) 8.25767 + 5.30688i 0.738588 + 0.474662i
\(126\) 0 0
\(127\) 2.07067 14.4018i 0.183742 1.27796i −0.664074 0.747667i \(-0.731174\pi\)
0.847817 0.530290i \(-0.177917\pi\)
\(128\) 0 0
\(129\) 2.15932 + 2.49199i 0.190118 + 0.219408i
\(130\) 0 0
\(131\) 8.54743 5.49310i 0.746793 0.479935i −0.111070 0.993813i \(-0.535428\pi\)
0.857863 + 0.513878i \(0.171792\pi\)
\(132\) 0 0
\(133\) 1.32536 1.52955i 0.114924 0.132629i
\(134\) 0 0
\(135\) −0.466655 + 1.02183i −0.0401633 + 0.0879453i
\(136\) 0 0
\(137\) 10.5603 0.902226 0.451113 0.892467i \(-0.351027\pi\)
0.451113 + 0.892467i \(0.351027\pi\)
\(138\) 0 0
\(139\) −6.20115 −0.525975 −0.262987 0.964799i \(-0.584708\pi\)
−0.262987 + 0.964799i \(0.584708\pi\)
\(140\) 0 0
\(141\) 0.233071 0.510354i 0.0196281 0.0429796i
\(142\) 0 0
\(143\) 1.90484 2.19830i 0.159291 0.183831i
\(144\) 0 0
\(145\) −0.543379 + 0.349208i −0.0451252 + 0.0290002i
\(146\) 0 0
\(147\) 3.84868 + 4.44162i 0.317434 + 0.366338i
\(148\) 0 0
\(149\) 1.91401 13.3122i 0.156802 1.09058i −0.747677 0.664062i \(-0.768831\pi\)
0.904479 0.426518i \(-0.140260\pi\)
\(150\) 0 0
\(151\) −15.3689 9.87699i −1.25070 0.803778i −0.263720 0.964599i \(-0.584949\pi\)
−0.986984 + 0.160821i \(0.948586\pi\)
\(152\) 0 0
\(153\) 0.350854 + 0.768264i 0.0283649 + 0.0621105i
\(154\) 0 0
\(155\) 0.287279 + 0.0843527i 0.0230748 + 0.00677537i
\(156\) 0 0
\(157\) 18.1248 5.32192i 1.44652 0.424735i 0.538127 0.842864i \(-0.319132\pi\)
0.908388 + 0.418129i \(0.137314\pi\)
\(158\) 0 0
\(159\) 0.882139 + 6.13541i 0.0699582 + 0.486570i
\(160\) 0 0
\(161\) −2.97987 4.11668i −0.234847 0.324440i
\(162\) 0 0
\(163\) 0.0147334 + 0.102473i 0.00115401 + 0.00802632i 0.990390 0.138301i \(-0.0441640\pi\)
−0.989236 + 0.146327i \(0.953255\pi\)
\(164\) 0 0
\(165\) −2.63419 + 0.773467i −0.205071 + 0.0602144i
\(166\) 0 0
\(167\) 16.4318 + 4.82480i 1.27153 + 0.373355i 0.846774 0.531954i \(-0.178542\pi\)
0.424755 + 0.905308i \(0.360360\pi\)
\(168\) 0 0
\(169\) −4.81193 10.5367i −0.370149 0.810512i
\(170\) 0 0
\(171\) −1.60673 1.03258i −0.122870 0.0789635i
\(172\) 0 0
\(173\) 1.42048 9.87965i 0.107997 0.751136i −0.861805 0.507240i \(-0.830666\pi\)
0.969802 0.243895i \(-0.0784253\pi\)
\(174\) 0 0
\(175\) 2.59400 + 2.99363i 0.196088 + 0.226297i
\(176\) 0 0
\(177\) −1.23668 + 0.794765i −0.0929545 + 0.0597382i
\(178\) 0 0
\(179\) −16.7566 + 19.3381i −1.25245 + 1.44540i −0.405177 + 0.914238i \(0.632790\pi\)
−0.847270 + 0.531163i \(0.821755\pi\)
\(180\) 0 0
\(181\) 0.409057 0.895711i 0.0304050 0.0665776i −0.893820 0.448426i \(-0.851985\pi\)
0.924225 + 0.381848i \(0.124712\pi\)
\(182\) 0 0
\(183\) 8.88933 0.657118
\(184\) 0 0
\(185\) 9.74779 0.716672
\(186\) 0 0
\(187\) −0.857468 + 1.87759i −0.0627043 + 0.137303i
\(188\) 0 0
\(189\) −0.693936 + 0.800845i −0.0504764 + 0.0582529i
\(190\) 0 0
\(191\) −3.90200 + 2.50766i −0.282339 + 0.181448i −0.674144 0.738600i \(-0.735487\pi\)
0.391805 + 0.920048i \(0.371851\pi\)
\(192\) 0 0
\(193\) −11.2976 13.0381i −0.813220 0.938506i 0.185808 0.982586i \(-0.440510\pi\)
−0.999028 + 0.0440804i \(0.985964\pi\)
\(194\) 0 0
\(195\) 0.190275 1.32339i 0.0136259 0.0947702i
\(196\) 0 0
\(197\) −1.22558 0.787630i −0.0873187 0.0561163i 0.496253 0.868178i \(-0.334709\pi\)
−0.583572 + 0.812062i \(0.698345\pi\)
\(198\) 0 0
\(199\) −3.02962 6.63394i −0.214764 0.470268i 0.771334 0.636430i \(-0.219590\pi\)
−0.986098 + 0.166162i \(0.946862\pi\)
\(200\) 0 0
\(201\) 4.78026 + 1.40361i 0.337173 + 0.0990030i
\(202\) 0 0
