Properties

Label 276.2.i.a.25.1
Level $276$
Weight $2$
Character 276.25
Analytic conductor $2.204$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 276 = 2^{2} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 276.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.20387109579\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 43 x^{18} - 165 x^{17} + 538 x^{16} - 1433 x^{15} + 3444 x^{14} - 7370 x^{13} + 15500 x^{12} - 28190 x^{11} + 41920 x^{10} - 33520 x^{9} - 13837 x^{8} + 78980 x^{7} - 92652 x^{6} - 52852 x^{5} + 177374 x^{4} + 151360 x^{3} + 115323 x^{2} + 12834 x + 529\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 25.1
Root \(-1.54238 + 1.78001i\) of defining polynomial
Character \(\chi\) \(=\) 276.25
Dual form 276.2.i.a.265.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.142315 - 0.989821i) q^{3} +(-2.38954 - 0.701632i) q^{5} +(2.64891 - 3.05701i) q^{7} +(-0.959493 + 0.281733i) q^{9} +O(q^{10})\) \(q+(-0.142315 - 0.989821i) q^{3} +(-2.38954 - 0.701632i) q^{5} +(2.64891 - 3.05701i) q^{7} +(-0.959493 + 0.281733i) q^{9} +(-4.05943 + 2.60884i) q^{11} +(-2.81278 - 3.24612i) q^{13} +(-0.354423 + 2.46507i) q^{15} +(1.87409 - 4.10368i) q^{17} +(-1.84032 - 4.02974i) q^{19} +(-3.40287 - 2.18689i) q^{21} +(4.75085 - 0.655317i) q^{23} +(1.01134 + 0.649950i) q^{25} +(0.415415 + 0.909632i) q^{27} +(-0.207351 + 0.454036i) q^{29} +(-0.727870 + 5.06245i) q^{31} +(3.16000 + 3.64683i) q^{33} +(-8.47457 + 5.44627i) q^{35} +(10.2392 - 3.00650i) q^{37} +(-2.81278 + 3.24612i) q^{39} +(7.29593 + 2.14228i) q^{41} +(1.07935 + 7.50707i) q^{43} +2.49042 q^{45} -7.67725 q^{47} +(-1.33235 - 9.26672i) q^{49} +(-4.32862 - 1.27100i) q^{51} +(5.00164 - 5.77220i) q^{53} +(11.5306 - 3.38569i) q^{55} +(-3.72681 + 2.39508i) q^{57} +(-1.85219 - 2.13754i) q^{59} +(-0.225996 + 1.57184i) q^{61} +(-1.68035 + 3.67946i) q^{63} +(4.44366 + 9.73025i) q^{65} +(10.1121 + 6.49867i) q^{67} +(-1.32476 - 4.60923i) q^{69} +(3.18977 + 2.04994i) q^{71} +(-3.09627 - 6.77988i) q^{73} +(0.499405 - 1.09354i) q^{75} +(-2.77784 + 19.3203i) q^{77} +(7.62471 + 8.79938i) q^{79} +(0.841254 - 0.540641i) q^{81} +(-5.09163 + 1.49504i) q^{83} +(-7.35747 + 8.49098i) q^{85} +(0.478924 + 0.140625i) q^{87} +(-1.58627 - 11.0327i) q^{89} -17.3742 q^{91} +5.11451 q^{93} +(1.57012 + 10.9204i) q^{95} +(-6.84457 - 2.00975i) q^{97} +(3.16000 - 3.64683i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} + O(q^{10}) \) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} - 22q^{13} + 7q^{15} + 7q^{17} + 19q^{19} + 20q^{23} + 20q^{25} - 2q^{27} + 32q^{29} - 3q^{31} + 11q^{33} - 26q^{35} - 10q^{37} - 22q^{39} - 40q^{41} + 8q^{43} - 4q^{45} - 18q^{47} - 34q^{49} - 26q^{51} - 34q^{53} - 17q^{55} - 3q^{57} - 32q^{59} + 32q^{61} + 49q^{65} + 35q^{67} - 2q^{69} + 33q^{71} - q^{73} - 2q^{75} - 50q^{77} + 22q^{79} - 2q^{81} - 14q^{83} - 9q^{85} - 12q^{87} + 10q^{89} - 72q^{91} + 30q^{93} - 51q^{95} - 4q^{97} + 11q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/276\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(139\) \(185\)
\(\chi(n)\) \(e\left(\frac{1}{11}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.142315 0.989821i −0.0821655 0.571474i
\(4\) 0 0
\(5\) −2.38954 0.701632i −1.06863 0.313779i −0.300311 0.953841i \(-0.597090\pi\)
−0.768323 + 0.640062i \(0.778909\pi\)
\(6\) 0 0
\(7\) 2.64891 3.05701i 1.00119 1.15544i 0.0133629 0.999911i \(-0.495746\pi\)
0.987831 0.155529i \(-0.0497082\pi\)
\(8\) 0 0
\(9\) −0.959493 + 0.281733i −0.319831 + 0.0939109i
\(10\) 0 0
\(11\) −4.05943 + 2.60884i −1.22396 + 0.786594i −0.982940 0.183925i \(-0.941120\pi\)
−0.241024 + 0.970519i \(0.577483\pi\)
\(12\) 0 0
\(13\) −2.81278 3.24612i −0.780123 0.900310i 0.216995 0.976173i \(-0.430375\pi\)
−0.997118 + 0.0758623i \(0.975829\pi\)
\(14\) 0 0
\(15\) −0.354423 + 2.46507i −0.0915118 + 0.636478i
\(16\) 0 0
\(17\) 1.87409 4.10368i 0.454533 0.995288i −0.534167 0.845379i \(-0.679375\pi\)
0.988700 0.149909i \(-0.0478981\pi\)
\(18\) 0 0
