Properties

Label 276.2.i.a.25.2
Level $276$
Weight $2$
Character 276.25
Analytic conductor $2.204$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 276 = 2^{2} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 276.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.20387109579\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 43 x^{18} - 165 x^{17} + 538 x^{16} - 1433 x^{15} + 3444 x^{14} - 7370 x^{13} + 15500 x^{12} - 28190 x^{11} + 41920 x^{10} - 33520 x^{9} - 13837 x^{8} + 78980 x^{7} - 92652 x^{6} - 52852 x^{5} + 177374 x^{4} + 151360 x^{3} + 115323 x^{2} + 12834 x + 529\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 25.2
Root \(1.74521 - 2.01408i\) of defining polynomial
Character \(\chi\) \(=\) 276.25
Dual form 276.2.i.a.265.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.142315 - 0.989821i) q^{3} +(3.91931 + 1.15081i) q^{5} +(-0.0825209 + 0.0952342i) q^{7} +(-0.959493 + 0.281733i) q^{9} +O(q^{10})\) \(q+(-0.142315 - 0.989821i) q^{3} +(3.91931 + 1.15081i) q^{5} +(-0.0825209 + 0.0952342i) q^{7} +(-0.959493 + 0.281733i) q^{9} +(-1.03818 + 0.667196i) q^{11} +(1.25227 + 1.44519i) q^{13} +(0.581323 - 4.04319i) q^{15} +(0.787312 - 1.72397i) q^{17} +(0.0613378 + 0.134311i) q^{19} +(0.106009 + 0.0681277i) q^{21} +(-2.15160 - 4.28610i) q^{23} +(9.83034 + 6.31757i) q^{25} +(0.415415 + 0.909632i) q^{27} +(3.11768 - 6.82676i) q^{29} +(0.335425 - 2.33293i) q^{31} +(0.808153 + 0.932658i) q^{33} +(-0.433021 + 0.278286i) q^{35} +(-7.41275 + 2.17658i) q^{37} +(1.25227 - 1.44519i) q^{39} +(-10.0522 - 2.95160i) q^{41} +(1.71801 + 11.9490i) q^{43} -4.08477 q^{45} -5.71564 q^{47} +(0.993944 + 6.91303i) q^{49} +(-1.81847 - 0.533951i) q^{51} +(-4.37352 + 5.04731i) q^{53} +(-4.83675 + 1.42020i) q^{55} +(0.124215 - 0.0798279i) q^{57} +(-4.98875 - 5.75733i) q^{59} +(-0.180939 + 1.25846i) q^{61} +(0.0523476 - 0.114625i) q^{63} +(3.24487 + 7.10527i) q^{65} +(-8.94923 - 5.75132i) q^{67} +(-3.93627 + 2.73967i) q^{69} +(7.77319 + 4.99552i) q^{71} +(-5.25031 - 11.4966i) q^{73} +(4.85427 - 10.6294i) q^{75} +(0.0221314 - 0.153928i) q^{77} +(2.44214 + 2.81838i) q^{79} +(0.841254 - 0.540641i) q^{81} +(7.82984 - 2.29905i) q^{83} +(5.06969 - 5.85073i) q^{85} +(-7.20097 - 2.11439i) q^{87} +(1.00479 + 6.98848i) q^{89} -0.240970 q^{91} -2.35692 q^{93} +(0.0858348 + 0.596994i) q^{95} +(12.7100 + 3.73198i) q^{97} +(0.808153 - 0.932658i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} + O(q^{10}) \) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} - 22q^{13} + 7q^{15} + 7q^{17} + 19q^{19} + 20q^{23} + 20q^{25} - 2q^{27} + 32q^{29} - 3q^{31} + 11q^{33} - 26q^{35} - 10q^{37} - 22q^{39} - 40q^{41} + 8q^{43} - 4q^{45} - 18q^{47} - 34q^{49} - 26q^{51} - 34q^{53} - 17q^{55} - 3q^{57} - 32q^{59} + 32q^{61} + 49q^{65} + 35q^{67} - 2q^{69} + 33q^{71} - q^{73} - 2q^{75} - 50q^{77} + 22q^{79} - 2q^{81} - 14q^{83} - 9q^{85} - 12q^{87} + 10q^{89} - 72q^{91} + 30q^{93} - 51q^{95} - 4q^{97} + 11q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/276\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(139\) \(185\)
\(\chi(n)\) \(e\left(\frac{1}{11}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.142315 0.989821i −0.0821655 0.571474i
\(4\) 0 0
\(5\) 3.91931 + 1.15081i 1.75277 + 0.514659i 0.991078 0.133283i \(-0.0425519\pi\)
0.761690 + 0.647942i \(0.224370\pi\)
\(6\) 0 0
\(7\) −0.0825209 + 0.0952342i −0.0311900 + 0.0359951i −0.771130 0.636677i \(-0.780308\pi\)
0.739940 + 0.672673i \(0.234854\pi\)
\(8\) 0 0
\(9\) −0.959493 + 0.281733i −0.319831 + 0.0939109i
\(10\) 0 0
\(11\) −1.03818 + 0.667196i −0.313022 + 0.201167i −0.687713 0.725983i \(-0.741385\pi\)
0.374691 + 0.927150i \(0.377749\pi\)
\(12\) 0 0
\(13\) 1.25227 + 1.44519i 0.347316 + 0.400824i 0.902350 0.431003i \(-0.141840\pi\)
−0.555034 + 0.831827i \(0.687295\pi\)
\(14\) 0 0
\(15\) 0.581323 4.04319i 0.150097 1.04395i
\(16\) 0 0
\(17\) 0.787312 1.72397i 0.190951 0.418125i −0.789806 0.613357i \(-0.789819\pi\)
0.980757 + 0.195232i \(0.0625460\pi\)
\(18\) 0 0
\(19\) 0.0613378 + 0.134311i 0.0140719 + 0.0308131i 0.916537 0.399949i \(-0.130972\pi\)
−0.902466 + 0.430762i \(0.858245\pi\)
\(20\) 0 0
\(21\) 0.106009 + 0.0681277i 0.0231330 + 0.0148667i
\(22\) 0 0
\(23\) −2.15160 4.28610i −0.448639 0.893713i
\(24\) 0 0
\(25\) 9.83034 + 6.31757i 1.96607 + 1.26351i
\(26\) 0 0
\(27\) 0.415415 + 0.909632i 0.0799467 + 0.175059i
\(28\) 0 0
\(29\) 3.11768 6.82676i 0.578938 1.26770i −0.362962 0.931804i \(-0.618234\pi\)
0.941900 0.335894i \(-0.109038\pi\)
\(30\) 0 0