\(203\) −0.584621 + 0.171660i −0.0410323 + 0.0120482i
\(204\) 0 0
\(205\) 0.779693 + 5.42288i 0.0544561 + 0.378750i
\(206\) 0 0
\(207\) −3.44513 + 3.33633i −0.239453 + 0.231891i
\(208\) 0 0
\(209\) −0.664288 4.62023i −0.0459498 0.319588i
\(210\) 0 0
\(211\) −23.9625 + 7.03603i −1.64965 + 0.484380i −0.968758 0.248007i \(-0.920224\pi\)
−0.680889 + 0.732387i \(0.738406\pi\)
\(212\) 0 0
\(213\) −0.269448 0.0791169i −0.0184622 0.00542100i
\(214\) 0 0
\(215\) 1.53874 + 3.36937i 0.104941 + 0.229789i
\(216\) 0 0
\(217\) 0.237599 + 0.152696i 0.0161293 + 0.0103657i
\(218\) 0 0
\(219\) −0.732523 + 5.09481i −0.0494993 + 0.344275i
\(220\) 0 0
\(221\) −0.658282 0.759698i −0.0442809 0.0511028i
\(222\) 0 0
\(223\) −5.31965 + 3.41873i −0.356230 + 0.228935i −0.706499 0.707714i \(-0.749727\pi\)
0.350269 + 0.936649i \(0.386090\pi\)
\(224\) 0 0
\(225\) 2.44793 2.82506i 0.163195 0.188337i
\(226\) 0 0
\(227\) −10.3131 + 22.5824i −0.684502 + 1.49885i 0.173300 + 0.984869i \(0.444557\pi\)
−0.857802 + 0.513980i \(0.828170\pi\)
\(228\) 0 0
\(229\) 8.33079 0.550514 0.275257 0.961371i \(-0.411237\pi\)
0.275257 + 0.961371i \(0.411237\pi\)
\(230\) 0 0
\(231\) −2.58977 −0.170394
\(232\) 0 0
\(233\) −9.86217 + 21.5951i −0.646092 + 1.41474i 0.248841 + 0.968544i \(0.419950\pi\)
−0.894933 + 0.446200i \(0.852777\pi\)
\(234\) 0 0
\(235\) 0.412733 0.476319i 0.0269237 0.0310716i
\(236\) 0 0
\(237\) −4.92920 + 3.16780i −0.320186 + 0.205771i
\(238\) 0 0
\(239\) −15.9798 18.4417i −1.03365 1.19289i −0.980945 0.194283i \(-0.937762\pi\)
−0.0527025 0.998610i \(-0.516784\pi\)
\(240\) 0 0
\(241\) 1.73814 12.0890i 0.111963 0.778721i −0.854043 0.520202i \(-0.825856\pi\)
0.966006 0.258519i \(-0.0832344\pi\)
\(242\) 0 0
\(243\) 0.841254 + 0.540641i 0.0539664 + 0.0346821i
\(244\) 0 0
\(245\) 2.74258 + 6.00541i 0.175217 + 0.383672i
\(246\) 0 0
\(247\) 2.18110 + 0.640429i 0.138780 + 0.0407495i
\(248\) 0 0
\(249\) 4.96089 1.45665i 0.314384 0.0923114i
\(250\) 0 0
\(251\) 3.55527 + 24.7275i 0.224407 + 1.56078i 0.721083 + 0.692848i \(0.243644\pi\)
−0.496677 + 0.867936i \(0.665447\pi\)
\(252\) 0 0
\(253\) −11.6760 1.02358i −0.734061 0.0643520i
\(254\) 0 0
\(255\) 0.135023 + 0.939108i 0.00845549 + 0.0588092i
\(256\) 0 0
\(257\) 11.3823 3.34213i 0.710005 0.208476i 0.0932631 0.995642i \(-0.470270\pi\)
0.616742 + 0.787165i \(0.288452\pi\)
\(258\) 0 0
\(259\) 8.82276 + 2.59060i 0.548219 + 0.160972i
\(260\) 0 0
\(261\) 0.238860 + 0.523031i 0.0147851 + 0.0323748i
\(262\) 0 0
\(263\) 7.82837 + 5.03099i 0.482718 + 0.310224i 0.759271 0.650775i \(-0.225556\pi\)
−0.276553 + 0.960999i \(0.589192\pi\)
\(264\) 0 0
\(265\) −0.990948 + 6.89220i −0.0608735 + 0.423384i
\(266\) 0 0
\(267\) 7.95557 + 9.18122i 0.486873 + 0.561882i
\(268\) 0 0
\(269\) −10.4123 + 6.69157i −0.634848 + 0.407992i −0.818102 0.575073i \(-0.804973\pi\)
0.183253 + 0.983066i \(0.441337\pi\)
\(270\) 0 0
\(271\) −8.32197 + 9.60406i −0.505523 + 0.583405i −0.949947 0.312412i \(-0.898863\pi\)
0.444423 + 0.895817i \(0.353409\pi\)
\(272\) 0 0
\(273\) 0.523927 1.14724i 0.0317095 0.0694342i
\(274\) 0 0
\(275\) 9.13568 0.550902
\(276\) 0 0
\(277\) 19.8326 1.19163 0.595813 0.803123i \(-0.296830\pi\)
0.595813 + 0.803123i \(0.296830\pi\)
\(278\) 0 0
\(279\) 0.110721 0.242445i 0.00662869 0.0145148i
\(280\) 0 0
\(281\) 9.05300 10.4477i 0.540056 0.623258i −0.418481 0.908226i \(-0.637437\pi\)
0.958537 + 0.284967i \(0.0919827\pi\)
\(282\) 0 0
\(283\) −6.02597 + 3.87266i −0.358207 + 0.230206i −0.707349 0.706864i \(-0.750109\pi\)