\(19\) −1.84032 4.02974i −0.422198 0.924485i −0.994529 0.104462i \(-0.966688\pi\)
0.572331 0.820023i \(-0.306039\pi\)
\(20\) 0 0
\(21\) −3.40287 2.18689i −0.742567 0.477219i
\(22\) 0 0
\(23\) 4.75085 0.655317i 0.990620 0.136643i
\(24\) 0 0
\(25\) 1.01134 + 0.649950i 0.202268 + 0.129990i
\(26\) 0 0
\(27\) 0.415415 + 0.909632i 0.0799467 + 0.175059i
\(28\) 0 0
\(29\) −0.207351 + 0.454036i −0.0385042 + 0.0843124i −0.927907 0.372812i \(-0.878393\pi\)
0.889403 + 0.457125i \(0.151121\pi\)
\(30\) 0 0
\(31\) −0.727870 + 5.06245i −0.130729 + 0.909243i 0.813877 + 0.581037i \(0.197353\pi\)
−0.944606 + 0.328206i \(0.893556\pi\)
\(32\) 0 0
\(33\) 3.16000 + 3.64683i 0.550085 + 0.634832i
\(34\) 0 0
\(35\) −8.47457 + 5.44627i −1.43246 + 0.920588i
\(36\) 0 0
\(37\) 10.2392 3.00650i 1.68331 0.494265i 0.706384 0.707829i \(-0.250325\pi\)
0.976929 + 0.213564i \(0.0685071\pi\)
\(38\) 0 0
\(39\) −2.81278 + 3.24612i −0.450404 + 0.519794i
\(40\) 0 0
\(41\) 7.29593 + 2.14228i 1.13943 + 0.334568i 0.796409 0.604759i \(-0.206731\pi\)
0.343024 + 0.939327i \(0.388549\pi\)
\(42\) 0 0
\(43\) 1.07935 + 7.50707i 0.164600 + 1.14482i 0.889824 + 0.456305i \(0.150827\pi\)
−0.725224 + 0.688513i \(0.758264\pi\)
\(44\) 0 0
\(45\) 2.49042 0.371250
\(46\) 0 0
\(47\) −7.67725 −1.11984 −0.559921 0.828546i \(-0.689169\pi\)
−0.559921 + 0.828546i \(0.689169\pi\)
\(48\) 0 0
\(49\) −1.33235 9.26672i −0.190336 1.32382i
\(50\) 0 0
\(51\) −4.32862 1.27100i −0.606128 0.177975i
\(52\) 0 0
\(53\) 5.00164 5.77220i 0.687028 0.792873i −0.299911 0.953967i \(-0.596957\pi\)
0.986939 + 0.161095i \(0.0515024\pi\)
\(54\) 0 0
\(55\) 11.5306 3.38569i 1.55479 0.456527i
\(56\) 0 0
\(57\) −3.72681 + 2.39508i −0.493629 + 0.317236i
\(58\) 0 0
\(59\) −1.85219 2.13754i −0.241134 0.278284i 0.622263 0.782808i \(-0.286213\pi\)
−0.863397 + 0.504524i \(0.831668\pi\)
\(60\) 0 0
\(61\) −0.225996 + 1.57184i −0.0289358 + 0.201253i −0.999161 0.0409511i \(-0.986961\pi\)
0.970225 + 0.242204i \(0.0778703\pi\)
\(62\) 0 0
\(63\) −1.68035 + 3.67946i −0.211705 + 0.463568i
\(64\) 0 0
\(65\) 4.44366 + 9.73025i 0.551168 + 1.20689i
\(66\) 0 0
\(67\) 10.1121 + 6.49867i 1.23539 + 0.793939i 0.984722 0.174134i \(-0.0557124\pi\)
0.250671 + 0.968072i \(0.419349\pi\)
\(68\) 0 0
\(69\) −1.32476 4.60923i −0.159483 0.554886i
\(70\) 0 0
\(71\) 3.18977 + 2.04994i 0.378556 + 0.243283i 0.716057 0.698042i \(-0.245945\pi\)
−0.337501 + 0.941325i \(0.609582\pi\)
\(72\) 0 0
\(73\) −3.09627 6.77988i −0.362391 0.793525i −0.999737 0.0229473i \(-0.992695\pi\)
0.637346 0.770578i \(-0.280032\pi\)
\(74\) 0 0
\(75\) 0.499405 1.09354i 0.0576663 0.126272i
\(76\) 0 0
\(77\) −2.77784 + 19.3203i −0.316564 + 2.20175i
\(78\) 0 0
\(79\) 7.62471 + 8.79938i 0.857847 + 0.990008i 1.00000 0.000163051i \(5.19009e-5\pi\)
−0.142153 + 0.989845i \(0.545403\pi\)
\(80\) 0 0
\(81\) 0.841254 0.540641i 0.0934726 0.0600712i
\(82\) 0 0
\(83\) −5.09163 + 1.49504i −0.558879 + 0.164102i −0.548959 0.835849i \(-0.684976\pi\)
−0.00991953 + 0.999951i \(0.503158\pi\)
\(84\) 0 0
\(85\) −7.35747 + 8.49098i −0.798030 + 0.920976i
\(86\) 0 0
\(87\) 0.478924 + 0.140625i 0.0513460 + 0.0150766i
\(88\) 0 0
\(89\) −1.58627 11.0327i −0.168144 1.16947i −0.882717 0.469905i \(-0.844288\pi\)
0.714573 0.699561i \(-0.246621\pi\)
\(90\) 0 0
\(91\) −17.3742 −1.82131
\(92\) 0 0
\(93\) 5.11451 0.530350
\(94\) 0 0
\(95\) 1.57012 + 10.9204i 0.161091 + 1.12041i
\(96\) 0 0
\(97\) −6.84457 2.00975i −0.694961 0.204059i −0.0848721 0.996392i \(-0.527048\pi\)
−0.610089 + 0.792333i \(0.708866\pi\)
\(98\) 0 0
\(99\) 3.16000 3.64683i 0.317592 0.366521i
\(100\) 0 0
\(101\) 5.07150 1.48913i 0.504633 0.148174i −0.0195002 0.999810i \(-0.506208\pi\)
0.524133 + 0.851636i \(0.324389\pi\)
\(102\) 0 0
\(103\) 16.1144 10.3561i 1.58780 1.02042i 0.615074 0.788470i \(-0.289126\pi\)
0.972728 0.231949i \(-0.0745102\pi\)
\(104\) 0 0
\(105\) 6.59690 + 7.61322i 0.643791 + 0.742975i
\(106\) 0 0
\(107\) 1.56999 10.9195i 0.151777 1.05563i −0.761463 0.648209i \(-0.775518\pi\)
0.913240 0.407423i \(-0.133572\pi\)