\(31\) 0.335425 2.33293i 0.0602441 0.419007i −0.937274 0.348594i \(-0.886659\pi\)
0.997518 0.0704129i \(-0.0224317\pi\)
\(32\) 0 0
\(33\) 0.808153 + 0.932658i 0.140681 + 0.162355i
\(34\) 0 0
\(35\) −0.433021 + 0.278286i −0.0731940 + 0.0470389i
\(36\) 0 0
\(37\) −7.41275 + 2.17658i −1.21865 + 0.357828i −0.826955 0.562268i \(-0.809929\pi\)
−0.391694 + 0.920096i \(0.628111\pi\)
\(38\) 0 0
\(39\) 1.25227 1.44519i 0.200523 0.231416i
\(40\) 0 0
\(41\) −10.0522 2.95160i −1.56990 0.460963i −0.622925 0.782282i \(-0.714056\pi\)
−0.946971 + 0.321319i \(0.895874\pi\)
\(42\) 0 0
\(43\) 1.71801 + 11.9490i 0.261994 + 1.82221i 0.517826 + 0.855486i \(0.326741\pi\)
−0.255832 + 0.966721i \(0.582350\pi\)
\(44\) 0 0
\(45\) −4.08477 −0.608921
\(46\) 0 0
\(47\) −5.71564 −0.833712 −0.416856 0.908972i \(-0.636868\pi\)
−0.416856 + 0.908972i \(0.636868\pi\)
\(48\) 0 0
\(49\) 0.993944 + 6.91303i 0.141992 + 0.987576i
\(50\) 0 0
\(51\) −1.81847 0.533951i −0.254637 0.0747681i
\(52\) 0 0
\(53\) −4.37352 + 5.04731i −0.600749 + 0.693301i −0.971933 0.235258i \(-0.924406\pi\)
0.371184 + 0.928559i \(0.378952\pi\)
\(54\) 0 0
\(55\) −4.83675 + 1.42020i −0.652188 + 0.191500i
\(56\) 0 0
\(57\) 0.124215 0.0798279i 0.0164526 0.0105735i
\(58\) 0 0
\(59\) −4.98875 5.75733i −0.649480 0.749540i 0.331541 0.943441i \(-0.392431\pi\)
−0.981021 + 0.193901i \(0.937886\pi\)
\(60\) 0 0
\(61\) −0.180939 + 1.25846i −0.0231668 + 0.161129i −0.998121 0.0612782i \(-0.980482\pi\)
0.974954 + 0.222407i \(0.0713914\pi\)
\(62\) 0 0
\(63\) 0.0523476 0.114625i 0.00659518 0.0144414i
\(64\) 0 0
\(65\) 3.24487 + 7.10527i 0.402476 + 0.881301i
\(66\) 0 0
\(67\) −8.94923 5.75132i −1.09332 0.702636i −0.135726 0.990746i \(-0.543337\pi\)
−0.957597 + 0.288111i \(0.906973\pi\)
\(68\) 0 0
\(69\) −3.93627 + 2.73967i −0.473871 + 0.329818i
\(70\) 0 0
\(71\) 7.77319 + 4.99552i 0.922508 + 0.592860i 0.913384 0.407099i \(-0.133460\pi\)
0.00912348 + 0.999958i \(0.497096\pi\)
\(72\) 0 0
\(73\) −5.25031 11.4966i −0.614502 1.34557i −0.919451 0.393204i \(-0.871367\pi\)
0.304949 0.952369i \(-0.401361\pi\)
\(74\) 0 0
\(75\) 4.85427 10.6294i 0.560522 1.22737i
\(76\) 0 0
\(77\) 0.0221314 0.153928i 0.00252211 0.0175417i
\(78\) 0 0
\(79\) 2.44214 + 2.81838i 0.274762 + 0.317092i 0.876313 0.481742i \(-0.159996\pi\)
−0.601551 + 0.798834i \(0.705450\pi\)
\(80\) 0 0
\(81\) 0.841254 0.540641i 0.0934726 0.0600712i
\(82\) 0 0
\(83\) 7.82984 2.29905i 0.859437 0.252353i 0.177820 0.984063i \(-0.443095\pi\)
0.681617 + 0.731710i \(0.261277\pi\)
\(84\) 0 0
\(85\) 5.06969 5.85073i 0.549885 0.634601i
\(86\) 0 0
\(87\) −7.20097 2.11439i −0.772025 0.226687i
\(88\) 0 0
\(89\) 1.00479 + 6.98848i 0.106508 + 0.740778i 0.971164 + 0.238413i \(0.0766273\pi\)
−0.864656 + 0.502364i \(0.832464\pi\)
\(90\) 0 0
\(91\) −0.240970 −0.0252605
\(92\) 0 0
\(93\) −2.35692 −0.244401
\(94\) 0 0
\(95\) 0.0858348 + 0.596994i 0.00880647 + 0.0612503i
\(96\) 0 0
\(97\) 12.7100 + 3.73198i 1.29050 + 0.378925i 0.853762 0.520663i \(-0.174315\pi\)
0.436739 + 0.899588i \(0.356133\pi\)
\(98\) 0 0
\(99\) 0.808153 0.932658i 0.0812224 0.0937357i
\(100\) 0 0
\(101\) −6.47893 + 1.90238i −0.644677 + 0.189294i −0.587697 0.809081i \(-0.699965\pi\)
−0.0569800 + 0.998375i \(0.518147\pi\)
\(102\) 0 0
\(103\) −7.13745 + 4.58696i −0.703274 + 0.451967i −0.842783 0.538254i \(-0.819084\pi\)
0.139509 + 0.990221i \(0.455448\pi\)
\(104\) 0 0
\(105\) 0.337079 + 0.389010i 0.0328955 + 0.0379635i
\(106\) 0 0
\(107\) 1.88329 13.0986i 0.182065 1.26629i −0.669806 0.742536i \(-0.733623\pi\)
0.851871 0.523752i \(-0.175468\pi\)
\(108\) 0 0
\(109\) 3.09393 6.77476i 0.296345 0.648905i −0.701628 0.712543i \(-0.747543\pi\)
0.997973 + 0.0636386i \(0.0202705\pi\)
\(110\) 0 0
\(111\) 3.20937 + 7.02754i 0.304620 + 0.667025i
\(112\) 0 0
\(113\) 2.67658 + 1.72014i 0.251792 + 0.161817i 0.660448 0.750871i \(-0.270366\pi\)
−0.408657 + 0.912688i \(0.634003\pi\)
\(114\) 0 0
\(115\) −3.50027 19.2746i −0.326402 1.79737i
\(116\) 0 0
\(117\) −1.60870 1.03385i −0.148724 0.0955792i
\(118\) 0 0
\(119\) 0.0992114 + 0.217243i 0.00909470 + 0.0199146i
\(120\) 0 0
\(121\) −3.93690 + 8.62062i −0.357900 + 0.783692i
\(122\) 0 0
\(123\) −1.49098 + 10.3700i −0.134437 + 0.935029i
\(124\) 0 0
\(125\) 17.8830 + 20.6381i 1.59950 + 1.84593i
\(126\) 0 0
\(127\) −16.9326 + 10.8819i −1.50252 + 0.965614i −0.507972 + 0.861374i \(0.669605\pi\)
−0.994552 + 0.104240i \(0.966759\pi\)
\(128\) 0 0
\(129\) 11.5829 3.40104i 1.01982 0.299445i
\(130\) 0 0
\(131\) 2.33360 2.69312i 0.203888 0.235299i −0.644592 0.764527i \(-0.722973\pi\)
0.848480 + 0.529228i \(0.177518\pi\)
