Properties

Label 276.2.i.a.265.1
Level $276$
Weight $2$
Character 276.265
Analytic conductor $2.204$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 276 = 2^{2} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 276.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.20387109579\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 43 x^{18} - 165 x^{17} + 538 x^{16} - 1433 x^{15} + 3444 x^{14} - 7370 x^{13} + 15500 x^{12} - 28190 x^{11} + 41920 x^{10} - 33520 x^{9} - 13837 x^{8} + 78980 x^{7} - 92652 x^{6} - 52852 x^{5} + 177374 x^{4} + 151360 x^{3} + 115323 x^{2} + 12834 x + 529\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 265.1
Root \(-1.54238 - 1.78001i\) of defining polynomial
Character \(\chi\) \(=\) 276.265
Dual form 276.2.i.a.25.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.142315 + 0.989821i) q^{3} +(-2.38954 + 0.701632i) q^{5} +(2.64891 + 3.05701i) q^{7} +(-0.959493 - 0.281733i) q^{9} +O(q^{10})\) \(q+(-0.142315 + 0.989821i) q^{3} +(-2.38954 + 0.701632i) q^{5} +(2.64891 + 3.05701i) q^{7} +(-0.959493 - 0.281733i) q^{9} +(-4.05943 - 2.60884i) q^{11} +(-2.81278 + 3.24612i) q^{13} +(-0.354423 - 2.46507i) q^{15} +(1.87409 + 4.10368i) q^{17} +(-1.84032 + 4.02974i) q^{19} +(-3.40287 + 2.18689i) q^{21} +(4.75085 + 0.655317i) q^{23} +(1.01134 - 0.649950i) q^{25} +(0.415415 - 0.909632i) q^{27} +(-0.207351 - 0.454036i) q^{29} +(-0.727870 - 5.06245i) q^{31} +(3.16000 - 3.64683i) q^{33} +(-8.47457 - 5.44627i) q^{35} +(10.2392 + 3.00650i) q^{37} +(-2.81278 - 3.24612i) q^{39} +(7.29593 - 2.14228i) q^{41} +(1.07935 - 7.50707i) q^{43} +2.49042 q^{45} -7.67725 q^{47} +(-1.33235 + 9.26672i) q^{49} +(-4.32862 + 1.27100i) q^{51} +(5.00164 + 5.77220i) q^{53} +(11.5306 + 3.38569i) q^{55} +(-3.72681 - 2.39508i) q^{57} +(-1.85219 + 2.13754i) q^{59} +(-0.225996 - 1.57184i) q^{61} +(-1.68035 - 3.67946i) q^{63} +(4.44366 - 9.73025i) q^{65} +(10.1121 - 6.49867i) q^{67} +(-1.32476 + 4.60923i) q^{69} +(3.18977 - 2.04994i) q^{71} +(-3.09627 + 6.77988i) q^{73} +(0.499405 + 1.09354i) q^{75} +(-2.77784 - 19.3203i) q^{77} +(7.62471 - 8.79938i) q^{79} +(0.841254 + 0.540641i) q^{81} +(-5.09163 - 1.49504i) q^{83} +(-7.35747 - 8.49098i) q^{85} +(0.478924 - 0.140625i) q^{87} +(-1.58627 + 11.0327i) q^{89} -17.3742 q^{91} +5.11451 q^{93} +(1.57012 - 10.9204i) q^{95} +(-6.84457 + 2.00975i) q^{97} +(3.16000 + 3.64683i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} + O(q^{10}) \) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} - 22q^{13} + 7q^{15} + 7q^{17} + 19q^{19} + 20q^{23} + 20q^{25} - 2q^{27} + 32q^{29} - 3q^{31} + 11q^{33} - 26q^{35} - 10q^{37} - 22q^{39} - 40q^{41} + 8q^{43} - 4q^{45} - 18q^{47} - 34q^{49} - 26q^{51} - 34q^{53} - 17q^{55} - 3q^{57} - 32q^{59} + 32q^{61} + 49q^{65} + 35q^{67} - 2q^{69} + 33q^{71} - q^{73} - 2q^{75} - 50q^{77} + 22q^{79} - 2q^{81} - 14q^{83} - 9q^{85} - 12q^{87} + 10q^{89} - 72q^{91} + 30q^{93} - 51q^{95} - 4q^{97} + 11q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/276\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(139\) \(185\)
\(\chi(n)\) \(e\left(\frac{10}{11}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.142315 + 0.989821i −0.0821655 + 0.571474i
\(4\) 0 0
\(5\) −2.38954 + 0.701632i −1.06863 + 0.313779i −0.768323 0.640062i \(-0.778909\pi\)
−0.300311 + 0.953841i \(0.597090\pi\)
\(6\) 0 0
\(7\) 2.64891 + 3.05701i 1.00119 + 1.15544i 0.987831 + 0.155529i \(0.0497082\pi\)
0.0133629 + 0.999911i \(0.495746\pi\)
\(8\) 0 0
\(9\) −0.959493 0.281733i −0.319831 0.0939109i
\(10\) 0 0
\(11\) −4.05943 2.60884i −1.22396 0.786594i −0.241024 0.970519i \(-0.577483\pi\)
−0.982940 + 0.183925i \(0.941120\pi\)
\(12\) 0 0
\(13\) −2.81278 + 3.24612i −0.780123 + 0.900310i −0.997118 0.0758623i \(-0.975829\pi\)
0.216995 + 0.976173i \(0.430375\pi\)
\(14\) 0 0
\(15\) −0.354423 2.46507i −0.0915118 0.636478i
\(16\) 0 0
\(17\) 1.87409 + 4.10368i 0.454533 + 0.995288i 0.988700 + 0.149909i \(0.0478981\pi\)
−0.534167 + 0.845379i \(0.679375\pi\)
\(18\) 0 0
\(19\) −1.84032 + 4.02974i −0.422198 + 0.924485i 0.572331 + 0.820023i \(0.306039\pi\)
−0.994529 + 0.104462i \(0.966688\pi\)
\(20\) 0 0
\(21\) −3.40287 + 2.18689i −0.742567 + 0.477219i
\(22\) 0 0
\(23\) 4.75085 + 0.655317i 0.990620 + 0.136643i
\(24\) 0 0
\(25\) 1.01134 0.649950i 0.202268 0.129990i
\(26\) 0 0
\(27\) 0.415415 0.909632i 0.0799467 0.175059i
\(28\) 0 0
\(29\) −0.207351 0.454036i −0.0385042 0.0843124i 0.889403 0.457125i \(-0.151121\pi\)
−0.927907 + 0.372812i \(0.878393\pi\)
\(30\) 0 0