\(108\) 0 0
\(109\) −0.724276 + 1.58594i −0.0693731 + 0.151906i −0.941142 0.338011i \(-0.890246\pi\)
0.871769 + 0.489917i \(0.162973\pi\)
\(110\) 0 0
\(111\) −4.43309 9.70710i −0.420770 0.921357i
\(112\) 0 0
\(113\) −14.5328 9.33966i −1.36713 0.878601i −0.368434 0.929654i \(-0.620106\pi\)
−0.998696 + 0.0510528i \(0.983742\pi\)
\(114\) 0 0
\(115\) −11.8121 1.76744i −1.10149 0.164815i
\(116\) 0 0
\(117\) 3.61337 + 2.32217i 0.334057 + 0.214685i
\(118\) 0 0
\(119\) −7.58068 16.5994i −0.694920 1.52166i
\(120\) 0 0
\(121\) 5.10337 11.1748i 0.463943 1.01589i
\(122\) 0 0
\(123\) 1.08215 7.52654i 0.0975745 0.678646i
\(124\) 0 0
\(125\) 6.19377 + 7.14799i 0.553988 + 0.639336i
\(126\) 0 0
\(127\) −12.0209 + 7.72538i −1.06668 + 0.685516i −0.951444 0.307821i \(-0.900400\pi\)
−0.115240 + 0.993338i \(0.536764\pi\)
\(128\) 0 0
\(129\) 7.27706 2.13674i 0.640709 0.188129i
\(130\) 0 0
\(131\) 6.51189 7.51512i 0.568946 0.656599i −0.396245 0.918145i \(-0.629687\pi\)
0.965191 + 0.261546i \(0.0842323\pi\)
\(132\) 0 0
\(133\) −17.1938 5.04854i −1.49089 0.437764i
\(134\) 0 0
\(135\) −0.354423 2.46507i −0.0305039 0.212159i
\(136\) 0 0
\(137\) −8.14309 −0.695711 −0.347855 0.937548i \(-0.613090\pi\)
−0.347855 + 0.937548i \(0.613090\pi\)
\(138\) 0 0
\(139\) −10.1303 −0.859242 −0.429621 0.903009i \(-0.641353\pi\)
−0.429621 + 0.903009i \(0.641353\pi\)
\(140\) 0 0
\(141\) 1.09259 + 7.59911i 0.0920124 + 0.639960i
\(142\) 0 0
\(143\) 19.8869 + 5.83931i 1.66302 + 0.488307i
\(144\) 0 0
\(145\) 0.814041 0.939453i 0.0676024 0.0780173i
\(146\) 0 0
\(147\) −8.98279 + 2.63758i −0.740888 + 0.217544i
\(148\) 0 0
\(149\) 5.58068 3.58648i 0.457187 0.293816i −0.291705 0.956508i \(-0.594223\pi\)
0.748892 + 0.662692i \(0.230586\pi\)
\(150\) 0 0
\(151\) 5.56561 + 6.42306i 0.452923 + 0.522701i 0.935583 0.353107i \(-0.114875\pi\)
−0.482660 + 0.875808i \(0.660329\pi\)
\(152\) 0 0
\(153\) −0.642033 + 4.46544i −0.0519053 + 0.361010i
\(154\) 0 0
\(155\) 5.29125 11.5862i 0.425004 0.930628i
\(156\) 0 0
\(157\) 3.89510 + 8.52909i 0.310863 + 0.680695i 0.998992 0.0448934i \(-0.0142948\pi\)
−0.688129 + 0.725589i \(0.741568\pi\)
\(158\) 0 0
\(159\) −6.42525 4.12926i −0.509556 0.327472i
\(160\) 0 0
\(161\) 10.5813 16.2592i 0.833921 1.28141i
\(162\) 0 0
\(163\) −4.07886 2.62132i −0.319481 0.205318i 0.371064 0.928607i \(-0.378993\pi\)
−0.690545 + 0.723289i \(0.742629\pi\)
\(164\) 0 0
\(165\) −4.99221 10.9314i −0.388643 0.851009i
\(166\) 0 0
\(167\) −5.54815 + 12.1488i −0.429329 + 0.940099i 0.564107 + 0.825702i \(0.309221\pi\)
−0.993435 + 0.114397i \(0.963507\pi\)
\(168\) 0 0
\(169\) −0.775469 + 5.39351i −0.0596515 + 0.414885i
\(170\) 0 0
\(171\) 2.90108 + 3.34802i 0.221851 + 0.256030i
\(172\) 0 0
\(173\) 8.57692 5.51205i 0.652091 0.419073i −0.172339 0.985038i \(-0.555132\pi\)
0.824430 + 0.565964i \(0.191496\pi\)
\(174\) 0 0
\(175\) 4.66585 1.37002i 0.352705 0.103564i
\(176\) 0 0
\(177\) −1.85219 + 2.13754i −0.139219 + 0.160667i
\(178\) 0 0
\(179\) −5.83694 1.71388i −0.436274 0.128102i 0.0562183 0.998419i \(-0.482096\pi\)
−0.492492 + 0.870317i \(0.663914\pi\)
\(180\) 0 0
\(181\) 0.660855 + 4.59635i 0.0491209 + 0.341644i 0.999530 + 0.0306423i \(0.00975529\pi\)
−0.950409 + 0.311001i \(0.899336\pi\)
\(182\) 0 0
\(183\) 1.58800 0.117388
\(184\) 0 0
\(185\) −26.5764 −1.95394
\(186\) 0 0
\(187\) 3.09810 + 21.5478i 0.226556 + 1.57573i
\(188\) 0 0
\(189\) 3.88115 + 1.13961i 0.282312 + 0.0828943i
\(190\) 0 0
\(191\) 7.73126 8.92235i 0.559414 0.645599i −0.403636 0.914920i \(-0.632254\pi\)
0.963050 + 0.269321i \(0.0867992\pi\)
\(192\) 0 0
\(193\) −21.4550 + 6.29975i −1.54436 + 0.453466i −0.939410 0.342795i \(-0.888626\pi\)
−0.604953 + 0.796261i \(0.706808\pi\)
\(194\) 0 0
\(195\) 8.99881 5.78319i 0.644418 0.414143i
\(196\) 0 0
\(197\) −5.93139 6.84519i −0.422594 0.487699i 0.504031 0.863685i \(-0.331850\pi\)
−0.926625 + 0.375986i \(0.877304\pi\)
\(198\) 0 0
\(199\) 0.513726 3.57304i 0.0364171 0.253286i −0.963478 0.267788i \(-0.913707\pi\)