0.349143 + 0.937070i \(0.386473\pi\)
\(284\) 0 0
\(285\) −1.40501 1.62146i −0.0832254 0.0960473i
\(286\) 0 0
\(287\) −0.735495 + 5.11548i −0.0434149 + 0.301957i
\(288\) 0 0
\(289\) −13.7012 8.80524i −0.805954 0.517955i
\(290\) 0 0
\(291\) −1.67575 3.66938i −0.0982342 0.215103i
\(292\) 0 0
\(293\) −17.4859 5.13434i −1.02154 0.299951i −0.272274 0.962220i \(-0.587776\pi\)
−0.749266 + 0.662269i \(0.769594\pi\)
\(294\) 0 0
\(295\) −1.58448 + 0.465244i −0.0922518 + 0.0270876i
\(296\) 0 0
\(297\) 0.347809 + 2.41907i 0.0201819 + 0.140368i
\(298\) 0 0
\(299\) 2.81556 4.96525i 0.162828 0.287148i
\(300\) 0 0
\(301\) 0.497267 + 3.45857i 0.0286620 + 0.199348i
\(302\) 0 0
\(303\) −11.5846 + 3.40156i −0.665520 + 0.195414i
\(304\) 0 0
\(305\) 9.58131 + 2.81333i 0.548624 + 0.161091i
\(306\) 0 0
\(307\) 6.61813 + 14.4917i 0.377717 + 0.827085i 0.999052 + 0.0435395i \(0.0138634\pi\)
−0.621335 + 0.783545i \(0.713409\pi\)
\(308\) 0 0
\(309\) −14.2586 9.16344i −0.811143 0.521290i
\(310\) 0 0
\(311\) 4.14594 28.8357i 0.235095 1.63512i −0.440432 0.897786i \(-0.645175\pi\)
0.675527 0.737335i \(-0.263916\pi\)
\(312\) 0 0
\(313\) 11.6702 + 13.4682i 0.659640 + 0.761266i 0.982718 0.185107i \(-0.0592631\pi\)
−0.323078 + 0.946372i \(0.604718\pi\)
\(314\) 0 0
\(315\) −1.00141 + 0.643566i −0.0564230 + 0.0362609i
\(316\) 0 0
\(317\) −15.6720 + 18.0865i −0.880227 + 1.01584i 0.119508 + 0.992833i \(0.461868\pi\)
−0.999735 + 0.0230031i \(0.992677\pi\)
\(318\) 0 0
\(319\) −0.583761 + 1.27826i −0.0326843 + 0.0715687i
\(320\) 0 0
\(321\) 12.4987 0.697612
\(322\) 0 0
\(323\) −1.61310 −0.0897551
\(324\) 0 0
\(325\) −1.84821 + 4.04701i −0.102520 + 0.224488i
\(326\) 0 0
\(327\) 0.365287 0.421564i 0.0202004 0.0233126i
\(328\) 0 0
\(329\) 0.500154 0.321429i 0.0275744 0.0177210i
\(330\) 0 0
\(331\) 4.23218 + 4.88419i 0.232621 + 0.268459i 0.860044 0.510219i \(-0.170436\pi\)
−0.627423 + 0.778679i \(0.715890\pi\)
\(332\) 0 0
\(333\) 1.23493 8.58912i 0.0676737 0.470681i
\(334\) 0 0
\(335\) 4.70815 + 3.02574i 0.257234 + 0.165314i
\(336\) 0 0
\(337\) −3.48662 7.63463i −0.189928 0.415885i 0.790581 0.612357i \(-0.209779\pi\)
−0.980509 + 0.196473i \(0.937051\pi\)
\(338\) 0 0
\(339\) −8.08513 2.37401i −0.439124 0.128938i
\(340\) 0 0
\(341\) 0.625001 0.183517i 0.0338457 0.00993799i
\(342\) 0 0
\(343\) 1.94195 + 13.5066i 0.104856 + 0.729287i
\(344\) 0 0
\(345\) −4.76920 + 2.50571i −0.256765 + 0.134903i
\(346\) 0 0
\(347\) −2.15938 15.0188i −0.115922 0.806253i −0.961972 0.273149i \(-0.911935\pi\)
0.846050 0.533104i \(-0.178974\pi\)
\(348\) 0 0
\(349\) −5.81125 + 1.70634i −0.311069 + 0.0913382i −0.433541 0.901134i \(-0.642736\pi\)
0.122472 + 0.992472i \(0.460918\pi\)
\(350\) 0 0
\(351\) −1.14198 0.335317i −0.0609546 0.0178979i
\(352\) 0 0
\(353\) −13.6513 29.8922i −0.726585 1.59100i −0.804440 0.594034i \(-0.797534\pi\)
0.0778551 0.996965i \(-0.475193\pi\)
\(354\) 0 0
\(355\) −0.265383 0.170551i −0.0140851 0.00905193i
\(356\) 0 0
\(357\) −0.127370 + 0.885874i −0.00674111 + 0.0468854i
\(358\) 0 0
\(359\) −2.97285 3.43085i −0.156901 0.181073i 0.671856 0.740681i \(-0.265497\pi\)
−0.828757 + 0.559608i \(0.810952\pi\)
\(360\) 0 0
\(361\) −12.9151 + 8.30003i −0.679742 + 0.436843i
\(362\) 0 0
\(363\) 3.29208 3.79926i 0.172789 0.199410i
\(364\) 0 0
\(365\) −2.40197 + 5.25957i −0.125725 + 0.275299i
\(366\) 0 0
\(367\) 31.9179 1.66610 0.833050 0.553198i \(-0.186593\pi\)
0.833050 + 0.553198i \(0.186593\pi\)
\(368\) 0 0
\(369\) 4.87707 0.253890