\(31\) −0.727870 5.06245i −0.130729 0.909243i −0.944606 0.328206i \(-0.893556\pi\)
0.813877 0.581037i \(-0.197353\pi\)
\(32\) 0 0
\(33\) 3.16000 3.64683i 0.550085 0.634832i
\(34\) 0 0
\(35\) −8.47457 5.44627i −1.43246 0.920588i
\(36\) 0 0
\(37\) 10.2392 + 3.00650i 1.68331 + 0.494265i 0.976929 0.213564i \(-0.0685071\pi\)
0.706384 + 0.707829i \(0.250325\pi\)
\(38\) 0 0
\(39\) −2.81278 3.24612i −0.450404 0.519794i
\(40\) 0 0
\(41\) 7.29593 2.14228i 1.13943 0.334568i 0.343024 0.939327i \(-0.388549\pi\)
0.796409 + 0.604759i \(0.206731\pi\)
\(42\) 0 0
\(43\) 1.07935 7.50707i 0.164600 1.14482i −0.725224 0.688513i \(-0.758264\pi\)
0.889824 0.456305i \(-0.150827\pi\)
\(44\) 0 0
\(45\) 2.49042 0.371250
\(46\) 0 0
\(47\) −7.67725 −1.11984 −0.559921 0.828546i \(-0.689169\pi\)
−0.559921 + 0.828546i \(0.689169\pi\)
\(48\) 0 0
\(49\) −1.33235 + 9.26672i −0.190336 + 1.32382i
\(50\) 0 0
\(51\) −4.32862 + 1.27100i −0.606128 + 0.177975i
\(52\) 0 0
\(53\) 5.00164 + 5.77220i 0.687028 + 0.792873i 0.986939 0.161095i \(-0.0515024\pi\)
−0.299911 + 0.953967i \(0.596957\pi\)
\(54\) 0 0
\(55\) 11.5306 + 3.38569i 1.55479 + 0.456527i
\(56\) 0 0
\(57\) −3.72681 2.39508i −0.493629 0.317236i
\(58\) 0 0
\(59\) −1.85219 + 2.13754i −0.241134 + 0.278284i −0.863397 0.504524i \(-0.831668\pi\)
0.622263 + 0.782808i \(0.286213\pi\)
\(60\) 0 0
\(61\) −0.225996 1.57184i −0.0289358 0.201253i 0.970225 0.242204i \(-0.0778703\pi\)
−0.999161 + 0.0409511i \(0.986961\pi\)
\(62\) 0 0
\(63\) −1.68035 3.67946i −0.211705 0.463568i
\(64\) 0 0
\(65\) 4.44366 9.73025i 0.551168 1.20689i
\(66\) 0 0
\(67\) 10.1121 6.49867i 1.23539 0.793939i 0.250671 0.968072i \(-0.419349\pi\)
0.984722 + 0.174134i \(0.0557124\pi\)
\(68\) 0 0
\(69\) −1.32476 + 4.60923i −0.159483 + 0.554886i
\(70\) 0 0
\(71\) 3.18977 2.04994i 0.378556 0.243283i −0.337501 0.941325i \(-0.609582\pi\)
0.716057 + 0.698042i \(0.245945\pi\)
\(72\) 0 0
\(73\) −3.09627 + 6.77988i −0.362391 + 0.793525i 0.637346 + 0.770578i \(0.280032\pi\)
−0.999737 + 0.0229473i \(0.992695\pi\)
\(74\) 0 0
\(75\) 0.499405 + 1.09354i 0.0576663 + 0.126272i
\(76\) 0 0
\(77\) −2.77784 19.3203i −0.316564 2.20175i
\(78\) 0 0
\(79\) 7.62471 8.79938i 0.857847 0.990008i −0.142153 0.989845i \(-0.545403\pi\)
1.00000 0.000163051i \(-5.19009e-5\pi\)
\(80\) 0 0
\(81\) 0.841254 + 0.540641i 0.0934726 + 0.0600712i
\(82\) 0 0
\(83\) −5.09163 1.49504i −0.558879 0.164102i −0.00991953 0.999951i \(-0.503158\pi\)
−0.548959 + 0.835849i \(0.684976\pi\)
\(84\) 0 0
\(85\) −7.35747 8.49098i −0.798030 0.920976i
\(86\) 0 0
\(87\) 0.478924 0.140625i 0.0513460 0.0150766i
\(88\) 0 0
\(89\) −1.58627 + 11.0327i −0.168144 + 1.16947i 0.714573 + 0.699561i \(0.246621\pi\)
−0.882717 + 0.469905i \(0.844288\pi\)
\(90\) 0 0
\(91\) −17.3742 −1.82131
\(92\) 0 0
\(93\) 5.11451 0.530350
\(94\) 0 0
\(95\) 1.57012 10.9204i 0.161091 1.12041i
\(96\) 0 0
\(97\) −6.84457 + 2.00975i −0.694961 + 0.204059i −0.610089 0.792333i \(-0.708866\pi\)
−0.0848721 + 0.996392i \(0.527048\pi\)
\(98\) 0 0
\(99\) 3.16000 + 3.64683i 0.317592 + 0.366521i
\(100\) 0 0
\(101\) 5.07150 + 1.48913i 0.504633 + 0.148174i 0.524133 0.851636i \(-0.324389\pi\)
−0.0195002 + 0.999810i \(0.506208\pi\)
\(102\) 0 0
\(103\) 16.1144 + 10.3561i 1.58780 + 1.02042i 0.972728 + 0.231949i \(0.0745102\pi\)
0.615074 + 0.788470i \(0.289126\pi\)
\(104\) 0 0
\(105\) 6.59690 7.61322i 0.643791 0.742975i
\(106\) 0 0
\(107\) 1.56999 + 10.9195i 0.151777 + 1.05563i 0.913240 + 0.407423i \(0.133572\pi\)
−0.761463 + 0.648209i \(0.775518\pi\)
\(108\) 0 0
\(109\) −0.724276 1.58594i −0.0693731 0.151906i 0.871769 0.489917i \(-0.162973\pi\)
−0.941142 + 0.338011i \(0.890246\pi\)
\(110\) 0 0
\(111\) −4.43309 + 9.70710i −0.420770 + 0.921357i
\(112\) 0 0
\(113\) −14.5328 + 9.33966i −1.36713 + 0.878601i −0.998696 0.0510528i \(-0.983742\pi\)
−0.368434 + 0.929654i \(0.620106\pi\)
\(114\) 0 0
\(115\) −11.8121 + 1.76744i −1.10149 + 0.164815i
\(116\) 0 0
\(117\) 3.61337 2.32217i 0.334057 0.214685i
\(118\) 0 0
\(119\) −7.58068 + 16.5994i −0.694920 + 1.52166i
\(120\) 0 0
\(121\) 5.10337 + 11.1748i 0.463943 + 1.01589i
\(122\) 0 0
\(123\) 1.08215 + 7.52654i 0.0975745 + 0.678646i
\(124\) 0 0
\(125\) 6.19377 7.14799i 0.553988 0.639336i
\(126\) 0 0
\(127\) −12.0209 7.72538i −1.06668 0.685516i −0.115240 0.993338i \(-0.536764\pi\)
−0.951444 + 0.307821i \(0.900400\pi\)
\(128\) 0 0
\(129\) 7.27706 + 2.13674i 0.640709 + 0.188129i
\(130\) 0 0
\(131\) 6.51189 + 7.51512i 0.568946 + 0.656599i 0.965191 0.261546i \(-0.0842323\pi\)
−0.396245 + 0.918145i \(0.629687\pi\)