0.999895 + 0.0145021i \(0.00461632\pi\)
\(200\) 0 0
\(201\) 4.99342 10.9341i 0.352208 0.771229i
\(202\) 0 0
\(203\) 0.838736 + 1.83658i 0.0588677 + 0.128902i
\(204\) 0 0
\(205\) −15.9308 10.2381i −1.11266 0.715061i
\(206\) 0 0
\(207\) −4.37378 + 1.96724i −0.303999 + 0.136733i
\(208\) 0 0
\(209\) 17.9836 + 11.5573i 1.24395 + 0.799438i
\(210\) 0 0
\(211\) −1.02026 2.23405i −0.0702374 0.153798i 0.871257 0.490827i \(-0.163305\pi\)
−0.941494 + 0.337029i \(0.890578\pi\)
\(212\) 0 0
\(213\) 1.57512 3.44904i 0.107926 0.236324i
\(214\) 0 0
\(215\) 2.68804 18.6958i 0.183323 1.27504i
\(216\) 0 0
\(217\) 13.5479 + 15.6351i 0.919690 + 1.06138i
\(218\) 0 0
\(219\) −6.27023 + 4.02963i −0.423703 + 0.272297i
\(220\) 0 0
\(221\) −18.5924 + 5.45922i −1.25066 + 0.367227i
\(222\) 0 0
\(223\) 10.9606 12.6492i 0.733976 0.847053i −0.258938 0.965894i \(-0.583372\pi\)
0.992913 + 0.118841i \(0.0379179\pi\)
\(224\) 0 0
\(225\) −1.15349 0.338694i −0.0768991 0.0225796i
\(226\) 0 0
\(227\) 1.94100 + 13.5000i 0.128829 + 0.896024i 0.947042 + 0.321109i \(0.104056\pi\)
−0.818213 + 0.574915i \(0.805035\pi\)
\(228\) 0 0
\(229\) −6.76866 −0.447286 −0.223643 0.974671i \(-0.571795\pi\)
−0.223643 + 0.974671i \(0.571795\pi\)
\(230\) 0 0
\(231\) 19.5190 1.28425
\(232\) 0 0
\(233\) 1.54002 + 10.7111i 0.100890 + 0.701705i 0.975998 + 0.217778i \(0.0698809\pi\)
−0.875108 + 0.483927i \(0.839210\pi\)
\(234\) 0 0
\(235\) 18.3451 + 5.38661i 1.19670 + 0.351383i
\(236\) 0 0
\(237\) 7.62471 8.79938i 0.495278 0.571581i
\(238\) 0 0
\(239\) −18.3881 + 5.39923i −1.18943 + 0.349247i −0.815801 0.578333i \(-0.803704\pi\)
−0.373625 + 0.927580i \(0.621885\pi\)
\(240\) 0 0
\(241\) −8.37372 + 5.38147i −0.539399 + 0.346651i −0.781804 0.623525i \(-0.785700\pi\)
0.242405 + 0.970175i \(0.422064\pi\)
\(242\) 0 0
\(243\) −0.654861 0.755750i −0.0420093 0.0484814i
\(244\) 0 0
\(245\) −3.31812 + 23.0780i −0.211987 + 1.47440i
\(246\) 0 0
\(247\) −7.90458 + 17.3086i −0.502957 + 1.10132i
\(248\) 0 0
\(249\) 2.20443 + 4.82703i 0.139700 + 0.305901i
\(250\) 0 0
\(251\) 9.59137 + 6.16400i 0.605402 + 0.389068i 0.807130 0.590373i \(-0.201019\pi\)
−0.201728 + 0.979442i \(0.564656\pi\)
\(252\) 0 0
\(253\) −17.5761 + 15.0544i −1.10500 + 0.946462i
\(254\) 0 0
\(255\) 9.45163 + 6.07419i 0.591884 + 0.380381i
\(256\) 0 0
\(257\) 10.8691 + 23.8000i 0.677995 + 1.48460i 0.864754 + 0.502196i \(0.167474\pi\)
−0.186759 + 0.982406i \(0.559798\pi\)
\(258\) 0 0
\(259\) 17.9318 39.2652i 1.11423 2.43982i
\(260\) 0 0
\(261\) 0.0710354 0.494062i 0.00439698 0.0305817i
\(262\) 0 0
\(263\) 19.2160 + 22.1764i 1.18491 + 1.36746i 0.914438 + 0.404727i \(0.132633\pi\)
0.270469 + 0.962729i \(0.412821\pi\)
\(264\) 0 0
\(265\) −16.0016 + 10.2836i −0.982969 + 0.631716i
\(266\) 0 0
\(267\) −10.6947 + 3.14024i −0.654504 + 0.192180i
\(268\) 0 0
\(269\) 18.5100 21.3616i 1.12857 1.30244i 0.180790 0.983522i \(-0.442134\pi\)
0.947782 0.318920i \(-0.103320\pi\)
\(270\) 0 0
\(271\) 0.108543 + 0.0318710i 0.00659349 + 0.00193602i 0.285028 0.958519i \(-0.407997\pi\)
−0.278434 + 0.960455i \(0.589815\pi\)
\(272\) 0 0
\(273\) 2.47260 + 17.1973i 0.149649 + 1.04083i
\(274\) 0 0
\(275\) −5.80108 −0.349818
\(276\) 0 0
\(277\) −3.96519 −0.238245 −0.119123 0.992880i \(-0.538008\pi\)
−0.119123 + 0.992880i \(0.538008\pi\)
\(278\) 0 0
\(279\) −0.727870 5.06245i −0.0435765 0.303081i
\(280\) 0 0
\(281\) 15.9629 + 4.68713i 0.952267 + 0.279611i 0.720730 0.693215i \(-0.243807\pi\)
0.231536 + 0.972826i \(0.425625\pi\)
\(282\) 0 0
\(283\) 11.0836 12.7911i 0.658851 0.760354i −0.323738 0.946147i \(-0.604940\pi\)
0.982589 + 0.185792i \(0.0594852\pi\)
\(284\) 0 0
\(285\) 10.5858 3.10828i 0.627050 0.184119i
\(286\) 0 0
\(287\) 25.8752 16.6290i 1.52737 0.981579i
\(288\) 0 0
\(289\) −2.19534 2.53355i −0.129137 0.149032i
\(290\) 0 0
\(291\) −1.01521 + 7.06092i −0.0595125 + 0.413919i
\(292\) 0 0
\(293\) 8.50419 18.6216i 0.496820 1.08788i −0.480670 0.876902i \(-0.659607\pi\)
0.977490 0.210982i \(-0.0676662\pi\)
\(294\) 0 0