\(370\) 0 0
\(371\) −2.72860 + 5.97479i −0.141662 + 0.310196i
\(372\) 0 0
\(373\) 1.47685 1.70437i 0.0764683 0.0882491i −0.716226 0.697868i \(-0.754132\pi\)
0.792695 + 0.609619i \(0.208678\pi\)
\(374\) 0 0
\(375\) 8.25767 5.30688i 0.426424 0.274046i
\(376\) 0 0
\(377\) −0.448156 0.517200i −0.0230812 0.0266371i
\(378\) 0 0
\(379\) 3.66978 25.5239i 0.188504 1.31107i −0.647380 0.762167i \(-0.724135\pi\)
0.835884 0.548906i \(-0.184955\pi\)
\(380\) 0 0
\(381\) −12.2402 7.86629i −0.627083 0.403002i
\(382\) 0 0
\(383\) −4.68120 10.2504i −0.239198 0.523771i 0.751519 0.659712i \(-0.229322\pi\)
−0.990717 + 0.135941i \(0.956594\pi\)
\(384\) 0 0
\(385\) −2.79137 0.819620i −0.142261 0.0417717i
\(386\) 0 0
\(387\) 3.16381 0.928978i 0.160826 0.0472226i
\(388\) 0 0
\(389\) −4.09611 28.4891i −0.207681 1.44445i −0.780697 0.624910i \(-0.785136\pi\)
0.573016 0.819544i \(-0.305773\pi\)
\(390\) 0 0
\(391\) −0.924377 + 3.94361i −0.0467477 + 0.199437i
\(392\) 0 0
\(393\) −1.44597 10.0569i −0.0729395 0.507305i
\(394\) 0 0
\(395\) −6.31546 + 1.85439i −0.317765 + 0.0933043i
\(396\) 0 0
\(397\) 32.8529 + 9.64649i 1.64884 + 0.484143i 0.968554 0.248803i \(-0.0800372\pi\)
0.680287 + 0.732946i \(0.261855\pi\)
\(398\) 0 0
\(399\) −0.840753 1.84099i −0.0420903 0.0921649i
\(400\) 0 0
\(401\) 23.7957 + 15.2926i 1.18830 + 0.763674i 0.976894 0.213724i \(-0.0685594\pi\)
0.211406 + 0.977398i \(0.432196\pi\)
\(402\) 0 0
\(403\) −0.0451457 + 0.313995i −0.00224887 + 0.0156412i
\(404\) 0 0
\(405\) 0.735636 + 0.848969i 0.0365540 + 0.0421856i
\(406\) 0 0
\(407\) 17.8406 11.4655i 0.884327 0.568322i
\(408\) 0 0
\(409\) −1.46621 + 1.69210i −0.0724996 + 0.0836690i −0.790841 0.612022i \(-0.790356\pi\)
0.718341 + 0.695691i \(0.244902\pi\)
\(410\) 0 0
\(411\) 4.38690 9.60597i 0.216390 0.473828i
\(412\) 0 0
\(413\) −1.55776 −0.0766523
\(414\) 0 0
\(415\) 5.80807 0.285107
\(416\) 0 0
\(417\) −2.57605 + 5.64077i −0.126150 + 0.276230i
\(418\) 0 0
\(419\) 14.4966 16.7300i 0.708205 0.817312i −0.281632 0.959523i \(-0.590876\pi\)
0.989836 + 0.142211i \(0.0454211\pi\)
\(420\) 0 0
\(421\) −6.06100 + 3.89517i −0.295395 + 0.189839i −0.679941 0.733267i \(-0.737994\pi\)
0.384546 + 0.923106i \(0.374358\pi\)
\(422\) 0 0
\(423\) −0.367414 0.424018i −0.0178643 0.0206165i
\(424\) 0 0
\(425\) 0.449309 3.12501i 0.0217947 0.151585i
\(426\) 0 0
\(427\) 7.92440 + 5.09271i 0.383489 + 0.246453i
\(428\) 0 0
\(429\) −1.20835 2.64591i −0.0583395 0.127746i
\(430\) 0 0
\(431\) −12.4454 3.65430i −0.599475 0.176022i −0.0321045 0.999485i \(-0.510221\pi\)
−0.567370 + 0.823463i \(0.692039\pi\)
\(432\) 0 0
\(433\) 14.3167 4.20377i 0.688019 0.202020i 0.0810071 0.996714i \(-0.474186\pi\)
0.607012 + 0.794693i \(0.292368\pi\)
\(434\) 0 0
\(435\) 0.0919234 + 0.639341i 0.00440739 + 0.0306541i
\(436\) 0 0
\(437\) −3.06289 8.63239i −0.146518 0.412943i
\(438\) 0 0
\(439\) −0.0758913 0.527836i −0.00362210 0.0251922i 0.987930 0.154899i \(-0.0495054\pi\)
−0.991552 + 0.129707i \(0.958596\pi\)
\(440\) 0 0
\(441\) 5.63904 1.65577i 0.268526 0.0788462i
\(442\) 0 0
\(443\) 18.4315 + 5.41197i 0.875705 + 0.257130i 0.688540 0.725198i \(-0.258252\pi\)
0.187165 + 0.982328i \(0.440070\pi\)
\(444\) 0 0
\(445\) 5.66916 + 12.4137i 0.268744 + 0.588467i
\(446\) 0 0
\(447\) −11.3141 7.27114i −0.535139 0.343913i
\(448\) 0 0
\(449\) 0.820060 5.70365i 0.0387010 0.269172i −0.961278 0.275579i \(-0.911130\pi\)
0.999979 + 0.00640731i \(0.00203952\pi\)
\(450\) 0 0
\(451\) 7.80547 + 9.00799i 0.367545 + 0.424170i