\(132\) 0 0
\(133\) −17.1938 + 5.04854i −1.49089 + 0.437764i
\(134\) 0 0
\(135\) −0.354423 + 2.46507i −0.0305039 + 0.212159i
\(136\) 0 0
\(137\) −8.14309 −0.695711 −0.347855 0.937548i \(-0.613090\pi\)
−0.347855 + 0.937548i \(0.613090\pi\)
\(138\) 0 0
\(139\) −10.1303 −0.859242 −0.429621 0.903009i \(-0.641353\pi\)
−0.429621 + 0.903009i \(0.641353\pi\)
\(140\) 0 0
\(141\) 1.09259 7.59911i 0.0920124 0.639960i
\(142\) 0 0
\(143\) 19.8869 5.83931i 1.66302 0.488307i
\(144\) 0 0
\(145\) 0.814041 + 0.939453i 0.0676024 + 0.0780173i
\(146\) 0 0
\(147\) −8.98279 2.63758i −0.740888 0.217544i
\(148\) 0 0
\(149\) 5.58068 + 3.58648i 0.457187 + 0.293816i 0.748892 0.662692i \(-0.230586\pi\)
−0.291705 + 0.956508i \(0.594223\pi\)
\(150\) 0 0
\(151\) 5.56561 6.42306i 0.452923 0.522701i −0.482660 0.875808i \(-0.660329\pi\)
0.935583 + 0.353107i \(0.114875\pi\)
\(152\) 0 0
\(153\) −0.642033 4.46544i −0.0519053 0.361010i
\(154\) 0 0
\(155\) 5.29125 + 11.5862i 0.425004 + 0.930628i
\(156\) 0 0
\(157\) 3.89510 8.52909i 0.310863 0.680695i −0.688129 0.725589i \(-0.741568\pi\)
0.998992 + 0.0448934i \(0.0142948\pi\)
\(158\) 0 0
\(159\) −6.42525 + 4.12926i −0.509556 + 0.327472i
\(160\) 0 0
\(161\) 10.5813 + 16.2592i 0.833921 + 1.28141i
\(162\) 0 0
\(163\) −4.07886 + 2.62132i −0.319481 + 0.205318i −0.690545 0.723289i \(-0.742629\pi\)
0.371064 + 0.928607i \(0.378993\pi\)
\(164\) 0 0
\(165\) −4.99221 + 10.9314i −0.388643 + 0.851009i
\(166\) 0 0
\(167\) −5.54815 12.1488i −0.429329 0.940099i −0.993435 0.114397i \(-0.963507\pi\)
0.564107 0.825702i \(-0.309221\pi\)
\(168\) 0 0
\(169\) −0.775469 5.39351i −0.0596515 0.414885i
\(170\) 0 0
\(171\) 2.90108 3.34802i 0.221851 0.256030i
\(172\) 0 0
\(173\) 8.57692 + 5.51205i 0.652091 + 0.419073i 0.824430 0.565964i \(-0.191496\pi\)
−0.172339 + 0.985038i \(0.555132\pi\)
\(174\) 0 0
\(175\) 4.66585 + 1.37002i 0.352705 + 0.103564i
\(176\) 0 0
\(177\) −1.85219 2.13754i −0.139219 0.160667i
\(178\) 0 0
\(179\) −5.83694 + 1.71388i −0.436274 + 0.128102i −0.492492 0.870317i \(-0.663914\pi\)
0.0562183 + 0.998419i \(0.482096\pi\)
\(180\) 0 0
\(181\) 0.660855 4.59635i 0.0491209 0.341644i −0.950409 0.311001i \(-0.899336\pi\)
0.999530 0.0306423i \(-0.00975529\pi\)
\(182\) 0 0
\(183\) 1.58800 0.117388
\(184\) 0 0
\(185\) −26.5764 −1.95394
\(186\) 0 0
\(187\) 3.09810 21.5478i 0.226556 1.57573i
\(188\) 0 0
\(189\) 3.88115 1.13961i 0.282312 0.0828943i
\(190\) 0 0
\(191\) 7.73126 + 8.92235i 0.559414 + 0.645599i 0.963050 0.269321i \(-0.0867992\pi\)
−0.403636 + 0.914920i \(0.632254\pi\)
\(192\) 0 0
\(193\) −21.4550 6.29975i −1.54436 0.453466i −0.604953 0.796261i \(-0.706808\pi\)
−0.939410 + 0.342795i \(0.888626\pi\)
\(194\) 0 0
\(195\) 8.99881 + 5.78319i 0.644418 + 0.414143i
\(196\) 0 0
\(197\) −5.93139 + 6.84519i −0.422594 + 0.487699i −0.926625 0.375986i \(-0.877304\pi\)
0.504031 + 0.863685i \(0.331850\pi\)
\(198\) 0 0
\(199\) 0.513726 + 3.57304i 0.0364171 + 0.253286i 0.999895 0.0145021i \(-0.00461632\pi\)
−0.963478 + 0.267788i \(0.913707\pi\)
\(200\) 0 0
\(201\) 4.99342 + 10.9341i 0.352208 + 0.771229i
\(202\) 0 0
\(203\) 0.838736 1.83658i 0.0588677 0.128902i
\(204\) 0 0
\(205\) −15.9308 + 10.2381i −1.11266 + 0.715061i
\(206\) 0 0
\(207\) −4.37378 1.96724i −0.303999 0.136733i
\(208\) 0 0
\(209\) 17.9836 11.5573i 1.24395 0.799438i
\(210\) 0 0
\(211\) −1.02026 + 2.23405i −0.0702374 + 0.153798i −0.941494 0.337029i \(-0.890578\pi\)
0.871257 + 0.490827i \(0.163305\pi\)
\(212\) 0 0
\(213\) 1.57512 + 3.44904i 0.107926 + 0.236324i
\(214\) 0 0
\(215\) 2.68804 + 18.6958i 0.183323 + 1.27504i
\(216\) 0 0
\(217\) 13.5479 15.6351i 0.919690 1.06138i
\(218\) 0 0
\(219\) −6.27023 4.02963i −0.423703 0.272297i
\(220\) 0 0
\(221\) −18.5924 5.45922i −1.25066 0.367227i
\(222\) 0 0
\(223\) 10.9606 + 12.6492i 0.733976 + 0.847053i 0.992913 0.118841i \(-0.0379179\pi\)
−0.258938 + 0.965894i \(0.583372\pi\)
\(224\) 0 0
\(225\) −1.15349 + 0.338694i −0.0768991 + 0.0225796i
\(226\) 0 0
\(227\) 1.94100 13.5000i 0.128829 0.896024i −0.818213 0.574915i \(-0.805035\pi\)
0.947042 0.321109i \(-0.104056\pi\)
\(228\) 0 0
\(229\) −6.76866 −0.447286 −0.223643 0.974671i \(-0.571795\pi\)
−0.223643 + 0.974671i \(0.571795\pi\)
\(230\) 0 0
\(231\) 19.5190 1.28425
\(232\) 0 0
\(233\) 1.54002 10.7111i 0.100890 0.701705i −0.875108 0.483927i \(-0.839210\pi\)
0.975998 0.217778i \(-0.0698809\pi\)
\(234\) 0 0
\(235\) 18.3451 5.38661i 1.19670 0.351383i
\(236\) 0 0
\(237\) 7.62471 + 8.79938i 0.495278 + 0.571581i
\(238\) 0 0