\(295\) 2.92611 + 6.40728i 0.170365 + 0.373046i
\(296\) 0 0
\(297\) −4.05943 2.60884i −0.235552 0.151380i
\(298\) 0 0
\(299\) −15.4903 13.5785i −0.895827 0.785267i
\(300\) 0 0
\(301\) 25.8083 + 16.5860i 1.48756 + 0.956000i
\(302\) 0 0
\(303\) −2.19572 4.80796i −0.126141 0.276210i
\(304\) 0 0
\(305\) 1.64288 3.59740i 0.0940708 0.205986i
\(306\) 0 0
\(307\) −2.39426 + 16.6525i −0.136648 + 0.950407i 0.799967 + 0.600045i \(0.204851\pi\)
−0.936614 + 0.350362i \(0.886059\pi\)
\(308\) 0 0
\(309\) −12.5440 14.4766i −0.713605 0.823544i
\(310\) 0 0
\(311\) −25.0518 + 16.0998i −1.42055 + 0.912935i −0.420571 + 0.907260i \(0.638170\pi\)
−0.999984 + 0.00567544i \(0.998193\pi\)
\(312\) 0 0
\(313\) 28.9943 8.51351i 1.63886 0.481212i 0.672861 0.739769i \(-0.265065\pi\)
0.965996 + 0.258557i \(0.0832470\pi\)
\(314\) 0 0
\(315\) 6.59690 7.61322i 0.371693 0.428957i
\(316\) 0 0
\(317\) 5.02982 + 1.47689i 0.282503 + 0.0829504i 0.419914 0.907564i \(-0.362060\pi\)
−0.137411 + 0.990514i \(0.543878\pi\)
\(318\) 0 0
\(319\) −0.342778 2.38407i −0.0191919 0.133483i
\(320\) 0 0
\(321\) −11.0318 −0.615736
\(322\) 0 0
\(323\) −19.9856 −1.11203
\(324\) 0 0
\(325\) −0.734864 5.11109i −0.0407629 0.283512i
\(326\) 0 0
\(327\) 1.67288 + 0.491201i 0.0925102 + 0.0271635i
\(328\) 0 0
\(329\) −20.3364 + 23.4694i −1.12118 + 1.29391i
\(330\) 0 0
\(331\) −18.1389 + 5.32606i −0.997003 + 0.292747i −0.739226 0.673458i \(-0.764808\pi\)
−0.257778 + 0.966204i \(0.582990\pi\)
\(332\) 0 0
\(333\) −8.97741 + 5.76943i −0.491959 + 0.316163i
\(334\) 0 0
\(335\) −19.6036 22.6238i −1.07106 1.23607i
\(336\) 0 0
\(337\) 1.73565 12.0717i 0.0945470 0.657589i −0.886344 0.463028i \(-0.846763\pi\)
0.980891 0.194560i \(-0.0623280\pi\)
\(338\) 0 0
\(339\) −7.17636 + 15.7140i −0.389766 + 0.853470i
\(340\) 0 0
\(341\) −10.2524 22.4496i −0.555197 1.21571i
\(342\) 0 0
\(343\) −8.03763 5.16547i −0.433991 0.278909i
\(344\) 0 0
\(345\) −0.0684114 + 11.9434i −0.00368315 + 0.643013i
\(346\) 0 0
\(347\) 7.06027 + 4.53736i 0.379015 + 0.243578i 0.716252 0.697842i \(-0.245856\pi\)
−0.337237 + 0.941420i \(0.609492\pi\)
\(348\) 0 0
\(349\) 9.08565 + 19.8948i 0.486344 + 1.06494i 0.980670 + 0.195668i \(0.0626875\pi\)
−0.494326 + 0.869276i \(0.664585\pi\)
\(350\) 0 0
\(351\) 1.78430 3.90708i 0.0952390 0.208544i
\(352\) 0 0
\(353\) −2.92984 + 20.3775i −0.155940 + 1.08459i 0.750079 + 0.661348i \(0.230015\pi\)
−0.906019 + 0.423237i \(0.860894\pi\)
\(354\) 0 0
\(355\) −6.18378 7.13646i −0.328201 0.378764i
\(356\) 0 0
\(357\) −15.3516 + 9.86585i −0.812491 + 0.522156i
\(358\) 0 0
\(359\) 20.5158 6.02397i 1.08278 0.317933i 0.308790 0.951130i \(-0.400076\pi\)
0.773991 + 0.633197i \(0.218258\pi\)
\(360\) 0 0
\(361\) −0.409640 + 0.472749i −0.0215600 + 0.0248815i
\(362\) 0 0
\(363\) −11.7874 3.46109i −0.618677 0.181660i
\(364\) 0 0
\(365\) 2.64167 + 18.3732i 0.138271 + 0.961699i
\(366\) 0 0
\(367\) 11.1339 0.581182 0.290591 0.956847i \(-0.406148\pi\)
0.290591 + 0.956847i \(0.406148\pi\)
\(368\) 0 0
\(369\) −7.60394 −0.395845
\(370\) 0 0
\(371\) −4.39675 30.5801i −0.228268 1.58764i
\(372\) 0 0
\(373\) −12.8571 3.77518i −0.665714 0.195471i −0.0686206 0.997643i \(-0.521860\pi\)
−0.597094 + 0.802171i \(0.703678\pi\)
\(374\) 0 0
\(375\) 6.19377 7.14799i 0.319845 0.369121i
\(376\) 0 0
\(377\) 2.05709 0.604015i 0.105945 0.0311084i
\(378\) 0 0
\(379\) −0.457570 + 0.294062i −0.0235038 + 0.0151050i −0.552340 0.833619i \(-0.686265\pi\)
0.528836 + 0.848724i \(0.322629\pi\)
\(380\) 0 0
\(381\) 9.35750 + 10.7991i 0.479399 + 0.553256i
\(382\) 0 0
\(383\) 0.358061 2.49037i 0.0182961 0.127252i −0.978626 0.205646i \(-0.934070\pi\)
0.996922 + 0.0783945i \(0.0249794\pi\)
\(384\) 0 0
\(385\) 20.1935 44.2175i 1.02915 2.25353i
\(386\) 0 0
\(387\) −3.15062 6.89890i −0.160155 0.350691i
\(388\) 0 0
\(389\) −10.5193 6.76037i −0.533352 0.342764i 0.246082 0.969249i \(-0.420857\pi\)
−0.779434 + 0.626485i \(0.784493\pi\)
\(390\) 0 0
\(391\) 6.21429 20.7241i 0.314270 1.04806i
\(392\) 0 0
\(393\) −8.36536 5.37609i −0.421977 0.271188i