\(452\) 0 0
\(453\) −15.3689 + 9.87699i −0.722094 + 0.464062i
\(454\) 0 0
\(455\) 0.927795 1.07073i 0.0434957 0.0501967i
\(456\) 0 0
\(457\) 5.55155 12.1562i 0.259690 0.568643i −0.734210 0.678922i \(-0.762447\pi\)
0.993901 + 0.110279i \(0.0351746\pi\)
\(458\) 0 0
\(459\) 0.844588 0.0394220
\(460\) 0 0
\(461\) 22.9200 1.06749 0.533745 0.845645i \(-0.320784\pi\)
0.533745 + 0.845645i \(0.320784\pi\)
\(462\) 0 0
\(463\) 5.01092 10.9724i 0.232877 0.509930i −0.756730 0.653728i \(-0.773204\pi\)
0.989607 + 0.143798i \(0.0459314\pi\)
\(464\) 0 0
\(465\) 0.196070 0.226277i 0.00909252 0.0104933i
\(466\) 0 0
\(467\) −6.16270 + 3.96053i −0.285176 + 0.183271i −0.675406 0.737446i \(-0.736032\pi\)
0.390230 + 0.920717i \(0.372395\pi\)
\(468\) 0 0
\(469\) 3.45723 + 3.98986i 0.159640 + 0.184235i
\(470\) 0 0
\(471\) 2.68832 18.6977i 0.123871 0.861544i
\(472\) 0 0
\(473\) 6.77933 + 4.35681i 0.311714 + 0.200326i
\(474\) 0 0
\(475\) 2.96584 + 6.49428i 0.136082 + 0.297978i
\(476\) 0 0
\(477\) 5.94742 + 1.74632i 0.272314 + 0.0799585i
\(478\) 0 0
\(479\) −32.9833 + 9.68478i −1.50705 + 0.442509i −0.927936 0.372739i \(-0.878419\pi\)
−0.579111 + 0.815248i \(0.696600\pi\)
\(480\) 0 0
\(481\) 1.46981 + 10.2227i 0.0670175 + 0.466117i
\(482\) 0 0
\(483\) −4.98255 + 1.00046i −0.226714 + 0.0455224i
\(484\) 0 0
\(485\) −0.644898 4.48537i −0.0292833 0.203670i
\(486\) 0 0
\(487\) −10.9571 + 3.21729i −0.496513 + 0.145789i −0.520395 0.853925i \(-0.674215\pi\)
0.0238826 + 0.999715i \(0.492397\pi\)
\(488\) 0 0
\(489\) 0.0993334 + 0.0291669i 0.00449201 + 0.00131897i
\(490\) 0 0
\(491\) −16.4308 35.9785i −0.741514 1.62369i −0.781048 0.624471i \(-0.785315\pi\)
0.0395346 0.999218i \(-0.487412\pi\)
\(492\) 0 0
\(493\) 0.408539 + 0.262552i 0.0183997 + 0.0118248i
\(494\) 0 0
\(495\) −0.390711 + 2.71745i −0.0175611 + 0.122140i
\(496\) 0 0
\(497\) −0.194873 0.224896i −0.00874125 0.0100879i
\(498\) 0 0
\(499\) 10.3299 6.63865i 0.462432 0.297187i −0.288604 0.957449i \(-0.593191\pi\)
0.751036 + 0.660262i \(0.229555\pi\)
\(500\) 0 0
\(501\) 11.2148 12.9426i 0.501040 0.578231i
\(502\) 0 0
\(503\) −10.5877 + 23.1839i −0.472084 + 1.03372i 0.512480 + 0.858699i \(0.328727\pi\)
−0.984565 + 0.175022i \(0.944000\pi\)
\(504\) 0 0
\(505\) −13.5630 −0.603544
\(506\) 0 0
\(507\) −11.5834 −0.514438
\(508\) 0 0
\(509\) −9.83427 + 21.5340i −0.435896 + 0.954480i 0.556437 + 0.830890i \(0.312168\pi\)
−0.992333 + 0.123590i \(0.960559\pi\)
\(510\) 0 0
\(511\) −3.57183 + 4.12211i −0.158008 + 0.182351i
\(512\) 0 0
\(513\) −1.60673 + 1.03258i −0.0709388 + 0.0455896i
\(514\) 0 0
\(515\) −12.4685 14.3894i −0.549426 0.634071i
\(516\) 0 0
\(517\) 0.195140 1.35723i 0.00858227 0.0596910i
\(518\) 0 0
\(519\) −8.39675 5.39627i −0.368577 0.236870i
\(520\) 0 0
\(521\) 9.40596 + 20.5962i 0.412083 + 0.902335i 0.995901 + 0.0904506i \(0.0288307\pi\)
−0.583818 + 0.811884i \(0.698442\pi\)
\(522\) 0 0
\(523\) 8.76777 + 2.57445i 0.383388 + 0.112573i 0.467747 0.883863i \(-0.345066\pi\)
−0.0843587 + 0.996435i \(0.526884\pi\)
\(524\) 0 0
\(525\) 3.80069 1.11598i 0.165876 0.0487055i
\(526\) 0 0
\(527\) −0.0320363 0.222818i −0.00139552 0.00970609i
\(528\) 0 0
\(529\) −22.8592 + 2.54125i −0.993877 + 0.110489i
\(530\) 0 0
\(531\) 0.209209 + 1.45508i 0.00907889 + 0.0631451i
\(532\) 0 0
\(533\) −5.56954 + 1.63536i −0.241244 + 0.0708355i
\(534\) 0 0
\(535\) 13.4717 + 3.95565i 0.582432 + 0.171018i
\(536\) 0 0
\(537\) 10.6297 + 23.2757i 0.458703 + 1.00442i
\(538\) 0 0