\(239\) −18.3881 5.39923i −1.18943 0.349247i −0.373625 0.927580i \(-0.621885\pi\)
−0.815801 + 0.578333i \(0.803704\pi\)
\(240\) 0 0
\(241\) −8.37372 5.38147i −0.539399 0.346651i 0.242405 0.970175i \(-0.422064\pi\)
−0.781804 + 0.623525i \(0.785700\pi\)
\(242\) 0 0
\(243\) −0.654861 + 0.755750i −0.0420093 + 0.0484814i
\(244\) 0 0
\(245\) −3.31812 23.0780i −0.211987 1.47440i
\(246\) 0 0
\(247\) −7.90458 17.3086i −0.502957 1.10132i
\(248\) 0 0
\(249\) 2.20443 4.82703i 0.139700 0.305901i
\(250\) 0 0
\(251\) 9.59137 6.16400i 0.605402 0.389068i −0.201728 0.979442i \(-0.564656\pi\)
0.807130 + 0.590373i \(0.201019\pi\)
\(252\) 0 0
\(253\) −17.5761 15.0544i −1.10500 0.946462i
\(254\) 0 0
\(255\) 9.45163 6.07419i 0.591884 0.380381i
\(256\) 0 0
\(257\) 10.8691 23.8000i 0.677995 1.48460i −0.186759 0.982406i \(-0.559798\pi\)
0.864754 0.502196i \(-0.167474\pi\)
\(258\) 0 0
\(259\) 17.9318 + 39.2652i 1.11423 + 2.43982i
\(260\) 0 0
\(261\) 0.0710354 + 0.494062i 0.00439698 + 0.0305817i
\(262\) 0 0
\(263\) 19.2160 22.1764i 1.18491 1.36746i 0.270469 0.962729i \(-0.412821\pi\)
0.914438 0.404727i \(-0.132633\pi\)
\(264\) 0 0
\(265\) −16.0016 10.2836i −0.982969 0.631716i
\(266\) 0 0
\(267\) −10.6947 3.14024i −0.654504 0.192180i
\(268\) 0 0
\(269\) 18.5100 + 21.3616i 1.12857 + 1.30244i 0.947782 + 0.318920i \(0.103320\pi\)
0.180790 + 0.983522i \(0.442134\pi\)
\(270\) 0 0
\(271\) 0.108543 0.0318710i 0.00659349 0.00193602i −0.278434 0.960455i \(-0.589815\pi\)
0.285028 + 0.958519i \(0.407997\pi\)
\(272\) 0 0
\(273\) 2.47260 17.1973i 0.149649 1.04083i
\(274\) 0 0
\(275\) −5.80108 −0.349818
\(276\) 0 0
\(277\) −3.96519 −0.238245 −0.119123 0.992880i \(-0.538008\pi\)
−0.119123 + 0.992880i \(0.538008\pi\)
\(278\) 0 0
\(279\) −0.727870 + 5.06245i −0.0435765 + 0.303081i
\(280\) 0 0
\(281\) 15.9629 4.68713i 0.952267 0.279611i 0.231536 0.972826i \(-0.425625\pi\)
0.720730 + 0.693215i \(0.243807\pi\)
\(282\) 0 0
\(283\) 11.0836 + 12.7911i 0.658851 + 0.760354i 0.982589 0.185792i \(-0.0594852\pi\)
−0.323738 + 0.946147i \(0.604940\pi\)
\(284\) 0 0
\(285\) 10.5858 + 3.10828i 0.627050 + 0.184119i
\(286\) 0 0
\(287\) 25.8752 + 16.6290i 1.52737 + 0.981579i
\(288\) 0 0
\(289\) −2.19534 + 2.53355i −0.129137 + 0.149032i
\(290\) 0 0
\(291\) −1.01521 7.06092i −0.0595125 0.413919i
\(292\) 0 0
\(293\) 8.50419 + 18.6216i 0.496820 + 1.08788i 0.977490 + 0.210982i \(0.0676662\pi\)
−0.480670 + 0.876902i \(0.659607\pi\)
\(294\) 0 0
\(295\) 2.92611 6.40728i 0.170365 0.373046i
\(296\) 0 0
\(297\) −4.05943 + 2.60884i −0.235552 + 0.151380i
\(298\) 0 0
\(299\) −15.4903 + 13.5785i −0.895827 + 0.785267i
\(300\) 0 0
\(301\) 25.8083 16.5860i 1.48756 0.956000i
\(302\) 0 0
\(303\) −2.19572 + 4.80796i −0.126141 + 0.276210i
\(304\) 0 0
\(305\) 1.64288 + 3.59740i 0.0940708 + 0.205986i
\(306\) 0 0
\(307\) −2.39426 16.6525i −0.136648 0.950407i −0.936614 0.350362i \(-0.886059\pi\)
0.799967 0.600045i \(-0.204851\pi\)
\(308\) 0 0
\(309\) −12.5440 + 14.4766i −0.713605 + 0.823544i
\(310\) 0 0
\(311\) −25.0518 16.0998i −1.42055 0.912935i −0.999984 0.00567544i \(-0.998193\pi\)
−0.420571 0.907260i \(-0.638170\pi\)
\(312\) 0 0
\(313\) 28.9943 + 8.51351i 1.63886 + 0.481212i 0.965996 0.258557i \(-0.0832470\pi\)
0.672861 + 0.739769i \(0.265065\pi\)
\(314\) 0 0
\(315\) 6.59690 + 7.61322i 0.371693 + 0.428957i
\(316\) 0 0
\(317\) 5.02982 1.47689i 0.282503 0.0829504i −0.137411 0.990514i \(-0.543878\pi\)
0.419914 + 0.907564i \(0.362060\pi\)
\(318\) 0 0
\(319\) −0.342778 + 2.38407i −0.0191919 + 0.133483i
\(320\) 0 0
\(321\) −11.0318 −0.615736
\(322\) 0 0
\(323\) −19.9856 −1.11203
\(324\) 0 0
\(325\) −0.734864 + 5.11109i −0.0407629 + 0.283512i
\(326\) 0 0
\(327\) 1.67288 0.491201i 0.0925102 0.0271635i
\(328\) 0 0
\(329\) −20.3364 23.4694i −1.12118 1.29391i
\(330\) 0 0
\(331\) −18.1389 5.32606i −0.997003 0.292747i −0.257778 0.966204i \(-0.582990\pi\)
−0.739226 + 0.673458i \(0.764808\pi\)
\(332\) 0 0
\(333\) −8.97741 5.76943i −0.491959 0.316163i
\(334\) 0 0
\(335\) −19.6036 + 22.6238i −1.07106 + 1.23607i
\(336\) 0 0
\(337\) 1.73565 + 12.0717i 0.0945470 + 0.657589i 0.980891 + 0.194560i \(0.0623280\pi\)
−0.886344 + 0.463028i \(0.846763\pi\)
\(338\) 0 0
\(339\) −7.17636 15.7140i −0.389766 0.853470i
\(340\) 0 0
\(341\) −10.2524 + 22.4496i −0.555197 + 1.21571i
\(342\) 0 0
\(343\) −8.03763 + 5.16547i −0.433991 + 0.278909i
\(344\) 0 0
\(345\) −0.0684114 11.9434i −0.00368315 0.643013i
\(346\) 0 0
\(347\) 7.06027 4.53736i 0.379015 0.243578i −0.337237 0.941420i \(-0.609492\pi\)
0.716252 + 0.697842i \(0.245856\pi\)
\(348\) 0 0