\(394\) 0 0
\(395\) −12.0456 26.3762i −0.606080 1.32713i
\(396\) 0 0
\(397\) 9.36806 20.5132i 0.470169 1.02953i −0.514881 0.857262i \(-0.672164\pi\)
0.985051 0.172266i \(-0.0551087\pi\)
\(398\) 0 0
\(399\) −2.55023 + 17.7372i −0.127671 + 0.887973i
\(400\) 0 0
\(401\) 0.939019 + 1.08369i 0.0468924 + 0.0541167i 0.778711 0.627383i \(-0.215874\pi\)
−0.731819 + 0.681499i \(0.761328\pi\)
\(402\) 0 0
\(403\) 18.4806 11.8768i 0.920586 0.591625i
\(404\) 0 0
\(405\) −2.38954 + 0.701632i −0.118737 + 0.0348644i
\(406\) 0 0
\(407\) −33.7218 + 38.9171i −1.67153 + 1.92905i
\(408\) 0 0
\(409\) −2.01920 0.592891i −0.0998430 0.0293166i 0.231429 0.972852i \(-0.425660\pi\)
−0.331272 + 0.943535i \(0.607478\pi\)
\(410\) 0 0
\(411\) 1.15888 + 8.06020i 0.0571634 + 0.397580i
\(412\) 0 0
\(413\) −11.4407 −0.562962
\(414\) 0 0
\(415\) 13.2156 0.648729
\(416\) 0 0
\(417\) 1.44169 + 10.0272i 0.0706001 + 0.491034i
\(418\) 0 0
\(419\) 14.1544 + 4.15610i 0.691486 + 0.203039i 0.608549 0.793516i \(-0.291752\pi\)
0.0829368 + 0.996555i \(0.473570\pi\)
\(420\) 0 0
\(421\) 1.55784 1.79785i 0.0759246 0.0876216i −0.716516 0.697570i \(-0.754264\pi\)
0.792441 + 0.609949i \(0.208810\pi\)
\(422\) 0 0
\(423\) 7.36627 2.16293i 0.358160 0.105165i
\(424\) 0 0
\(425\) 4.56252 2.93216i 0.221315 0.142230i
\(426\) 0 0
\(427\) 4.20647 + 4.85452i 0.203565 + 0.234927i
\(428\) 0 0
\(429\) 2.94968 20.5155i 0.142412 0.990495i
\(430\) 0 0
\(431\) 7.23072 15.8331i 0.348291 0.762652i −0.651700 0.758477i \(-0.725944\pi\)
0.999991 0.00417490i \(-0.00132892\pi\)
\(432\) 0 0
\(433\) −8.20769 17.9723i −0.394436 0.863695i −0.997804 0.0662322i \(-0.978902\pi\)
0.603368 0.797463i \(-0.293825\pi\)
\(434\) 0 0
\(435\) −1.04574 0.672057i −0.0501394 0.0322227i
\(436\) 0 0
\(437\) −11.3838 17.9387i −0.544562 0.858123i
\(438\) 0 0
\(439\) −15.4395 9.92238i −0.736888 0.473569i 0.117586 0.993063i \(-0.462484\pi\)
−0.854474 + 0.519493i \(0.826121\pi\)
\(440\) 0 0
\(441\) 3.88912 + 8.51599i 0.185196 + 0.405523i
\(442\) 0 0
\(443\) −0.532229 + 1.16542i −0.0252869 + 0.0553707i −0.921854 0.387537i \(-0.873326\pi\)
0.896567 + 0.442908i \(0.146053\pi\)
\(444\) 0 0
\(445\) −3.95047 + 27.4761i −0.187270 + 1.30249i
\(446\) 0 0
\(447\) −4.34419 5.01346i −0.205473 0.237129i
\(448\) 0 0
\(449\) 7.96730 5.12027i 0.376000 0.241641i −0.338968 0.940798i \(-0.610078\pi\)
0.714968 + 0.699157i \(0.246441\pi\)
\(450\) 0 0
\(451\) −35.2062 + 10.3375i −1.65779 + 0.486772i
\(452\) 0 0
\(453\) 5.56561 6.42306i 0.261495 0.301782i
\(454\) 0 0
\(455\) 41.5163 + 12.1903i 1.94631 + 0.571489i
\(456\) 0 0
\(457\) −2.98099 20.7333i −0.139445 0.969861i −0.932618 0.360865i \(-0.882482\pi\)
0.793173 0.608996i \(-0.208428\pi\)
\(458\) 0 0
\(459\) 4.51136 0.210572
\(460\) 0 0
\(461\) 7.43095 0.346094 0.173047 0.984914i \(-0.444639\pi\)
0.173047 + 0.984914i \(0.444639\pi\)
\(462\) 0 0
\(463\) 3.90134 + 27.1344i 0.181310 + 1.26104i 0.853669 + 0.520816i \(0.174372\pi\)
−0.672358 + 0.740226i \(0.734719\pi\)
\(464\) 0 0
\(465\) −12.2213 3.58850i −0.566750 0.166413i
\(466\) 0 0
\(467\) −24.5015 + 28.2762i −1.13379 + 1.30847i −0.188563 + 0.982061i \(0.560383\pi\)
−0.945230 + 0.326405i \(0.894163\pi\)
\(468\) 0 0
\(469\) 46.6526 13.6984i 2.15422 0.632535i
\(470\) 0 0
\(471\) 7.88794 5.06927i 0.363457 0.233580i
\(472\) 0 0
\(473\) −23.9663 27.6586i −1.10197 1.27174i
\(474\) 0 0
\(475\) 0.757935 5.27155i 0.0347764 0.241875i
\(476\) 0 0
\(477\) −3.17282 + 6.94751i −0.145274 + 0.318105i
\(478\) 0 0
\(479\) 6.62333 + 14.5031i 0.302628 + 0.662662i 0.998456 0.0555460i \(-0.0176900\pi\)
−0.695829 + 0.718208i \(0.744963\pi\)
\(480\) 0 0
\(481\) −38.5600 24.7810i −1.75818 1.12992i
\(482\) 0 0
\(483\) −17.5996 8.15963i −0.800811 0.371276i
\(484\) 0 0
\(485\) 14.9453 + 9.60474i 0.678630 + 0.436129i
\(486\) 0 0
\(487\) 6.29565 + 13.7855i 0.285283 + 0.624683i 0.996968 0.0778164i \(-0.0247948\pi\)
−0.711685 + 0.702499i \(0.752068\pi\)
\(488\) 0 0
\(489\) −2.01416 + 4.41040i −0.0910835 + 0.199445i
\(490\) 0 0