\(132\) 0 0
\(133\) −0.0178526 0.00524201i −0.00154802 0.000454540i
\(134\) 0 0
\(135\) 0.581323 + 4.04319i 0.0500323 + 0.347983i
\(136\) 0 0
\(137\) −20.4210 −1.74468 −0.872342 0.488897i \(-0.837399\pi\)
−0.872342 + 0.488897i \(0.837399\pi\)
\(138\) 0 0
\(139\) 14.3307 1.21551 0.607755 0.794125i \(-0.292070\pi\)
0.607755 + 0.794125i \(0.292070\pi\)
\(140\) 0 0
\(141\) 0.813421 + 5.65747i 0.0685024 + 0.476445i
\(142\) 0 0
\(143\) −2.26430 0.664858i −0.189350 0.0555982i
\(144\) 0 0
\(145\) 20.0755 23.1683i 1.66718 1.92402i
\(146\) 0 0
\(147\) 6.70121 1.96765i 0.552707 0.162289i
\(148\) 0 0
\(149\) 15.1115 9.71156i 1.23798 0.795602i 0.252866 0.967501i \(-0.418627\pi\)
0.985114 + 0.171900i \(0.0549905\pi\)
\(150\) 0 0
\(151\) 4.03194 + 4.65311i 0.328115 + 0.378665i 0.895707 0.444645i \(-0.146670\pi\)
−0.567592 + 0.823310i \(0.692125\pi\)
\(152\) 0 0
\(153\) −0.269721 + 1.87595i −0.0218056 + 0.151662i
\(154\) 0 0
\(155\) 3.99940 8.75746i 0.321240 0.703416i
\(156\) 0 0
\(157\) −3.21531 7.04055i −0.256610 0.561897i 0.736853 0.676053i \(-0.236311\pi\)
−0.993463 + 0.114156i \(0.963584\pi\)
\(158\) 0 0
\(159\) 5.61835 + 3.61069i 0.445564 + 0.286347i
\(160\) 0 0
\(161\) 0.585735 + 0.148787i 0.0461623 + 0.0117261i
\(162\) 0 0
\(163\) 10.7893 + 6.93388i 0.845085 + 0.543103i 0.890038 0.455886i \(-0.150678\pi\)
−0.0449533 + 0.998989i \(0.514314\pi\)
\(164\) 0 0
\(165\) 2.09409 + 4.58541i 0.163024 + 0.356973i
\(166\) 0 0
\(167\) 1.25256 2.74273i 0.0969262 0.212239i −0.854958 0.518698i \(-0.826417\pi\)
0.951884 + 0.306459i \(0.0991442\pi\)
\(168\) 0 0
\(169\) 1.32968 9.24815i 0.102283 0.711396i
\(170\) 0 0
\(171\) −0.0966929 0.111590i −0.00739429 0.00853347i
\(172\) 0 0
\(173\) 1.98890 1.27819i 0.151214 0.0971791i −0.462846 0.886439i \(-0.653172\pi\)
0.614060 + 0.789260i \(0.289535\pi\)
\(174\) 0 0
\(175\) −1.41286 + 0.414852i −0.106802 + 0.0313599i
\(176\) 0 0
\(177\) −4.98875 + 5.75733i −0.374978 + 0.432747i
\(178\) 0 0
\(179\) 20.0574 + 5.88938i 1.49916 + 0.440193i 0.925451 0.378867i \(-0.123686\pi\)
0.573708 + 0.819060i \(0.305504\pi\)
\(180\) 0 0
\(181\) −2.18165 15.1737i −0.162161 1.12785i −0.894550 0.446967i \(-0.852504\pi\)
0.732389 0.680886i \(-0.238405\pi\)
\(182\) 0 0
\(183\) 1.27140 0.0939845
\(184\) 0 0
\(185\) −31.5577 −2.32017
\(186\) 0 0
\(187\) 0.332858 + 2.31508i 0.0243410 + 0.169295i
\(188\) 0 0
\(189\) −0.120908 0.0355019i −0.00879480 0.00258239i
\(190\) 0 0
\(191\) 5.93558 6.85002i 0.429483 0.495650i −0.499219 0.866476i \(-0.666380\pi\)
0.928703 + 0.370826i \(0.120925\pi\)
\(192\) 0 0
\(193\) 9.14918 2.68644i 0.658572 0.193374i 0.0646640 0.997907i \(-0.479402\pi\)
0.593908 + 0.804533i \(0.297584\pi\)
\(194\) 0 0
\(195\) 6.57116 4.22303i 0.470570 0.302417i
\(196\) 0 0
\(197\) −1.70078 1.96280i −0.121175 0.139844i 0.691920 0.721974i \(-0.256765\pi\)
−0.813096 + 0.582130i \(0.802219\pi\)
\(198\) 0 0
\(199\) −2.86746 + 19.9437i −0.203269 + 1.41377i 0.591230 + 0.806503i \(0.298643\pi\)
−0.794499 + 0.607265i \(0.792267\pi\)
\(200\) 0 0
\(201\) −4.41917 + 9.67664i −0.311705 + 0.682538i
\(202\) 0 0
\(203\) 0.392867 + 0.860260i 0.0275739 + 0.0603784i
\(204\) 0 0
\(205\) −36.0011 23.1365i −2.51442 1.61592i
\(206\) 0 0
\(207\) 3.27197 + 3.50631i 0.227418 + 0.243705i
\(208\) 0 0
\(209\) −0.153291 0.0985143i −0.0106034 0.00681438i
\(210\) 0 0
\(211\) −9.89338 21.6635i −0.681089 1.49138i −0.861486 0.507782i \(-0.830466\pi\)
0.180397 0.983594i \(-0.442262\pi\)
\(212\) 0 0
\(213\) 3.83844 8.40501i 0.263005 0.575901i
\(214\) 0 0
\(215\) −7.01767 + 48.8090i −0.478601 + 3.32874i
\(216\) 0 0
\(217\) 0.194495 + 0.224459i 0.0132032 + 0.0152373i
\(218\) 0 0
\(219\) −10.6324 + 6.83300i −0.718468 + 0.461732i
\(220\) 0 0
\(221\) 3.47739 1.02105i 0.233915 0.0686836i
\(222\) 0 0
\(223\) −13.1936 + 15.2262i −0.883507 + 1.01962i 0.116145 + 0.993232i \(0.462946\pi\)
−0.999652 + 0.0263890i \(0.991599\pi\)
\(224\) 0 0
\(225\) −11.2120 3.29214i −0.747467 0.219476i
\(226\) 0 0
\(227\) −1.33377 9.27656i −0.0885253 0.615707i −0.984993 0.172597i \(-0.944784\pi\)
0.896467 0.443110i \(-0.146125\pi\)
\(228\) 0 0
\(229\) 2.99434 0.197872 0.0989359 0.995094i \(-0.468456\pi\)
0.0989359 + 0.995094i \(0.468456\pi\)
\(230\) 0 0
\(231\) −0.155510 −0.0102318
\(232\) 0 0
\(233\) −1.47396 10.2516i −0.0965624 0.671607i −0.979400 0.201929i \(-0.935279\pi\)
0.882838 0.469678i \(-0.155630\pi\)
\(234\) 0 0
\(235\) −22.4014 6.57764i −1.46130 0.429078i
\(236\) 0 0
\(237\) 2.44214 2.81838i 0.158634 0.183073i
\(238\) 0 0
\(239\) −3.25694 + 0.956324i −0.210674 + 0.0618595i −0.385367 0.922764i \(-0.625925\pi\)