\(349\) 9.08565 19.8948i 0.486344 1.06494i −0.494326 0.869276i \(-0.664585\pi\)
0.980670 0.195668i \(-0.0626875\pi\)
\(350\) 0 0
\(351\) 1.78430 + 3.90708i 0.0952390 + 0.208544i
\(352\) 0 0
\(353\) −2.92984 20.3775i −0.155940 1.08459i −0.906019 0.423237i \(-0.860894\pi\)
0.750079 0.661348i \(-0.230015\pi\)
\(354\) 0 0
\(355\) −6.18378 + 7.13646i −0.328201 + 0.378764i
\(356\) 0 0
\(357\) −15.3516 9.86585i −0.812491 0.522156i
\(358\) 0 0
\(359\) 20.5158 + 6.02397i 1.08278 + 0.317933i 0.773991 0.633197i \(-0.218258\pi\)
0.308790 + 0.951130i \(0.400076\pi\)
\(360\) 0 0
\(361\) −0.409640 0.472749i −0.0215600 0.0248815i
\(362\) 0 0
\(363\) −11.7874 + 3.46109i −0.618677 + 0.181660i
\(364\) 0 0
\(365\) 2.64167 18.3732i 0.138271 0.961699i
\(366\) 0 0
\(367\) 11.1339 0.581182 0.290591 0.956847i \(-0.406148\pi\)
0.290591 + 0.956847i \(0.406148\pi\)
\(368\) 0 0
\(369\) −7.60394 −0.395845
\(370\) 0 0
\(371\) −4.39675 + 30.5801i −0.228268 + 1.58764i
\(372\) 0 0
\(373\) −12.8571 + 3.77518i −0.665714 + 0.195471i −0.597094 0.802171i \(-0.703678\pi\)
−0.0686206 + 0.997643i \(0.521860\pi\)
\(374\) 0 0
\(375\) 6.19377 + 7.14799i 0.319845 + 0.369121i
\(376\) 0 0
\(377\) 2.05709 + 0.604015i 0.105945 + 0.0311084i
\(378\) 0 0
\(379\) −0.457570 0.294062i −0.0235038 0.0151050i 0.528836 0.848724i \(-0.322629\pi\)
−0.552340 + 0.833619i \(0.686265\pi\)
\(380\) 0 0
\(381\) 9.35750 10.7991i 0.479399 0.553256i
\(382\) 0 0
\(383\) 0.358061 + 2.49037i 0.0182961 + 0.127252i 0.996922 0.0783945i \(-0.0249794\pi\)
−0.978626 + 0.205646i \(0.934070\pi\)
\(384\) 0 0
\(385\) 20.1935 + 44.2175i 1.02915 + 2.25353i
\(386\) 0 0
\(387\) −3.15062 + 6.89890i −0.160155 + 0.350691i
\(388\) 0 0
\(389\) −10.5193 + 6.76037i −0.533352 + 0.342764i −0.779434 0.626485i \(-0.784493\pi\)
0.246082 + 0.969249i \(0.420857\pi\)
\(390\) 0 0
\(391\) 6.21429 + 20.7241i 0.314270 + 1.04806i
\(392\) 0 0
\(393\) −8.36536 + 5.37609i −0.421977 + 0.271188i
\(394\) 0 0
\(395\) −12.0456 + 26.3762i −0.606080 + 1.32713i
\(396\) 0 0
\(397\) 9.36806 + 20.5132i 0.470169 + 1.02953i 0.985051 + 0.172266i \(0.0551087\pi\)
−0.514881 + 0.857262i \(0.672164\pi\)
\(398\) 0 0
\(399\) −2.55023 17.7372i −0.127671 0.887973i
\(400\) 0 0
\(401\) 0.939019 1.08369i 0.0468924 0.0541167i −0.731819 0.681499i \(-0.761328\pi\)
0.778711 + 0.627383i \(0.215874\pi\)
\(402\) 0 0
\(403\) 18.4806 + 11.8768i 0.920586 + 0.591625i
\(404\) 0 0
\(405\) −2.38954 0.701632i −0.118737 0.0348644i
\(406\) 0 0
\(407\) −33.7218 38.9171i −1.67153 1.92905i
\(408\) 0 0
\(409\) −2.01920 + 0.592891i −0.0998430 + 0.0293166i −0.331272 0.943535i \(-0.607478\pi\)
0.231429 + 0.972852i \(0.425660\pi\)
\(410\) 0 0
\(411\) 1.15888 8.06020i 0.0571634 0.397580i
\(412\) 0 0
\(413\) −11.4407 −0.562962
\(414\) 0 0
\(415\) 13.2156 0.648729
\(416\) 0 0
\(417\) 1.44169 10.0272i 0.0706001 0.491034i
\(418\) 0 0
\(419\) 14.1544 4.15610i 0.691486 0.203039i 0.0829368 0.996555i \(-0.473570\pi\)
0.608549 + 0.793516i \(0.291752\pi\)
\(420\) 0 0
\(421\) 1.55784 + 1.79785i 0.0759246 + 0.0876216i 0.792441 0.609949i \(-0.208810\pi\)
−0.716516 + 0.697570i \(0.754264\pi\)
\(422\) 0 0
\(423\) 7.36627 + 2.16293i 0.358160 + 0.105165i
\(424\) 0 0
\(425\) 4.56252 + 2.93216i 0.221315 + 0.142230i
\(426\) 0 0
\(427\) 4.20647 4.85452i 0.203565 0.234927i
\(428\) 0 0
\(429\) 2.94968 + 20.5155i 0.142412 + 0.990495i
\(430\) 0 0
\(431\) 7.23072 + 15.8331i 0.348291 + 0.762652i 0.999991 + 0.00417490i \(0.00132892\pi\)
−0.651700 + 0.758477i \(0.725944\pi\)
\(432\) 0 0
\(433\) −8.20769 + 17.9723i −0.394436 + 0.863695i 0.603368 + 0.797463i \(0.293825\pi\)
−0.997804 + 0.0662322i \(0.978902\pi\)
\(434\) 0 0
\(435\) −1.04574 + 0.672057i −0.0501394 + 0.0322227i
\(436\) 0 0
\(437\) −11.3838 + 17.9387i −0.544562 + 0.858123i
\(438\) 0 0
\(439\) −15.4395 + 9.92238i −0.736888 + 0.473569i −0.854474 0.519493i \(-0.826121\pi\)
0.117586 + 0.993063i \(0.462484\pi\)
\(440\) 0 0
\(441\) 3.88912 8.51599i 0.185196 0.405523i
\(442\) 0 0
\(443\) −0.532229 1.16542i −0.0252869 0.0553707i 0.896567 0.442908i \(-0.146053\pi\)
−0.921854 + 0.387537i \(0.873326\pi\)
\(444\) 0 0
\(445\) −3.95047 27.4761i −0.187270 1.30249i
\(446\) 0 0
\(447\) −4.34419 + 5.01346i −0.205473 + 0.237129i
\(448\) 0 0
\(449\) 7.96730 + 5.12027i 0.376000 + 0.241641i 0.714968 0.699157i \(-0.246441\pi\)
−0.338968 + 0.940798i \(0.610078\pi\)
\(450\) 0 0
\(451\) −35.2062 10.3375i −1.65779 0.486772i
\(452\) 0 0
\(453\) 5.56561 + 6.42306i 0.261495 + 0.301782i
\(454\) 0 0
\(455\) 41.5163 12.1903i 1.94631 0.571489i
\(456\) 0 0