\(539\) 12.0832 + 7.76538i 0.520459 + 0.334479i
\(540\) 0 0
\(541\) −4.81852 + 33.5135i −0.207164 + 1.44086i 0.575188 + 0.818021i \(0.304929\pi\)
−0.782352 + 0.622837i \(0.785980\pi\)
\(542\) 0 0
\(543\) −0.644838 0.744183i −0.0276727 0.0319360i
\(544\) 0 0
\(545\) 0.527141 0.338773i 0.0225802 0.0145114i
\(546\) 0 0
\(547\) 7.24934 8.36618i 0.309959 0.357712i −0.579301 0.815114i \(-0.696674\pi\)
0.889260 + 0.457402i \(0.151220\pi\)
\(548\) 0 0
\(549\) 3.69276 8.08602i 0.157603 0.345103i
\(550\) 0 0
\(551\) −1.09819 −0.0467845
\(552\) 0 0
\(553\) −6.20897 −0.264032
\(554\) 0 0
\(555\) 4.04938 8.86690i 0.171886 0.376379i
\(556\) 0 0
\(557\) −10.0341 + 11.5799i −0.425157 + 0.490658i −0.927401 0.374068i \(-0.877963\pi\)
0.502244 + 0.864726i \(0.332508\pi\)
\(558\) 0 0
\(559\) −3.30152 + 2.12176i −0.139639 + 0.0897408i
\(560\) 0 0
\(561\) 1.35171 + 1.55996i 0.0570694 + 0.0658616i
\(562\) 0 0
\(563\) −0.138018 + 0.959933i −0.00581675 + 0.0404564i −0.992523 0.122057i \(-0.961051\pi\)
0.986706 + 0.162513i \(0.0519600\pi\)
\(564\) 0 0
\(565\) −7.96317 5.11762i −0.335013 0.215300i
\(566\) 0 0
\(567\) 0.440203 + 0.963909i 0.0184868 + 0.0404804i
\(568\) 0 0
\(569\) −2.53852 0.745376i −0.106420 0.0312478i 0.228089 0.973640i \(-0.426752\pi\)
−0.334509 + 0.942393i \(0.608570\pi\)
\(570\) 0 0
\(571\) −24.9891 + 7.33747i −1.04576 + 0.307063i −0.759104 0.650970i \(-0.774363\pi\)
−0.286658 + 0.958033i \(0.592544\pi\)
\(572\) 0 0
\(573\) 0.660101 + 4.59110i 0.0275761 + 0.191796i
\(574\) 0 0
\(575\) 17.5764 3.52921i 0.732988 0.147178i
\(576\) 0 0
\(577\) −3.37205 23.4531i −0.140380 0.976366i −0.931250 0.364381i \(-0.881280\pi\)
0.790870 0.611985i \(-0.209629\pi\)
\(578\) 0 0
\(579\) −16.5531 + 4.86043i −0.687923 + 0.201993i
\(580\) 0 0
\(581\) 5.25691 + 1.54357i 0.218093 + 0.0640380i
\(582\) 0 0
\(583\) 6.29303 + 13.7798i 0.260631 + 0.570702i
\(584\) 0 0
\(585\) −1.12476 0.722838i −0.0465030 0.0298857i
\(586\) 0 0
\(587\) 2.32866 16.1962i 0.0961139 0.668487i −0.883623 0.468199i \(-0.844903\pi\)
0.979737 0.200288i \(-0.0641878\pi\)
\(588\) 0 0
\(589\) 0.333359 + 0.384717i 0.0137358 + 0.0158520i
\(590\) 0 0
\(591\) −1.22558 + 0.787630i −0.0504135 + 0.0323988i
\(592\) 0 0
\(593\) −29.5422 + 34.0936i −1.21315 + 1.40006i −0.321763 + 0.946820i \(0.604276\pi\)
−0.891391 + 0.453235i \(0.850270\pi\)
\(594\) 0 0
\(595\) −0.417649 + 0.914524i −0.0171219 + 0.0374918i
\(596\) 0 0
\(597\) −7.29300 −0.298483
\(598\) 0 0
\(599\) −12.5788 −0.513957 −0.256978 0.966417i \(-0.582727\pi\)
−0.256978 + 0.966417i \(0.582727\pi\)
\(600\) 0 0
\(601\) −13.2373 + 28.9856i −0.539959 + 1.18235i 0.421356 + 0.906895i \(0.361554\pi\)
−0.961315 + 0.275451i \(0.911173\pi\)
\(602\) 0 0
\(603\) 3.26256 3.76519i 0.132862 0.153331i
\(604\) 0 0
\(605\) 4.75075 3.05312i 0.193146 0.124127i
\(606\) 0 0
\(607\) 13.8020 + 15.9283i 0.560205 + 0.646511i 0.963230 0.268678i \(-0.0865866\pi\)
−0.403025 + 0.915189i \(0.632041\pi\)
\(608\) 0 0
\(609\) −0.0867127 + 0.603100i −0.00351377 + 0.0244388i
\(610\) 0 0
\(611\) 0.561761 + 0.361022i 0.0227264 + 0.0146054i
\(612\) 0 0
\(613\) −2.06471 4.52108i −0.0833927 0.182605i 0.863342 0.504619i \(-0.168367\pi\)
−0.946735 + 0.322015i \(0.895640\pi\)
\(614\) 0 0
\(615\) 5.25672 + 1.54351i 0.211971 + 0.0622404i
\(616\) 0 0
\(617\) −5.41675 + 1.59050i −0.218070 + 0.0640312i −0.388943 0.921262i \(-0.627160\pi\)
0.170872 + 0.985293i \(0.445341\pi\)
\(618\) 0 0
\(619\) −0.298014 2.07273i −0.0119782 0.0833101i 0.982955 0.183844i \(-0.0588541\pi\)