0.174693 + 0.984623i \(0.444107\pi\)
\(240\) 0 0
\(241\) 14.4551 9.28973i 0.931135 0.598404i 0.0152666 0.999883i \(-0.495140\pi\)
0.915868 + 0.401480i \(0.131504\pi\)
\(242\) 0 0
\(243\) −0.654861 0.755750i −0.0420093 0.0484814i
\(244\) 0 0
\(245\) −4.06003 + 28.2381i −0.259386 + 1.80407i
\(246\) 0 0
\(247\) −0.117294 + 0.256838i −0.00746323 + 0.0163422i
\(248\) 0 0
\(249\) −3.38995 7.42296i −0.214829 0.470411i
\(250\) 0 0
\(251\) 13.5073 + 8.68061i 0.852572 + 0.547915i 0.892376 0.451293i \(-0.149037\pi\)
−0.0398037 + 0.999208i \(0.512673\pi\)
\(252\) 0 0
\(253\) 5.09341 + 3.01419i 0.320220 + 0.189501i
\(254\) 0 0
\(255\) −6.51267 4.18544i −0.407839 0.262102i
\(256\) 0 0
\(257\) −9.14370 20.0219i −0.570368 1.24893i −0.946601 0.322407i \(-0.895508\pi\)
0.376233 0.926525i \(-0.377219\pi\)
\(258\) 0 0
\(259\) 0.404422 0.885560i 0.0251296 0.0550260i
\(260\) 0 0
\(261\) −1.06807 + 7.42858i −0.0661118 + 0.459818i
\(262\) 0 0
\(263\) 14.9296 + 17.2297i 0.920601 + 1.06243i 0.997858 + 0.0654188i \(0.0208383\pi\)
−0.0772571 + 0.997011i \(0.524616\pi\)
\(264\) 0 0
\(265\) −22.9497 + 14.7489i −1.40979 + 0.906015i
\(266\) 0 0
\(267\) 6.77435 1.98913i 0.414584 0.121733i
\(268\) 0 0
\(269\) −3.55143 + 4.09857i −0.216534 + 0.249894i −0.853617 0.520902i \(-0.825596\pi\)
0.637082 + 0.770796i \(0.280141\pi\)
\(270\) 0 0
\(271\) 24.3625 + 7.15346i 1.47991 + 0.434542i 0.919307 0.393541i \(-0.128750\pi\)
0.560606 + 0.828082i \(0.310568\pi\)
\(272\) 0 0
\(273\) 0.0342936 + 0.238517i 0.00207554 + 0.0144357i
\(274\) 0 0
\(275\) −14.4207 −0.869600
\(276\) 0 0
\(277\) −28.3536 −1.70360 −0.851800 0.523867i \(-0.824489\pi\)
−0.851800 + 0.523867i \(0.824489\pi\)
\(278\) 0 0
\(279\) 0.335425 + 2.33293i 0.0200814 + 0.139669i
\(280\) 0 0
\(281\) 7.14061 + 2.09667i 0.425973 + 0.125077i 0.487690 0.873017i \(-0.337840\pi\)
−0.0617174 + 0.998094i \(0.519658\pi\)
\(282\) 0 0
\(283\) 15.9165 18.3687i 0.946141 1.09190i −0.0495133 0.998773i \(-0.515767\pi\)
0.995654 0.0931309i \(-0.0296875\pi\)
\(284\) 0 0
\(285\) 0.578702 0.169922i 0.0342794 0.0100653i
\(286\) 0 0
\(287\) 1.11061 0.713748i 0.0655574 0.0421312i
\(288\) 0 0
\(289\) 8.78041 + 10.1331i 0.516495 + 0.596067i
\(290\) 0 0
\(291\) 1.88518 13.1117i 0.110511 0.768622i
\(292\) 0 0
\(293\) 6.78323 14.8532i 0.396281 0.867733i −0.601353 0.798983i \(-0.705372\pi\)
0.997634 0.0687502i \(-0.0219012\pi\)
\(294\) 0 0
\(295\) −12.9269 28.3059i −0.752630 1.64803i
\(296\) 0 0
\(297\) −1.03818 0.667196i −0.0602412 0.0387146i
\(298\) 0 0
\(299\) 3.49986 8.47680i 0.202402 0.490226i
\(300\) 0 0
\(301\) −1.27973 0.822430i −0.0737622 0.0474041i
\(302\) 0 0
\(303\) 2.80507 + 6.14224i 0.161147 + 0.352863i
\(304\) 0 0
\(305\) −2.15740 + 4.72406i −0.123533 + 0.270499i
\(306\) 0 0
\(307\) −3.54574 + 24.6612i −0.202366 + 1.40749i 0.594871 + 0.803821i \(0.297203\pi\)
−0.797237 + 0.603667i \(0.793706\pi\)
\(308\) 0 0
\(309\) 5.55604 + 6.41201i 0.316072 + 0.364766i
\(310\) 0 0
\(311\) −23.7744 + 15.2789i −1.34813 + 0.866388i −0.997537 0.0701421i \(-0.977655\pi\)
−0.350588 + 0.936530i \(0.614018\pi\)
\(312\) 0 0
\(313\) 5.29010 1.55331i 0.299014 0.0877985i −0.128784 0.991673i \(-0.541107\pi\)
0.427798 + 0.903874i \(0.359289\pi\)
\(314\) 0 0
\(315\) 0.337079 0.389010i 0.0189922 0.0219182i
\(316\) 0 0
\(317\) 3.12306 + 0.917014i 0.175409 + 0.0515047i 0.368258 0.929724i \(-0.379954\pi\)
−0.192849 + 0.981228i \(0.561773\pi\)
\(318\) 0 0
\(319\) 1.31809 + 9.16749i 0.0737987 + 0.513281i
\(320\) 0 0
\(321\) −13.2333 −0.738610
\(322\) 0 0
\(323\) 0.279840 0.0155707
\(324\) 0 0
\(325\) 3.18009 + 22.1180i 0.176400 + 1.22689i
\(326\) 0 0
\(327\) −7.14612 2.09829i −0.395181 0.116036i
\(328\) 0 0
\(329\) 0.471660 0.544325i 0.0260035 0.0300096i
\(330\) 0 0
\(331\) −6.54037 + 1.92043i −0.359491 + 0.105556i −0.456490 0.889728i \(-0.650894\pi\)
0.0969992 + 0.995284i \(0.469076\pi\)
\(332\) 0 0
\(333\) 6.49927 4.17683i 0.356158 0.228889i
\(334\) 0 0
\(335\) −28.4561 32.8401i −1.55472 1.79425i
\(336\) 0 0
\(337\) −0.655700 + 4.56049i −0.0357183 + 0.248426i −0.999856 0.0169769i \(-0.994596\pi\)
0.964138 + 0.265403i \(0.0855049\pi\)
\(338\) 0 0
\(339\) 1.32171 2.89414i 0.0717854 0.157188i
\(340\) 0 0
\(341\) 1.20829 + 2.64579i 0.0654327 + 0.143278i
\(342\) 0 0
\(343\) −1.48244 0.952706i −0.0800442 0.0514413i
\(344\) 0 0
\(345\) −18.5803 + 6.20770i −1.00033 + 0.334212i
\(346\) 0 0
\(347\) −18.8312 12.1021i −1.01091 0.649674i −0.0732832 0.997311i \(-0.523348\pi\)
−0.937629 + 0.347637i \(0.886984\pi\)
\(348\) 0 0