\(457\) −2.98099 + 20.7333i −0.139445 + 0.969861i 0.793173 + 0.608996i \(0.208428\pi\)
−0.932618 + 0.360865i \(0.882482\pi\)
\(458\) 0 0
\(459\) 4.51136 0.210572
\(460\) 0 0
\(461\) 7.43095 0.346094 0.173047 0.984914i \(-0.444639\pi\)
0.173047 + 0.984914i \(0.444639\pi\)
\(462\) 0 0
\(463\) 3.90134 27.1344i 0.181310 1.26104i −0.672358 0.740226i \(-0.734719\pi\)
0.853669 0.520816i \(-0.174372\pi\)
\(464\) 0 0
\(465\) −12.2213 + 3.58850i −0.566750 + 0.166413i
\(466\) 0 0
\(467\) −24.5015 28.2762i −1.13379 1.30847i −0.945230 0.326405i \(-0.894163\pi\)
−0.188563 0.982061i \(-0.560383\pi\)
\(468\) 0 0
\(469\) 46.6526 + 13.6984i 2.15422 + 0.632535i
\(470\) 0 0
\(471\) 7.88794 + 5.06927i 0.363457 + 0.233580i
\(472\) 0 0
\(473\) −23.9663 + 27.6586i −1.10197 + 1.27174i
\(474\) 0 0
\(475\) 0.757935 + 5.27155i 0.0347764 + 0.241875i
\(476\) 0 0
\(477\) −3.17282 6.94751i −0.145274 0.318105i
\(478\) 0 0
\(479\) 6.62333 14.5031i 0.302628 0.662662i −0.695829 0.718208i \(-0.744963\pi\)
0.998456 + 0.0555460i \(0.0176900\pi\)
\(480\) 0 0
\(481\) −38.5600 + 24.7810i −1.75818 + 1.12992i
\(482\) 0 0
\(483\) −17.5996 + 8.15963i −0.800811 + 0.371276i
\(484\) 0 0
\(485\) 14.9453 9.60474i 0.678630 0.436129i
\(486\) 0 0
\(487\) 6.29565 13.7855i 0.285283 0.624683i −0.711685 0.702499i \(-0.752068\pi\)
0.996968 + 0.0778164i \(0.0247948\pi\)
\(488\) 0 0
\(489\) −2.01416 4.41040i −0.0910835 0.199445i
\(490\) 0 0
\(491\) −5.02270 34.9336i −0.226671 1.57653i −0.711986 0.702194i \(-0.752204\pi\)
0.485315 0.874340i \(-0.338705\pi\)
\(492\) 0 0
\(493\) 1.47462 1.70181i 0.0664137 0.0766455i
\(494\) 0 0
\(495\) −10.1097 6.49710i −0.454396 0.292023i
\(496\) 0 0
\(497\) 14.7161 + 4.32104i 0.660107 + 0.193825i
\(498\) 0 0
\(499\) 15.9697 + 18.4300i 0.714902 + 0.825041i 0.990684 0.136179i \(-0.0434824\pi\)
−0.275782 + 0.961220i \(0.588937\pi\)
\(500\) 0 0
\(501\) 12.8147 3.76273i 0.572518 0.168106i
\(502\) 0 0
\(503\) −4.74046 + 32.9706i −0.211367 + 1.47009i 0.557232 + 0.830357i \(0.311863\pi\)
−0.768599 + 0.639731i \(0.779046\pi\)
\(504\) 0 0
\(505\) −13.1634 −0.585762
\(506\) 0 0
\(507\) 5.44897 0.241997
\(508\) 0 0
\(509\) −2.84114 + 19.7605i −0.125931 + 0.875870i 0.824705 + 0.565563i \(0.191341\pi\)
−0.950636 + 0.310307i \(0.899568\pi\)
\(510\) 0 0
\(511\) −28.9279 + 8.49399i −1.27969 + 0.375752i
\(512\) 0 0
\(513\) 2.90108 + 3.34802i 0.128086 + 0.147819i
\(514\) 0 0
\(515\) −45.7722 13.4399i −2.01697 0.592235i
\(516\) 0 0
\(517\) 31.1653 + 20.0287i 1.37065 + 0.880861i
\(518\) 0 0
\(519\) −6.67657 + 7.70517i −0.293069 + 0.338219i
\(520\) 0 0
\(521\) −5.86877 40.8182i −0.257116 1.78828i −0.553130 0.833095i \(-0.686567\pi\)
0.296014 0.955184i \(-0.404343\pi\)
\(522\) 0 0
\(523\) 4.28867 + 9.39088i 0.187530 + 0.410634i 0.979923 0.199377i \(-0.0638920\pi\)
−0.792392 + 0.610012i \(0.791165\pi\)
\(524\) 0 0
\(525\) −2.02009 + 4.42339i −0.0881641 + 0.193052i
\(526\) 0 0
\(527\) 19.4106 12.4744i 0.845538 0.543394i
\(528\) 0 0
\(529\) 22.1411 + 6.22662i 0.962657 + 0.270723i
\(530\) 0 0
\(531\) 2.37937 1.52913i 0.103256 0.0663586i
\(532\) 0 0
\(533\) −13.5677 + 29.7092i −0.587683 + 1.28685i
\(534\) 0 0
\(535\) −11.4131 24.9911i −0.493429 1.08046i
\(536\) 0 0
\(537\) −0.865753 6.02144i −0.0373600 0.259844i
\(538\) 0 0
\(539\) 29.5840 34.1417i 1.27427 1.47059i
\(540\) 0 0
\(541\) −29.0203 18.6502i −1.24768 0.801834i −0.261130 0.965304i \(-0.584095\pi\)
−0.986548 + 0.163469i \(0.947732\pi\)
\(542\) 0 0
\(543\) 4.45551 + 1.30826i 0.191204 + 0.0561427i
\(544\) 0 0
\(545\) 2.84343 + 3.28150i 0.121799 + 0.140564i
\(546\) 0 0
\(547\) 9.85374 2.89332i 0.421315 0.123709i −0.0642009 0.997937i \(-0.520450\pi\)
0.485516 + 0.874228i \(0.338632\pi\)
\(548\) 0 0
\(549\) −0.225996 + 1.57184i −0.00964527 + 0.0670843i
\(550\) 0 0
\(551\) 2.21124 0.0942019
\(552\) 0 0
\(553\) 47.0969 2.00277
\(554\) 0 0
\(555\) 3.78222 26.3059i 0.160546 1.11662i
\(556\) 0 0
\(557\) −29.0734 + 8.53672i −1.23188 + 0.361712i −0.831959 0.554837i \(-0.812780\pi\)
−0.399921 + 0.916550i \(0.630962\pi\)
\(558\) 0 0
\(559\) 21.3329 + 24.6194i 0.902283 + 1.04129i
\(560\) 0 0
\(561\) 20.8875 + 6.13314i 0.881873 + 0.258941i
\(562\) 0 0
\(563\) −26.7756 17.2076i −1.12846 0.725214i −0.163218 0.986590i \(-0.552187\pi\)
−0.965237 + 0.261376i \(0.915824\pi\)
\(564\) 0 0
\(565\) 28.1737 32.5141i 1.18528 1.36788i
\(566\) 0 0
\(567\) 0.575663 + 4.00383i 0.0241756 + 0.168145i
\(568\) 0 0
\(569\) −0.827716 1.81245i −0.0346997 0.0759817i 0.891488 0.453043i \(-0.149662\pi\)
−0.926188 + 0.377062i \(0.876934\pi\)