\(491\) −5.02270 + 34.9336i −0.226671 + 1.57653i 0.485315 + 0.874340i \(0.338705\pi\)
−0.711986 + 0.702194i \(0.752204\pi\)
\(492\) 0 0
\(493\) 1.47462 + 1.70181i 0.0664137 + 0.0766455i
\(494\) 0 0
\(495\) −10.1097 + 6.49710i −0.454396 + 0.292023i
\(496\) 0 0
\(497\) 14.7161 4.32104i 0.660107 0.193825i
\(498\) 0 0
\(499\) 15.9697 18.4300i 0.714902 0.825041i −0.275782 0.961220i \(-0.588937\pi\)
0.990684 + 0.136179i \(0.0434824\pi\)
\(500\) 0 0
\(501\) 12.8147 + 3.76273i 0.572518 + 0.168106i
\(502\) 0 0
\(503\) −4.74046 32.9706i −0.211367 1.47009i −0.768599 0.639731i \(-0.779046\pi\)
0.557232 0.830357i \(-0.311863\pi\)
\(504\) 0 0
\(505\) −13.1634 −0.585762
\(506\) 0 0
\(507\) 5.44897 0.241997
\(508\) 0 0
\(509\) −2.84114 19.7605i −0.125931 0.875870i −0.950636 0.310307i \(-0.899568\pi\)
0.824705 0.565563i \(-0.191341\pi\)
\(510\) 0 0
\(511\) −28.9279 8.49399i −1.27969 0.375752i
\(512\) 0 0
\(513\) 2.90108 3.34802i 0.128086 0.147819i
\(514\) 0 0
\(515\) −45.7722 + 13.4399i −2.01697 + 0.592235i
\(516\) 0 0
\(517\) 31.1653 20.0287i 1.37065 0.880861i
\(518\) 0 0
\(519\) −6.67657 7.70517i −0.293069 0.338219i
\(520\) 0 0
\(521\) −5.86877 + 40.8182i −0.257116 + 1.78828i 0.296014 + 0.955184i \(0.404343\pi\)
−0.553130 + 0.833095i \(0.686567\pi\)
\(522\) 0 0
\(523\) 4.28867 9.39088i 0.187530 0.410634i −0.792392 0.610012i \(-0.791165\pi\)
0.979923 + 0.199377i \(0.0638920\pi\)
\(524\) 0 0
\(525\) −2.02009 4.42339i −0.0881641 0.193052i
\(526\) 0 0
\(527\) 19.4106 + 12.4744i 0.845538 + 0.543394i
\(528\) 0 0
\(529\) 22.1411 6.22662i 0.962657 0.270723i
\(530\) 0 0
\(531\) 2.37937 + 1.52913i 0.103256 + 0.0663586i
\(532\) 0 0
\(533\) −13.5677 29.7092i −0.587683 1.28685i
\(534\) 0 0
\(535\) −11.4131 + 24.9911i −0.493429 + 1.08046i
\(536\) 0 0
\(537\) −0.865753 + 6.02144i −0.0373600 + 0.259844i
\(538\) 0 0
\(539\) 29.5840 + 34.1417i 1.27427 + 1.47059i
\(540\) 0 0
\(541\) −29.0203 + 18.6502i −1.24768 + 0.801834i −0.986548 0.163469i \(-0.947732\pi\)
−0.261130 + 0.965304i \(0.584095\pi\)
\(542\) 0 0
\(543\) 4.45551 1.30826i 0.191204 0.0561427i
\(544\) 0 0
\(545\) 2.84343 3.28150i 0.121799 0.140564i
\(546\) 0 0
\(547\) 9.85374 + 2.89332i 0.421315 + 0.123709i 0.485516 0.874228i \(-0.338632\pi\)
−0.0642009 + 0.997937i \(0.520450\pi\)
\(548\) 0 0
\(549\) −0.225996 1.57184i −0.00964527 0.0670843i
\(550\) 0 0
\(551\) 2.21124 0.0942019
\(552\) 0 0
\(553\) 47.0969 2.00277
\(554\) 0 0
\(555\) 3.78222 + 26.3059i 0.160546 + 1.11662i
\(556\) 0 0
\(557\) −29.0734 8.53672i −1.23188 0.361712i −0.399921 0.916550i \(-0.630962\pi\)
−0.831959 + 0.554837i \(0.812780\pi\)
\(558\) 0 0
\(559\) 21.3329 24.6194i 0.902283 1.04129i
\(560\) 0 0
\(561\) 20.8875 6.13314i 0.881873 0.258941i
\(562\) 0 0
\(563\) −26.7756 + 17.2076i −1.12846 + 0.725214i −0.965237 0.261376i \(-0.915824\pi\)
−0.163218 + 0.986590i \(0.552187\pi\)
\(564\) 0 0
\(565\) 28.1737 + 32.5141i 1.18528 + 1.36788i
\(566\) 0 0
\(567\) 0.575663 4.00383i 0.0241756 0.168145i
\(568\) 0 0
\(569\) −0.827716 + 1.81245i −0.0346997 + 0.0759817i −0.926188 0.377062i \(-0.876934\pi\)
0.891488 + 0.453043i \(0.149662\pi\)
\(570\) 0 0
\(571\) −4.19617 9.18833i −0.175604 0.384520i 0.801280 0.598290i \(-0.204153\pi\)
−0.976884 + 0.213770i \(0.931426\pi\)
\(572\) 0 0
\(573\) −9.93181 6.38279i −0.414907 0.266645i
\(574\) 0 0
\(575\) 5.23065 + 2.42506i 0.218133 + 0.101132i
\(576\) 0 0
\(577\) 9.09996 + 5.84819i 0.378836 + 0.243463i 0.716176 0.697920i \(-0.245891\pi\)
−0.337340 + 0.941383i \(0.609527\pi\)
\(578\) 0 0
\(579\) 9.28899 + 20.3401i 0.386037 + 0.845304i
\(580\) 0 0
\(581\) −8.91693 + 19.5254i −0.369937 + 0.810048i
\(582\) 0 0
\(583\) −5.24508 + 36.4803i −0.217229 + 1.51086i
\(584\) 0 0
\(585\) −7.00499 8.08419i −0.289621 0.334240i
\(586\) 0 0
\(587\) 19.2092 12.3450i 0.792848 0.509532i −0.0804270 0.996761i \(-0.525628\pi\)
0.873275 + 0.487228i \(0.161992\pi\)
\(588\) 0 0
\(589\) 21.7398 6.38340i 0.895775 0.263023i
\(590\) 0 0
\(591\) −5.93139 + 6.84519i −0.243985 + 0.281573i
\(592\) 0 0