\(349\) 8.84062 + 19.3583i 0.473228 + 1.03622i 0.984270 + 0.176669i \(0.0565321\pi\)
−0.511043 + 0.859555i \(0.670741\pi\)
\(350\) 0 0
\(351\) −0.794382 + 1.73945i −0.0424010 + 0.0928452i
\(352\) 0 0
\(353\) 0.895635 6.22928i 0.0476698 0.331551i −0.952006 0.306080i \(-0.900982\pi\)
0.999676 0.0254708i \(-0.00810848\pi\)
\(354\) 0 0
\(355\) 24.7166 + 28.5245i 1.31182 + 1.51392i
\(356\) 0 0
\(357\) 0.200912 0.129118i 0.0106334 0.00683367i
\(358\) 0 0
\(359\) 14.4027 4.22900i 0.760143 0.223198i 0.121385 0.992606i \(-0.461267\pi\)
0.638758 + 0.769407i \(0.279448\pi\)
\(360\) 0 0
\(361\) 12.4281 14.3428i 0.654109 0.754882i
\(362\) 0 0
\(363\) 9.09315 + 2.66999i 0.477267 + 0.140138i
\(364\) 0 0
\(365\) −7.34718 51.1007i −0.384569 2.67474i
\(366\) 0 0
\(367\) 8.18117 0.427053 0.213527 0.976937i \(-0.431505\pi\)
0.213527 + 0.976937i \(0.431505\pi\)
\(368\) 0 0
\(369\) 10.4766 0.545391
\(370\) 0 0
\(371\) −0.119770 0.833016i −0.00621813 0.0432481i
\(372\) 0 0
\(373\) 8.42461 + 2.47369i 0.436210 + 0.128083i 0.492462 0.870334i \(-0.336097\pi\)
−0.0562525 + 0.998417i \(0.517915\pi\)
\(374\) 0 0
\(375\) 17.8830 20.6381i 0.923474 1.06575i
\(376\) 0 0
\(377\) 13.7701 4.04328i 0.709198 0.208239i
\(378\) 0 0
\(379\) 5.68742 3.65509i 0.292143 0.187749i −0.386357 0.922349i \(-0.626267\pi\)
0.678500 + 0.734600i \(0.262630\pi\)
\(380\) 0 0
\(381\) 13.1809 + 15.2116i 0.675278 + 0.779313i
\(382\) 0 0
\(383\) −0.0756551 + 0.526193i −0.00386580 + 0.0268872i −0.991663 0.128858i \(-0.958869\pi\)
0.987797 + 0.155745i \(0.0497779\pi\)
\(384\) 0 0
\(385\) 0.263882 0.577820i 0.0134487 0.0294485i
\(386\) 0 0
\(387\) −5.01484 10.9810i −0.254919 0.558194i
\(388\) 0 0
\(389\) −3.93689 2.53008i −0.199608 0.128280i 0.437019 0.899452i \(-0.356034\pi\)
−0.636627 + 0.771172i \(0.719671\pi\)
\(390\) 0 0
\(391\) −9.08309 + 0.334795i −0.459352 + 0.0169313i
\(392\) 0 0
\(393\) −2.99782 1.92658i −0.151220 0.0971831i
\(394\) 0 0
\(395\) 6.32807 + 13.8565i 0.318400 + 0.697198i
\(396\) 0 0
\(397\) 1.42758 3.12596i 0.0716480 0.156887i −0.870419 0.492311i \(-0.836152\pi\)
0.942067 + 0.335424i \(0.108880\pi\)
\(398\) 0 0
\(399\) −0.00264796 + 0.0184169i −0.000132564 + 0.000922001i
\(400\) 0 0
\(401\) 8.58668 + 9.90955i 0.428798 + 0.494859i 0.928497 0.371340i \(-0.121101\pi\)
−0.499699 + 0.866199i \(0.666556\pi\)
\(402\) 0 0
\(403\) 3.79157 2.43670i 0.188872 0.121380i
\(404\) 0 0
\(405\) 3.91931 1.15081i 0.194752 0.0571843i
\(406\) 0 0
\(407\) 6.24354 7.20543i 0.309481 0.357160i
\(408\) 0 0
\(409\) 3.93864 + 1.15649i 0.194753 + 0.0571848i 0.377655 0.925947i \(-0.376731\pi\)
−0.182901 + 0.983131i \(0.558549\pi\)
\(410\) 0 0
\(411\) 2.90621 + 20.2131i 0.143353 + 0.997040i
\(412\) 0 0
\(413\) 0.959971 0.0472371
\(414\) 0 0
\(415\) 33.3333 1.63627
\(416\) 0 0
\(417\) −2.03946 14.1848i −0.0998730 0.694632i
\(418\) 0 0
\(419\) 35.7570 + 10.4992i 1.74684 + 0.512919i 0.990048 0.140733i \(-0.0449460\pi\)
0.756795 + 0.653652i \(0.226764\pi\)
\(420\) 0 0
\(421\) 6.30973 7.28181i 0.307517 0.354894i −0.580864 0.814001i \(-0.697285\pi\)
0.888381 + 0.459107i \(0.151831\pi\)
\(422\) 0 0
\(423\) 5.48412 1.61028i 0.266647 0.0782946i
\(424\) 0 0
\(425\) 18.6309 11.9733i 0.903729 0.580792i
\(426\) 0 0
\(427\) −0.104917 0.121081i −0.00507729 0.00585950i
\(428\) 0 0
\(429\) −0.335848 + 2.33587i −0.0162149 + 0.112777i
\(430\) 0 0
\(431\) 13.3144 29.1546i 0.641334 1.40433i −0.257604 0.966251i \(-0.582933\pi\)
0.898938 0.438076i \(-0.144340\pi\)
\(432\) 0 0
\(433\) 10.2767 + 22.5027i 0.493865 + 1.08141i 0.978415 + 0.206649i \(0.0662559\pi\)
−0.484551 + 0.874763i \(0.661017\pi\)
\(434\) 0 0
\(435\) −25.7895 16.5739i −1.23651 0.794659i
\(436\) 0 0
\(437\) 0.443696 0.551883i 0.0212249 0.0264001i
\(438\) 0 0
\(439\) −7.03424 4.52063i −0.335726 0.215758i 0.361905 0.932215i \(-0.382126\pi\)
−0.697632 + 0.716457i \(0.745763\pi\)
\(440\) 0 0
\(441\) −2.90131 6.35298i −0.138158 0.302523i
\(442\) 0 0
\(443\) −3.68541 + 8.06992i −0.175099 + 0.383413i −0.976751 0.214378i \(-0.931228\pi\)
0.801652 + 0.597791i \(0.203955\pi\)
\(444\) 0 0
\(445\) −4.10435 + 28.5463i −0.194565 + 1.35323i
\(446\) 0 0
\(447\) −11.7633 13.5756i −0.556385 0.642102i
\(448\) 0 0
\(449\) −8.42408 + 5.41383i −0.397557 + 0.255494i −0.724110 0.689685i \(-0.757749\pi\)
0.326553 + 0.945179i \(0.394113\pi\)
\(450\) 0 0
\(451\) 12.4053 3.64253i 0.584143 0.171520i
\(452\) 0 0
\(453\) 4.03194 4.65311i 0.189437 0.218622i
\(454\) 0 0
\(455\) −0.944434 0.277311i −0.0442758 0.0130005i
\(456\) 0 0
\(457\) 4.20875 + 29.2725i 0.196877 + 1.36931i 0.813277 + 0.581877i \(0.197681\pi\)