\(570\) 0 0
\(571\) −4.19617 + 9.18833i −0.175604 + 0.384520i −0.976884 0.213770i \(-0.931426\pi\)
0.801280 + 0.598290i \(0.204153\pi\)
\(572\) 0 0
\(573\) −9.93181 + 6.38279i −0.414907 + 0.266645i
\(574\) 0 0
\(575\) 5.23065 2.42506i 0.218133 0.101132i
\(576\) 0 0
\(577\) 9.09996 5.84819i 0.378836 0.243463i −0.337340 0.941383i \(-0.609527\pi\)
0.716176 + 0.697920i \(0.245891\pi\)
\(578\) 0 0
\(579\) 9.28899 20.3401i 0.386037 0.845304i
\(580\) 0 0
\(581\) −8.91693 19.5254i −0.369937 0.810048i
\(582\) 0 0
\(583\) −5.24508 36.4803i −0.217229 1.51086i
\(584\) 0 0
\(585\) −7.00499 + 8.08419i −0.289621 + 0.334240i
\(586\) 0 0
\(587\) 19.2092 + 12.3450i 0.792848 + 0.509532i 0.873275 0.487228i \(-0.161992\pi\)
−0.0804270 + 0.996761i \(0.525628\pi\)
\(588\) 0 0
\(589\) 21.7398 + 6.38340i 0.895775 + 0.263023i
\(590\) 0 0
\(591\) −5.93139 6.84519i −0.243985 0.281573i
\(592\) 0 0
\(593\) 12.7448 3.74220i 0.523365 0.153674i −0.00936967 0.999956i \(-0.502983\pi\)
0.532735 + 0.846282i \(0.321164\pi\)
\(594\) 0 0
\(595\) 6.46768 44.9837i 0.265149 1.84415i
\(596\) 0 0
\(597\) −3.60978 −0.147739
\(598\) 0 0
\(599\) 15.3103 0.625563 0.312781 0.949825i \(-0.398739\pi\)
0.312781 + 0.949825i \(0.398739\pi\)
\(600\) 0 0
\(601\) 3.13065 21.7741i 0.127702 0.888185i −0.820755 0.571280i \(-0.806447\pi\)
0.948457 0.316905i \(-0.102644\pi\)
\(602\) 0 0
\(603\) −11.5334 + 3.38651i −0.469676 + 0.137909i
\(604\) 0 0
\(605\) −20.0353 23.1220i −0.814552 0.940043i
\(606\) 0 0
\(607\) −1.82069 0.534602i −0.0738994 0.0216988i 0.244574 0.969631i \(-0.421352\pi\)
−0.318473 + 0.947932i \(0.603170\pi\)
\(608\) 0 0
\(609\) 1.69852 + 1.09157i 0.0688274 + 0.0442327i
\(610\) 0 0
\(611\) 21.5944 24.9212i 0.873615 1.00821i
\(612\) 0 0
\(613\) −2.90508 20.2052i −0.117335 0.816082i −0.960471 0.278381i \(-0.910202\pi\)
0.843136 0.537701i \(-0.180707\pi\)
\(614\) 0 0
\(615\) −7.86671 17.2257i −0.317216 0.694607i
\(616\) 0 0
\(617\) 8.44479 18.4915i 0.339975 0.744440i −0.660002 0.751264i \(-0.729445\pi\)
0.999977 + 0.00682330i \(0.00217194\pi\)
\(618\) 0 0
\(619\) −29.4504 + 18.9266i −1.18371 + 0.760725i −0.976065 0.217479i \(-0.930217\pi\)
−0.207647 + 0.978204i \(0.566580\pi\)
\(620\) 0 0
\(621\) 2.56967 4.04930i 0.103117 0.162493i
\(622\) 0 0
\(623\) −37.9290 + 24.3755i −1.51959 + 0.976583i
\(624\) 0 0
\(625\) −12.2820 + 26.8939i −0.491281 + 1.07576i
\(626\) 0 0
\(627\) 8.88037 + 19.4453i 0.354648 + 0.776570i
\(628\) 0 0
\(629\) 6.85144 + 47.6528i 0.273185 + 1.90004i
\(630\) 0 0
\(631\) −20.2459 + 23.3650i −0.805976 + 0.930146i −0.998693 0.0511081i \(-0.983725\pi\)
0.192717 + 0.981254i \(0.438270\pi\)
\(632\) 0 0
\(633\) −2.06611 1.32781i −0.0821207 0.0527758i
\(634\) 0 0
\(635\) 34.1448 + 10.0258i 1.35500 + 0.397863i
\(636\) 0 0
\(637\) −26.3332 30.3902i −1.04336 1.20410i
\(638\) 0 0
\(639\) −3.63810 + 1.06824i −0.143921 + 0.0422590i
\(640\) 0 0
\(641\) −7.05443 + 49.0646i −0.278633 + 1.93794i 0.0627883 + 0.998027i \(0.480001\pi\)
−0.341422 + 0.939910i \(0.610908\pi\)
\(642\) 0 0
\(643\) 36.1135 1.42418 0.712089 0.702089i \(-0.247749\pi\)
0.712089 + 0.702089i \(0.247749\pi\)
\(644\) 0 0
\(645\) −18.8880 −0.743715
\(646\) 0 0
\(647\) −2.05843 + 14.3167i −0.0809251 + 0.562846i 0.908509 + 0.417865i \(0.137221\pi\)
−0.989434 + 0.144982i \(0.953688\pi\)
\(648\) 0 0
\(649\) 13.0953 3.84513i 0.514036 0.150935i
\(650\) 0 0
\(651\) 13.5479 + 15.6351i 0.530983 + 0.612787i
\(652\) 0 0
\(653\) 39.8195 + 11.6921i 1.55826 + 0.457545i 0.943555 0.331215i \(-0.107458\pi\)
0.614701 + 0.788760i \(0.289277\pi\)
\(654\) 0 0
\(655\) −20.8333 13.3887i −0.814023 0.523141i
\(656\) 0 0
\(657\) 4.88096 5.63293i 0.190424 0.219762i
\(658\) 0 0
\(659\) −3.38046 23.5116i −0.131684 0.915881i −0.943359 0.331773i \(-0.892353\pi\)
0.811675 0.584109i \(-0.198556\pi\)
\(660\) 0 0
\(661\) −18.6367 40.8086i −0.724882 1.58727i −0.806934 0.590642i \(-0.798875\pi\)
0.0820519 0.996628i \(-0.473853\pi\)
\(662\) 0 0
\(663\) 8.04963 17.6262i 0.312622 0.684546i
\(664\) 0 0
\(665\) 37.5429 24.1274i 1.45585 0.935620i
\(666\) 0 0
\(667\) −0.687558 2.29294i −0.0266223 0.0887829i
\(668\) 0 0
\(669\) −14.0803 + 9.04886i −0.544376 + 0.349849i
\(670\) 0 0
\(671\) −3.18325 + 6.97034i −0.122888 + 0.269087i
\(672\) 0 0
\(673\) −18.4662 40.4353i −0.711819 1.55867i −0.825026 0.565095i \(-0.808840\pi\)
0.113207 0.993571i \(-0.463888\pi\)
\(674\) 0 0
\(675\) −0.171089 1.18995i −0.00658520 0.0458011i
\(676\) 0 0
\(677\) 16.0916 18.5707i 0.618451 0.713731i −0.356961 0.934119i \(-0.616187\pi\)