−0.994934 + 0.100534i \(0.967945\pi\)
\(620\) 0 0
\(621\) 1.60367 + 4.51976i 0.0643532 + 0.181372i
\(622\) 0 0
\(623\) 1.83208 + 12.7424i 0.0734005 + 0.510512i
\(624\) 0 0
\(625\) −7.35334 + 2.15914i −0.294134 + 0.0863655i
\(626\) 0 0
\(627\) −4.47866 1.31505i −0.178861 0.0525182i
\(628\) 0 0
\(629\) −3.04452 6.66657i −0.121393 0.265814i
\(630\) 0 0
\(631\) −18.4937 11.8852i −0.736223 0.473142i 0.118023 0.993011i \(-0.462344\pi\)
−0.854246 + 0.519869i \(0.825981\pi\)
\(632\) 0 0
\(633\) −3.55419 + 24.7199i −0.141266 + 0.982529i
\(634\) 0 0
\(635\) −10.7035 12.3524i −0.424754 0.490192i
\(636\) 0 0
\(637\) −5.88448 + 3.78173i −0.233152 + 0.149838i
\(638\) 0 0
\(639\) −0.183900 + 0.212232i −0.00727497 + 0.00839576i
\(640\) 0 0
\(641\) −1.85869 + 4.06996i −0.0734138 + 0.160754i −0.942781 0.333413i \(-0.891800\pi\)
0.869367 + 0.494167i \(0.164527\pi\)
\(642\) 0 0
\(643\) 15.7233 0.620067 0.310034 0.950726i \(-0.399660\pi\)
0.310034 + 0.950726i \(0.399660\pi\)
\(644\) 0 0
\(645\) 3.70410 0.145849
\(646\) 0 0
\(647\) −9.14760 + 20.0305i −0.359629 + 0.787478i 0.640185 + 0.768221i \(0.278858\pi\)
−0.999815 + 0.0192578i \(0.993870\pi\)
\(648\) 0 0
\(649\) −2.35272 + 2.71518i −0.0923523 + 0.106580i
\(650\) 0 0
\(651\) 0.237599 0.152696i 0.00931225 0.00598462i
\(652\) 0 0
\(653\) 4.14529 + 4.78391i 0.162218 + 0.187209i 0.831039 0.556214i \(-0.187746\pi\)
−0.668822 + 0.743423i \(0.733201\pi\)
\(654\) 0 0
\(655\) 1.62433 11.2974i 0.0634676 0.441427i
\(656\) 0 0
\(657\) 4.33010 + 2.78279i 0.168933 + 0.108567i
\(658\) 0 0
\(659\) −2.00751 4.39583i −0.0782014 0.171237i 0.866493 0.499189i \(-0.166369\pi\)
−0.944694 + 0.327952i \(0.893642\pi\)
\(660\) 0 0
\(661\) −5.68540 1.66938i −0.221136 0.0649315i 0.169288 0.985567i \(-0.445853\pi\)
−0.390424 + 0.920635i \(0.627672\pi\)
\(662\) 0 0
\(663\) −0.964506 + 0.283205i −0.0374583 + 0.0109988i
\(664\) 0 0
\(665\) −0.323557 2.25039i −0.0125470 0.0872662i
\(666\) 0 0
\(667\) −0.629312 + 2.68480i −0.0243671 + 0.103956i
\(668\) 0 0
\(669\) 0.899925 + 6.25912i 0.0347931 + 0.241991i
\(670\) 0 0
\(671\) 20.8450 6.12065i 0.804712 0.236285i
\(672\) 0 0
\(673\) −48.3632 14.2007i −1.86426 0.547397i −0.998932 0.0461990i \(-0.985289\pi\)
−0.865332 0.501198i \(-0.832893\pi\)
\(674\) 0 0
\(675\) −1.55286 3.40029i −0.0597696 0.130877i
\(676\) 0 0
\(677\) 34.9502 + 22.4611i 1.34324 + 0.863251i 0.997186 0.0749627i \(-0.0238838\pi\)
0.346058 + 0.938213i \(0.387520\pi\)
\(678\) 0 0
\(679\) 0.608342 4.23111i 0.0233460 0.162375i
\(680\) 0 0
\(681\) 16.2575 + 18.7622i 0.622989 + 0.718968i
\(682\) 0 0
\(683\) 36.5235 23.4722i 1.39753 0.898140i 0.397720 0.917507i \(-0.369801\pi\)
0.999812 + 0.0193668i \(0.00616502\pi\)
\(684\) 0 0
\(685\) 7.76852 8.96535i 0.296820 0.342548i
\(686\) 0 0
\(687\) 3.46073 7.57795i 0.132035 0.289117i
\(688\) 0 0
\(689\) −7.37743 −0.281058
\(690\) 0 0
\(691\) −16.4600 −0.626168 −0.313084 0.949725i \(-0.601362\pi\)
−0.313084 + 0.949725i \(0.601362\pi\)
\(692\) 0 0
\(693\) −1.07583 + 2.35574i −0.0408674 + 0.0894871i
\(694\) 0 0
\(695\) −4.56179 + 5.26459i −0.173039 + 0.199697i
\(696\) 0 0
\(697\) 3.46522 2.22696i 0.131255 0.0843522i
\(698\) 0 0
\(699\) 15.5467 + 17.9419i 0.588032 + 0.678625i
\(700\) 0 0
\(701\) −1.43218 + 9.96101i −0.0540926 + 0.376222i 0.944736 + 0.327832i \(0.106318\pi\)
−0.998829 + 0.0483898i \(0.984591\pi\)
\(702\) 0 0
\(703\) 13.9423 + 8.96017i 0.525844 + 0.337939i
\(704\) 0 0