−0.616400 + 0.787433i \(0.711410\pi\)
\(458\) 0 0
\(459\) 1.89524 0.0884623
\(460\) 0 0
\(461\) −17.8301 −0.830430 −0.415215 0.909723i \(-0.636294\pi\)
−0.415215 + 0.909723i \(0.636294\pi\)
\(462\) 0 0
\(463\) 1.40293 + 9.75762i 0.0651999 + 0.453475i 0.996102 + 0.0882069i \(0.0281137\pi\)
−0.930902 + 0.365268i \(0.880977\pi\)
\(464\) 0 0
\(465\) −9.23750 2.71237i −0.428379 0.125783i
\(466\) 0 0
\(467\) −25.2767 + 29.1708i −1.16966 + 1.34986i −0.244797 + 0.969574i \(0.578721\pi\)
−0.924867 + 0.380290i \(0.875824\pi\)
\(468\) 0 0
\(469\) 1.28622 0.377669i 0.0593922 0.0174391i
\(470\) 0 0
\(471\) −6.51130 + 4.18456i −0.300025 + 0.192814i
\(472\) 0 0
\(473\) −9.75593 11.2589i −0.448578 0.517687i
\(474\) 0 0
\(475\) −0.245549 + 1.70783i −0.0112665 + 0.0783605i
\(476\) 0 0
\(477\) 2.77437 6.07502i 0.127030 0.278156i
\(478\) 0 0
\(479\) 2.81750 + 6.16945i 0.128735 + 0.281890i 0.963013 0.269453i \(-0.0868430\pi\)
−0.834279 + 0.551343i \(0.814116\pi\)
\(480\) 0 0
\(481\) −12.4283 7.98719i −0.566682 0.364184i
\(482\) 0 0
\(483\) 0.0639141 0.600947i 0.00290819 0.0273440i
\(484\) 0 0
\(485\) 45.5195 + 29.2536i 2.06693 + 1.32834i
\(486\) 0 0
\(487\) −2.77299 6.07200i −0.125656 0.275149i 0.836340 0.548211i \(-0.184691\pi\)
−0.961996 + 0.273062i \(0.911964\pi\)
\(488\) 0 0
\(489\) 5.32782 11.6663i 0.240932 0.527568i
\(490\) 0 0
\(491\) 2.53163 17.6079i 0.114251 0.794632i −0.849454 0.527662i \(-0.823069\pi\)
0.963705 0.266969i \(-0.0860222\pi\)
\(492\) 0 0
\(493\) −9.31456 10.7496i −0.419507 0.484137i
\(494\) 0 0
\(495\) 4.24072 2.72534i 0.190606 0.122495i
\(496\) 0 0
\(497\) −1.11719 + 0.328038i −0.0501130 + 0.0147145i
\(498\) 0 0
\(499\) 0.992242 1.14511i 0.0444189 0.0512621i −0.733105 0.680115i \(-0.761930\pi\)
0.777524 + 0.628853i \(0.216475\pi\)
\(500\) 0 0
\(501\) −2.89307 0.849482i −0.129253 0.0379521i
\(502\) 0 0
\(503\) 2.54825 + 17.7235i 0.113621 + 0.790250i 0.964347 + 0.264641i \(0.0852535\pi\)
−0.850726 + 0.525609i \(0.823837\pi\)
\(504\) 0 0
\(505\) −27.5822 −1.22739
\(506\) 0 0
\(507\) −9.34325 −0.414948
\(508\) 0 0
\(509\) 2.69998 + 18.7788i 0.119675 + 0.832355i 0.957915 + 0.287053i \(0.0926757\pi\)
−0.838240 + 0.545301i \(0.816415\pi\)
\(510\) 0 0
\(511\) 1.52813 + 0.448699i 0.0676004 + 0.0198493i
\(512\) 0 0
\(513\) −0.0966929 + 0.111590i −0.00426910 + 0.00492680i
\(514\) 0 0
\(515\) −33.2526 + 9.76384i −1.46528 + 0.430246i
\(516\) 0 0
\(517\) 5.93385 3.81346i 0.260971 0.167716i
\(518\) 0 0
\(519\) −1.54823 1.78675i −0.0679598 0.0784298i
\(520\) 0 0
\(521\) −4.48410 + 31.1876i −0.196452 + 1.36635i 0.618026 + 0.786158i \(0.287933\pi\)
−0.814478 + 0.580195i \(0.802976\pi\)
\(522\) 0 0
\(523\) −7.15195 + 15.6606i −0.312733 + 0.684790i −0.999098 0.0424676i \(-0.986478\pi\)
0.686365 + 0.727257i \(0.259205\pi\)
\(524\) 0 0
\(525\) 0.611700 + 1.33944i 0.0266968 + 0.0584578i
\(526\) 0 0
\(527\) −3.75783 2.41501i −0.163693 0.105199i
\(528\) 0 0
\(529\) −13.7413 + 18.4439i −0.597447 + 0.801909i
\(530\) 0 0
\(531\) 6.40870 + 4.11862i 0.278114 + 0.178733i
\(532\) 0 0
\(533\) −8.32244 18.2236i −0.360485 0.789352i
\(534\) 0 0
\(535\) 22.4552 49.1701i 0.970824 2.12581i
\(536\) 0 0
\(537\) 2.97497 20.6914i 0.128379 0.892899i
\(538\) 0 0
\(539\) −5.64424 6.51380i −0.243115 0.280569i
\(540\) 0 0
\(541\) 0.229819 0.147696i 0.00988070 0.00634994i −0.535691 0.844414i \(-0.679949\pi\)
0.545572 + 0.838064i \(0.316312\pi\)
\(542\) 0 0
\(543\) −14.7088 + 4.31889i −0.631214 + 0.185341i
\(544\) 0 0
\(545\) 19.9225 22.9918i 0.853388 0.984863i
\(546\) 0 0
\(547\) −25.3716 7.44978i −1.08481 0.318530i −0.310010 0.950733i \(-0.600332\pi\)
−0.774802 + 0.632203i \(0.782151\pi\)
\(548\) 0 0
\(549\) −0.180939 1.25846i −0.00772228 0.0537097i
\(550\) 0 0
\(551\) 1.10814 0.0472084
\(552\) 0 0
\(553\) −0.469934 −0.0199836
\(554\) 0 0
\(555\) 4.49113 + 31.2365i 0.190638 + 1.32591i
\(556\) 0 0
\(557\) −23.7086 6.96147i −1.00457 0.294967i −0.262237 0.965003i \(-0.584460\pi\)
−0.742328 + 0.670036i \(0.766278\pi\)
\(558\) 0 0
\(559\) −15.1172 + 17.4462i −0.639390 + 0.737895i
\(560\) 0 0
\(561\) 2.24415 0.658941i 0.0947479 0.0278205i
\(562\) 0 0
\(563\) 14.2024 9.12730i 0.598558 0.384670i −0.205993 0.978553i \(-0.566042\pi\)
0.804551 + 0.593884i \(0.202406\pi\)
\(564\) 0 0
\(565\) 8.51080 + 9.82198i 0.358052 + 0.413214i
\(566\) 0 0
\(567\) −0.0179335 + 0.124730i −0.000753136 + 0.00523818i
\(568\) 0 0
\(569\) 4.05486 8.87892i 0.169989 0.372223i −0.805395 0.592739i \(-0.798047\pi\)
0.975384 + 0.220515i \(0.0707739\pi\)
\(570\) 0 0