0.975412 + 0.220389i \(0.0707326\pi\)
\(678\) 0 0
\(679\) −24.2745 15.6003i −0.931569 0.598683i
\(680\) 0 0
\(681\) 13.0863 + 3.84249i 0.501469 + 0.147245i
\(682\) 0 0
\(683\) 23.6796 + 27.3277i 0.906076 + 1.04567i 0.998751 + 0.0499707i \(0.0159128\pi\)
−0.0926750 + 0.995696i \(0.529542\pi\)
\(684\) 0 0
\(685\) 19.4582 5.71345i 0.743461 0.218300i
\(686\) 0 0
\(687\) 0.963281 6.69977i 0.0367515 0.255612i
\(688\) 0 0
\(689\) −32.8057 −1.24980
\(690\) 0 0
\(691\) −29.9939 −1.14102 −0.570511 0.821290i \(-0.693255\pi\)
−0.570511 + 0.821290i \(0.693255\pi\)
\(692\) 0 0
\(693\) −2.77784 + 19.3203i −0.105521 + 0.733917i
\(694\) 0 0
\(695\) 24.2068 7.10776i 0.918216 0.269613i
\(696\) 0 0
\(697\) 22.4644 + 25.9253i 0.850901 + 0.981992i
\(698\) 0 0
\(699\) 10.3829 + 3.04869i 0.392716 + 0.115312i
\(700\) 0 0
\(701\) 38.9924 + 25.0589i 1.47272 + 0.946462i 0.997790 + 0.0664406i \(0.0211643\pi\)
0.474934 + 0.880022i \(0.342472\pi\)
\(702\) 0 0
\(703\) −30.9588 + 35.7283i −1.16763 + 1.34752i
\(704\) 0 0
\(705\) 2.72100 + 18.9250i 0.102479 + 0.712755i
\(706\) 0 0
\(707\) 8.88168 + 19.4482i 0.334030 + 0.731424i
\(708\) 0 0
\(709\) −0.678476 + 1.48565i −0.0254807 + 0.0557949i −0.921944 0.387322i \(-0.873400\pi\)
0.896464 + 0.443117i \(0.146127\pi\)
\(710\) 0 0
\(711\) −9.79492 + 6.29482i −0.367338 + 0.236074i
\(712\) 0 0
\(713\) −0.140495 24.5279i −0.00526157 0.918578i
\(714\) 0 0
\(715\) −43.4234 + 27.9065i −1.62394 + 1.04364i
\(716\) 0 0
\(717\) 7.96117 17.4325i 0.297315 0.651030i
\(718\) 0 0
\(719\) 1.86499 + 4.08377i 0.0695525 + 0.152299i 0.941215 0.337807i \(-0.109685\pi\)
−0.871663 + 0.490106i \(0.836958\pi\)
\(720\) 0 0
\(721\) 11.0270 + 76.6943i 0.410666 + 2.85625i
\(722\) 0 0
\(723\) 6.51839 7.52263i 0.242422 0.279770i
\(724\) 0 0
\(725\) −0.504804 0.324418i −0.0187479 0.0120486i
\(726\) 0 0
\(727\) −25.1042 7.37125i −0.931062 0.273384i −0.219181 0.975684i \(-0.570338\pi\)
−0.711881 + 0.702300i \(0.752157\pi\)
\(728\) 0 0
\(729\) −0.654861 0.755750i −0.0242541 0.0279907i
\(730\) 0 0
\(731\) 32.8294 9.63959i 1.21424 0.356533i
\(732\) 0 0
\(733\) 4.67175 32.4927i 0.172555 1.20015i −0.700906 0.713253i \(-0.747221\pi\)
0.873461 0.486894i \(-0.161870\pi\)
\(734\) 0 0
\(735\) 23.3153 0.859999
\(736\) 0 0
\(737\) −58.0034 −2.13658
\(738\) 0 0
\(739\) 1.53138 10.6510i 0.0563328 0.391803i −0.942075 0.335401i \(-0.891128\pi\)
0.998408 0.0564017i \(-0.0179628\pi\)
\(740\) 0 0
\(741\) 18.2574 5.36085i 0.670702 0.196936i
\(742\) 0 0
\(743\) −8.99673 10.3828i −0.330058 0.380907i 0.566329 0.824179i \(-0.308363\pi\)
−0.896387 + 0.443272i \(0.853818\pi\)
\(744\) 0 0
\(745\) −15.8516 4.65446i −0.580759 0.170526i
\(746\) 0 0
\(747\) 4.46418 + 2.86895i 0.163336 + 0.104970i
\(748\) 0 0
\(749\) −29.2223 + 33.7244i −1.06776 + 1.23226i
\(750\) 0 0
\(751\) 1.35281 + 9.40898i 0.0493646 + 0.343338i 0.999503 + 0.0315111i \(0.0100319\pi\)
−0.950139 + 0.311827i \(0.899059\pi\)
\(752\) 0 0
\(753\) 4.73627 + 10.3710i 0.172599 + 0.377939i
\(754\) 0 0
\(755\) −8.79262 + 19.2532i −0.319996 + 0.700694i
\(756\) 0 0
\(757\) 34.4271 22.1249i 1.25127 0.804144i 0.264208 0.964466i \(-0.414889\pi\)
0.987065 + 0.160322i \(0.0512531\pi\)
\(758\) 0 0
\(759\) 17.4025 15.2548i 0.631671 0.553713i
\(760\) 0 0
\(761\) 17.7600 11.4136i 0.643798 0.413744i −0.177597 0.984103i \(-0.556832\pi\)
0.821395 + 0.570359i \(0.193196\pi\)
\(762\) 0 0
\(763\) 2.92970 6.41514i 0.106062 0.232244i
\(764\) 0 0
\(765\) 4.66726 + 10.2199i 0.168745 + 0.369500i
\(766\) 0 0
\(767\) −1.72891 12.0248i −0.0624273 0.434191i
\(768\) 0 0
\(769\) −16.4272 + 18.9580i −0.592380 + 0.683643i −0.970219 0.242228i \(-0.922122\pi\)
0.377839 + 0.925871i \(0.376667\pi\)
\(770\) 0 0
\(771\) 22.0109 + 14.1455i 0.792703 + 0.509439i
\(772\) 0 0
\(773\) −25.5088 7.49005i −0.917487 0.269399i −0.211298 0.977422i \(-0.567769\pi\)
−0.706189 + 0.708023i \(0.749587\pi\)
\(774\) 0 0
\(775\) −4.02646 4.64679i −0.144635 0.166917i
\(776\) 0 0
\(777\) −41.4175 + 12.1613i −1.48585 + 0.436284i
\(778\) 0 0
\(779\) −4.79402 + 33.3431i −0.171764 + 1.19464i
\(780\) 0 0
\(781\) −18.2966 −0.654704
\(782\) 0 0
\(783\) −0.499143 −0.0178379
\(784\) 0 0
\(785\) −3.32322 + 23.1135i −0.118611 + 0.824957i
\(786\) 0 0
\(787\) 22.4544 6.59320i 0.800412 0.235022i 0.144151 0.989556i \(-0.453955\pi\)
0.656262 + 0.754534i \(0.272137\pi\)
\(788\) 0 0
\(789\) 19.2160 + 22.1764i 0.684106 + 0.789501i
\(790\) 0 0
\(791\) −67.0475 19.6869i −2.38393 0.699986i
\(792\) 0 0
\(793\) 5.73803 + 3.68761i 0.203764 + 0.130951i
\(794\) 0