\(705\) −0.261820 0.573305i −0.00986070 0.0215919i
\(706\) 0 0
\(707\) −12.2759 3.60453i −0.461683 0.135562i
\(708\) 0 0
\(709\) 33.0074 9.69186i 1.23962 0.363985i 0.404748 0.914428i \(-0.367359\pi\)
0.834873 + 0.550443i \(0.185541\pi\)
\(710\) 0 0
\(711\) 0.833872 + 5.79971i 0.0312726 + 0.217506i
\(712\) 0 0
\(713\) 1.13157 0.594519i 0.0423775 0.0222649i
\(714\) 0 0
\(715\) −0.465022 3.23430i −0.0173908 0.120956i
\(716\) 0 0
\(717\) −23.4134 + 6.87479i −0.874389 + 0.256744i
\(718\) 0 0
\(719\) 13.8137 + 4.05608i 0.515165 + 0.151266i 0.528973 0.848638i \(-0.322577\pi\)
−0.0138079 + 0.999905i \(0.504395\pi\)
\(720\) 0 0
\(721\) −7.46109 16.3375i −0.277866 0.608441i
\(722\) 0 0
\(723\) −10.2745 6.60302i −0.382113 0.245569i
\(724\) 0 0
\(725\) 0.305888 2.12750i 0.0113604 0.0790132i
\(726\) 0 0
\(727\) 2.20780 + 2.54794i 0.0818827 + 0.0944977i 0.795213 0.606331i \(-0.207359\pi\)
−0.713330 + 0.700829i \(0.752814\pi\)
\(728\) 0 0
\(729\) 0.841254 0.540641i 0.0311575 0.0200237i
\(730\) 0 0
\(731\) 1.82374 2.10471i 0.0674534 0.0778453i
\(732\) 0 0
\(733\) 7.38377 16.1682i 0.272726 0.597186i −0.722865 0.690989i \(-0.757175\pi\)
0.995591 + 0.0938032i \(0.0299024\pi\)
\(734\) 0 0
\(735\) 6.60202 0.243519
\(736\) 0 0
\(737\) 12.1759 0.448504
\(738\) 0 0
\(739\) 13.4290 29.4055i 0.493995 1.08170i −0.484380 0.874858i \(-0.660955\pi\)
0.978375 0.206840i \(-0.0663181\pi\)
\(740\) 0 0
\(741\) 1.48862 1.71796i 0.0546857 0.0631107i
\(742\) 0 0
\(743\) 5.89559 3.78886i 0.216288 0.139000i −0.428011 0.903774i \(-0.640786\pi\)
0.644299 + 0.764774i \(0.277149\pi\)
\(744\) 0 0
\(745\) −9.89365 11.4179i −0.362475 0.418319i
\(746\) 0 0
\(747\) 0.735815 5.11770i 0.0269220 0.187247i
\(748\) 0 0
\(749\) 11.1420 + 7.16054i 0.407121 + 0.261641i
\(750\) 0 0
\(751\) −1.51872 3.32554i −0.0554190 0.121351i 0.879897 0.475165i \(-0.157612\pi\)
−0.935316 + 0.353815i \(0.884884\pi\)
\(752\) 0 0
\(753\) 23.9698 + 7.03817i 0.873508 + 0.256485i
\(754\) 0 0
\(755\) −19.6912 + 5.78185i −0.716635 + 0.210423i
\(756\) 0 0
\(757\) −6.00136 41.7404i −0.218123 1.51708i −0.744958 0.667112i \(-0.767530\pi\)
0.526835 0.849968i \(-0.323379\pi\)
\(758\) 0 0
\(759\) −5.78145 + 10.1956i −0.209853 + 0.370077i
\(760\) 0 0
\(761\) 4.33621 + 30.1590i 0.157187 + 1.09326i 0.903785 + 0.427986i \(0.140777\pi\)
−0.746598 + 0.665276i \(0.768314\pi\)
\(762\) 0 0
\(763\) 0.567150 0.166530i 0.0205322 0.00602880i
\(764\) 0 0
\(765\) 0.910334 + 0.267298i 0.0329132 + 0.00966418i
\(766\) 0 0
\(767\) −0.726826 1.59153i −0.0262442 0.0574667i
\(768\) 0 0
\(769\) −36.2713 23.3102i −1.30798 0.840586i −0.313921 0.949449i \(-0.601643\pi\)
−0.994057 + 0.108863i \(0.965279\pi\)
\(770\) 0 0
\(771\) 1.68825 11.7420i 0.0608008 0.422879i
\(772\) 0 0
\(773\) −27.4944 31.7302i −0.988903 1.14126i −0.989973 0.141256i \(-0.954886\pi\)
0.00106970 0.999999i \(-0.499660\pi\)
\(774\) 0 0
\(775\) −0.838156 + 0.538650i −0.0301074 + 0.0193489i
\(776\) 0 0
\(777\) 6.02159 6.94929i 0.216024 0.249304i
\(778\) 0 0
\(779\) −3.86952 + 8.47306i −0.138640 + 0.303579i
\(780\) 0 0
\(781\) −0.686315 −0.0245583
\(782\) 0 0
\(783\) 0.574992 0.0205485
\(784\) 0 0
\(785\) 8.81510 19.3024i 0.314624 0.688931i
\(786\) 0 0
\(787\) 27.2807 31.4836i 0.972451 1.12227i −0.0200212 0.999800i \(-0.506373\pi\)
0.992472 0.122469i \(-0.0390812\pi\)
\(788\) 0 0
\(789\) 7.82837 5.03099i 0.278697 0.179108i
\(790\) 0 0
\(791\) −5.84743 6.74829i −0.207911 0.239942i
\(792\) 0 0
\(793\) −1.50570 + 10.4724i −0.0534689 + 0.371884i
\(794\)