\(571\) −6.08106 13.3157i −0.254484 0.557243i 0.738668 0.674070i \(-0.235455\pi\)
−0.993152 + 0.116826i \(0.962728\pi\)
\(572\) 0 0
\(573\) −7.62502 4.90030i −0.318540 0.204713i
\(574\) 0 0
\(575\) 5.92684 55.7266i 0.247166 2.32396i
\(576\) 0 0
\(577\) 10.3558 + 6.65529i 0.431119 + 0.277063i 0.738151 0.674636i \(-0.235699\pi\)
−0.307032 + 0.951699i \(0.599336\pi\)
\(578\) 0 0
\(579\) −3.96116 8.67373i −0.164620 0.360468i
\(580\) 0 0
\(581\) −0.427177 + 0.935388i −0.0177223 + 0.0388064i
\(582\) 0 0
\(583\) 1.17294 8.15799i 0.0485783 0.337870i
\(584\) 0 0
\(585\) −5.11522 5.90327i −0.211488 0.244070i
\(586\) 0 0
\(587\) 10.1633 6.53159i 0.419486 0.269587i −0.313825 0.949481i \(-0.601610\pi\)
0.733311 + 0.679893i \(0.237974\pi\)
\(588\) 0 0
\(589\) 0.333913 0.0980456i 0.0137586 0.00403990i
\(590\) 0 0
\(591\) −1.70078 + 1.96280i −0.0699606 + 0.0807388i
\(592\) 0 0
\(593\) 41.6427 + 12.2274i 1.71006 + 0.502119i 0.982867 0.184314i \(-0.0590063\pi\)
0.727193 + 0.686433i \(0.240824\pi\)
\(594\) 0 0
\(595\) 0.138834 + 0.965615i 0.00569166 + 0.0395863i
\(596\) 0 0
\(597\) 20.1487 0.824633
\(598\) 0 0
\(599\) −36.5272 −1.49246 −0.746230 0.665688i \(-0.768138\pi\)
−0.746230 + 0.665688i \(0.768138\pi\)
\(600\) 0 0
\(601\) 0.0953083 + 0.662884i 0.00388771 + 0.0270396i 0.991673 0.128782i \(-0.0411067\pi\)
−0.987785 + 0.155821i \(0.950198\pi\)
\(602\) 0 0
\(603\) 10.2071 + 2.99706i 0.415664 + 0.122050i
\(604\) 0 0
\(605\) −25.3506 + 29.2562i −1.03065 + 1.18943i
\(606\) 0 0
\(607\) −34.6753 + 10.1816i −1.40743 + 0.413258i −0.895228 0.445608i \(-0.852988\pi\)
−0.512200 + 0.858866i \(0.671169\pi\)
\(608\) 0 0
\(609\) 0.795593 0.511296i 0.0322390 0.0207188i
\(610\) 0 0
\(611\) −7.15750 8.26020i −0.289562 0.334172i
\(612\) 0 0
\(613\) 5.62930 39.1526i 0.227365 1.58136i −0.481776 0.876294i \(-0.660008\pi\)
0.709142 0.705066i \(-0.249083\pi\)
\(614\) 0 0
\(615\) −17.7775 + 38.9273i −0.716858 + 1.56970i
\(616\) 0 0
\(617\) −2.38060 5.21278i −0.0958393 0.209859i 0.855640 0.517571i \(-0.173164\pi\)
−0.951479 + 0.307712i \(0.900437\pi\)
\(618\) 0 0
\(619\) 22.1415 + 14.2295i 0.889942 + 0.571931i 0.903792 0.427973i \(-0.140772\pi\)
−0.0138494 + 0.999904i \(0.504409\pi\)
\(620\) 0 0
\(621\) 3.00497 3.73767i 0.120585 0.149988i
\(622\) 0 0
\(623\) −0.748459 0.481005i −0.0299864 0.0192711i
\(624\) 0 0
\(625\) 22.0671 + 48.3201i 0.882682 + 1.93280i
\(626\) 0 0
\(627\) −0.0756960 + 0.165751i −0.00302301 + 0.00661946i
\(628\) 0 0
\(629\) −2.08378 + 14.4930i −0.0830858 + 0.577875i
\(630\) 0 0
\(631\) −18.8138 21.7123i −0.748967 0.864354i 0.245501 0.969396i \(-0.421048\pi\)
−0.994468 + 0.105042i \(0.966502\pi\)
\(632\) 0 0
\(633\) −20.0350 + 12.8757i −0.796320 + 0.511764i
\(634\) 0 0
\(635\) −78.8871 + 23.1633i −3.13054 + 0.919209i
\(636\) 0 0
\(637\) −8.74597 + 10.0934i −0.346528 + 0.399915i
\(638\) 0 0
\(639\) −8.86572 2.60321i −0.350722 0.102981i
\(640\) 0 0
\(641\) 3.14585 + 21.8799i 0.124254 + 0.864202i 0.952652 + 0.304063i \(0.0983433\pi\)
−0.828398 + 0.560139i \(0.810748\pi\)
\(642\) 0 0
\(643\) −11.1875 −0.441193 −0.220596 0.975365i \(-0.570800\pi\)
−0.220596 + 0.975365i \(0.570800\pi\)
\(644\) 0 0
\(645\) 49.3109 1.94161
\(646\) 0 0
\(647\) −3.70136 25.7436i −0.145516 1.01208i −0.923445 0.383731i \(-0.874639\pi\)
0.777929 0.628352i \(-0.216270\pi\)
\(648\) 0 0
\(649\) 9.02048 + 2.64865i 0.354085 + 0.103969i
\(650\) 0 0
\(651\) 0.194495 0.224459i 0.00762287 0.00879726i
\(652\) 0 0
\(653\) −43.7741 + 12.8532i −1.71301 + 0.502986i −0.983489 0.180967i \(-0.942077\pi\)
−0.729525 + 0.683954i \(0.760259\pi\)
\(654\) 0 0
\(655\) 12.2454 7.86963i 0.478467 0.307492i
\(656\) 0 0
\(657\) 8.27660 + 9.55170i 0.322901 + 0.372647i
\(658\) 0 0
\(659\) 4.36052 30.3281i 0.169862 1.18141i −0.709306 0.704901i \(-0.750992\pi\)
0.879168 0.476513i \(-0.158099\pi\)
\(660\) 0 0
\(661\) 6.54464 14.3308i 0.254557 0.557402i −0.738606 0.674137i \(-0.764516\pi\)
0.993163 + 0.116735i \(0.0372429\pi\)
\(662\) 0 0
\(663\) −1.50555 3.29669i −0.0584706 0.128033i
\(664\) 0 0
\(665\) −0.0639374 0.0410901i −0.00247939 0.00159341i
\(666\) 0 0
\(667\) −35.9681 + 1.32575i −1.39269 + 0.0513334i
\(668\) 0 0
\(669\) 16.9489 + 10.8924i 0.655280 + 0.421123i
\(670\) 0 0
\(671\) −0.651791 1.42722i −0.0251621 0.0550974i
\(672\) 0 0
\(673\) 4.20807 9.21438i 0.162209 0.355188i −0.811023 0.585015i \(-0.801089\pi\)
0.973232 + 0.229827i \(0.0738159\pi\)
\(674\) 0 0
\(675\) −1.66300 + 11.5664i −0.0640088 + 0.445191i
\(676\) 0 0
\(677\) 7.73175 + 8.92291i 0.297155 + 0.342935i 0.884619 0.466315i \(-0.154419\pi\)
−0.587463 + 0.809251i \(0.699873\pi\)
\(678\) 0 0
\(679\) −1.40425 + 0.902457i −0.0538902 + 0.0346331i
\(680\) 0 0
\(681\) −8.99232 + 2.64038i −0.344586 + 0.101180i
\(682\) 0 0
\(683\) 7.85265 9.06244i 0.300473 0.346765i −0.585356 0.810777i \(-0.699045\pi\)
0.885829 + 0.464012i \(0.153591\pi\)
\(684\) 0 0
\(685\) −80.0361 23.5007i −3.05802 0.897917i
\(686\) 0 0
\(687\) −0.426139 2.96386i −0.0162582 0.113078i
\(688\) 0 0
\(689\) −12.7711 −0.486541
\(690\) 0 0
\(691\) 20.6233 0.784548 0.392274 0.919848i \(-0.371689\pi\)
0.392274 + 0.919848i \(0.371689\pi\)
\(692\) 0 0
\(693\) 0.0221314 + 0.153928i 0.000840704 + 0.00584722i
\(694\) 0 0
\(695\) 56.1662 + 16.4919i 2.13051 + 0.625573i
\(696\) 0 0
\(697\) −13.0027 + 15.0059i −0.492513 + 0.568391i
\(698\) 0 0
\(699\) −9.93752 + 2.91792i −0.375871 + 0.110366i
\(700\) 0 0
\(701\) −37.7052 + 24.2316i −1.42410 + 0.915216i −0.424150 + 0.905592i \(0.639427\pi\)
−0.999954 + 0.00962419i \(0.996936\pi\)
\(702\) 0 0
\(703\) −0.747020 0.862107i −0.0281744 0.0325150i
\(704\) 0 0
\(705\) −3.32264 + 23.1095i −0.125138 + 0.870352i
\(706\) 0 0
\(707\) 0.353475 0.774002i 0.0132938 0.0291093i
\(708\) 0 0
\(709\) 15.7599 + 34.5095i 0.591877 + 1.29603i 0.934301 + 0.356485i \(0.116025\pi\)
−0.342424 + 0.939546i \(0.611248\pi\)
\(710\) 0 0
\(711\) −3.13725 2.01619i −0.117656 0.0756128i
\(712\) 0 0
\(713\) −10.7209 + 3.58186i −0.401500 + 0.134142i
\(714\) 0 0
\(715\) −8.10936 5.21157i −0.303273 0.194902i
\(716\) 0 0
\(717\) 1.41010 + 3.08769i 0.0526612 + 0.115312i
\(718\) 0 0
\(719\) −15.3632 + 33.6408i −0.572952 + 1.25459i 0.372258 + 0.928129i \(0.378584\pi\)
−0.945210 + 0.326462i \(0.894144\pi\)
\(720\) 0 0
\(721\) 0.152153 1.05825i 0.00566648 0.0394113i
\(722\) 0 0
\(723\) −11.2523 12.9859i −0.418479 0.482951i
\(724\) 0 0
\(725\) 73.7764 47.4132i 2.73999 1.76088i
\(726\) 0 0
\(727\) 44.6395 13.1073i 1.65559 0.486124i 0.685336 0.728227i \(-0.259655\pi\)
0.970250 + 0.242103i \(0.0778373\pi\)
\(728\) 0 0
\(729\) −0.654861 + 0.755750i −0.0242541 + 0.0279907i
\(730\) 0 0
\(731\) 21.9524 + 6.44580i 0.811938 + 0.238406i
\(732\) 0 0
\(733\) 0.437796 + 3.04494i 0.0161704 + 0.112467i 0.996308 0.0858513i \(-0.0273610\pi\)
−0.980138 + 0.198319i \(0.936452\pi\)
\(734\) 0 0
\(735\) 28.5285 1.05229
\(736\) 0 0
\(737\) 13.1282 0.483582
\(738\) 0 0
\(739\) −3.33533 23.1977i −0.122692 0.853341i −0.954486 0.298257i \(-0.903595\pi\)
0.831794 0.555085i \(-0.187314\pi\)
\(740\) 0 0
\(741\) 0.270916 + 0.0795482i 0.00995236 + 0.00292228i
\(742\) 0 0
\(743\) −1.07237 + 1.23758i −0.0393413 + 0.0454023i −0.775079 0.631864i \(-0.782290\pi\)
0.735738 + 0.677266i \(0.236836\pi\)
\(744\) 0 0
\(745\) 70.4027 20.6721i 2.57936 0.757367i
\(746\) 0 0
\(747\) −6.86496 + 4.41184i −0.251176 + 0.161421i
\(748\) 0 0
\(749\) 1.09202 + 1.26026i 0.0399016 + 0.0460489i
\(750\) 0 0
\(751\) 6.05226 42.0944i 0.220850 1.53605i −0.513984 0.857800i \(-0.671831\pi\)
0.734834 0.678247i \(-0.237260\pi\)
\(752\) 0 0
\(753\) 6.66996 14.6052i 0.243067 0.532242i
\(754\) 0 0
\(755\) 10.4476 + 22.8770i 0.380226 + 0.832579i
\(756\) 0 0
\(757\) −7.49246 4.81511i −0.272318 0.175008i 0.397353 0.917666i \(-0.369929\pi\)
−0.669671 + 0.742657i \(0.733565\pi\)
\(758\) 0 0
\(759\) 2.25865 5.47053i 0.0819837 0.198568i
\(760\) 0 0
\(761\) 32.4340 + 20.8441i 1.17573 + 0.755597i 0.974597 0.223967i \(-0.0719008\pi\)
0.201134 + 0.979564i \(0.435537\pi\)
\(762\) 0 0
\(763\) 0.389875 + 0.853707i 0.0141144 + 0.0309063i
\(764\) 0 0
\(765\) −3.21599 + 7.04203i −0.116274 + 0.254605i
\(766\) 0 0
\(767\) 2.07320 14.4194i 0.0748588 0.520654i
\(768\) 0 0
\(769\) −33.6719 38.8594i −1.21424 1.40131i −0.890390 0.455199i \(-0.849568\pi\)
−0.323850 0.946108i \(-0.604977\pi\)
\(770\) 0 0
\(771\) −18.5168 + 11.9000i −0.666867 + 0.428569i
\(772\) 0 0
\(773\) 24.4813 7.18835i 0.880530 0.258547i 0.189942 0.981795i \(-0.439170\pi\)
0.690588 + 0.723249i \(0.257352\pi\)
\(774\) 0 0
\(775\) 18.0358 20.8144i 0.647865 0.747676i
\(776\) 0 0
\(777\) −0.934102 0.274277i −0.0335107 0.00983964i
\(778\) 0 0
\(779\) −0.220149 1.53117i −0.00788766 0.0548599i
\(780\) 0 0
\(781\) −11.4029 −0.408029
\(782\) 0 0
\(783\) 7.50497 0.268206
\(784\) 0 0
\(785\) −4.49944 31.2943i −0.160592 1.11694i
\(786\) 0 0
\(787\) 9.82123 + 2.88377i 0.350089 + 0.102795i 0.452049 0.891993i \(-0.350693\pi\)
−0.101960 + 0.994789i \(0.532511\pi\)
\(788\) 0 0
\(789\) 14.9296 17.2297i 0.531509 0.613394i
\(790\) 0 0
\(791\) −0.384690 + 0.112955i −0.0136780 + 0.00401622i
\(792\) 0 0
\(793\) −2.04530 + 1.31443i −0.0726306 + 0.0466768i
\(794\) 0