\(593\) 12.7448 + 3.74220i 0.523365 + 0.153674i 0.532735 0.846282i \(-0.321164\pi\)
−0.00936967 + 0.999956i \(0.502983\pi\)
\(594\) 0 0
\(595\) 6.46768 + 44.9837i 0.265149 + 1.84415i
\(596\) 0 0
\(597\) −3.60978 −0.147739
\(598\) 0 0
\(599\) 15.3103 0.625563 0.312781 0.949825i \(-0.398739\pi\)
0.312781 + 0.949825i \(0.398739\pi\)
\(600\) 0 0
\(601\) 3.13065 + 21.7741i 0.127702 + 0.888185i 0.948457 + 0.316905i \(0.102644\pi\)
−0.820755 + 0.571280i \(0.806447\pi\)
\(602\) 0 0
\(603\) −11.5334 3.38651i −0.469676 0.137909i
\(604\) 0 0
\(605\) −20.0353 + 23.1220i −0.814552 + 0.940043i
\(606\) 0 0
\(607\) −1.82069 + 0.534602i −0.0738994 + 0.0216988i −0.318473 0.947932i \(-0.603170\pi\)
0.244574 + 0.969631i \(0.421352\pi\)
\(608\) 0 0
\(609\) 1.69852 1.09157i 0.0688274 0.0442327i
\(610\) 0 0
\(611\) 21.5944 + 24.9212i 0.873615 + 1.00821i
\(612\) 0 0
\(613\) −2.90508 + 20.2052i −0.117335 + 0.816082i 0.843136 + 0.537701i \(0.180707\pi\)
−0.960471 + 0.278381i \(0.910202\pi\)
\(614\) 0 0
\(615\) −7.86671 + 17.2257i −0.317216 + 0.694607i
\(616\) 0 0
\(617\) 8.44479 + 18.4915i 0.339975 + 0.744440i 0.999977 0.00682330i \(-0.00217194\pi\)
−0.660002 + 0.751264i \(0.729445\pi\)
\(618\) 0 0
\(619\) −29.4504 18.9266i −1.18371 0.760725i −0.207647 0.978204i \(-0.566580\pi\)
−0.976065 + 0.217479i \(0.930217\pi\)
\(620\) 0 0
\(621\) 2.56967 + 4.04930i 0.103117 + 0.162493i
\(622\) 0 0
\(623\) −37.9290 24.3755i −1.51959 0.976583i
\(624\) 0 0
\(625\) −12.2820 26.8939i −0.491281 1.07576i
\(626\) 0 0
\(627\) 8.88037 19.4453i 0.354648 0.776570i
\(628\) 0 0
\(629\) 6.85144 47.6528i 0.273185 1.90004i
\(630\) 0 0
\(631\) −20.2459 23.3650i −0.805976 0.930146i 0.192717 0.981254i \(-0.438270\pi\)
−0.998693 + 0.0511081i \(0.983725\pi\)
\(632\) 0 0
\(633\) −2.06611 + 1.32781i −0.0821207 + 0.0527758i
\(634\) 0 0
\(635\) 34.1448 10.0258i 1.35500 0.397863i
\(636\) 0 0
\(637\) −26.3332 + 30.3902i −1.04336 + 1.20410i
\(638\) 0 0
\(639\) −3.63810 1.06824i −0.143921 0.0422590i
\(640\) 0 0
\(641\) −7.05443 49.0646i −0.278633 1.93794i −0.341422 0.939910i \(-0.610908\pi\)
0.0627883 0.998027i \(-0.480001\pi\)
\(642\) 0 0
\(643\) 36.1135 1.42418 0.712089 0.702089i \(-0.247749\pi\)
0.712089 + 0.702089i \(0.247749\pi\)
\(644\) 0 0
\(645\) −18.8880 −0.743715
\(646\) 0 0
\(647\) −2.05843 14.3167i −0.0809251 0.562846i −0.989434 0.144982i \(-0.953688\pi\)
0.908509 0.417865i \(-0.137221\pi\)
\(648\) 0 0
\(649\) 13.0953 + 3.84513i 0.514036 + 0.150935i
\(650\) 0 0
\(651\) 13.5479 15.6351i 0.530983 0.612787i
\(652\) 0 0
\(653\) 39.8195 11.6921i 1.55826 0.457545i 0.614701 0.788760i \(-0.289277\pi\)
0.943555 + 0.331215i \(0.107458\pi\)
\(654\) 0 0
\(655\) −20.8333 + 13.3887i −0.814023 + 0.523141i
\(656\) 0 0
\(657\) 4.88096 + 5.63293i 0.190424 + 0.219762i
\(658\) 0 0
\(659\) −3.38046 + 23.5116i −0.131684 + 0.915881i 0.811675 + 0.584109i \(0.198556\pi\)
−0.943359 + 0.331773i \(0.892353\pi\)
\(660\) 0 0
\(661\) −18.6367 + 40.8086i −0.724882 + 1.58727i 0.0820519 + 0.996628i \(0.473853\pi\)
−0.806934 + 0.590642i \(0.798875\pi\)
\(662\) 0 0
\(663\) 8.04963 + 17.6262i 0.312622 + 0.684546i
\(664\) 0 0
\(665\) 37.5429 + 24.1274i 1.45585 + 0.935620i
\(666\) 0 0
\(667\) −0.687558 + 2.29294i −0.0266223 + 0.0887829i
\(668\) 0 0
\(669\) −14.0803 9.04886i −0.544376 0.349849i
\(670\) 0 0
\(671\) −3.18325 6.97034i −0.122888 0.269087i
\(672\) 0 0
\(673\) −18.4662 + 40.4353i −0.711819 + 1.55867i 0.113207 + 0.993571i \(0.463888\pi\)
−0.825026 + 0.565095i \(0.808840\pi\)
\(674\) 0 0
\(675\) −0.171089 + 1.18995i −0.00658520 + 0.0458011i
\(676\) 0 0
\(677\) 16.0916 + 18.5707i 0.618451 + 0.713731i 0.975412 0.220389i \(-0.0707326\pi\)
−0.356961 + 0.934119i \(0.616187\pi\)
\(678\) 0 0
\(679\) −24.2745 + 15.6003i −0.931569 + 0.598683i
\(680\) 0 0
\(681\) 13.0863 3.84249i 0.501469 0.147245i
\(682\) 0 0
\(683\) 23.6796 27.3277i 0.906076 1.04567i −0.0926750 0.995696i \(-0.529542\pi\)
0.998751 0.0499707i \(-0.0159128\pi\)
\(684\) 0 0
\(685\) 19.4582 + 5.71345i 0.743461 + 0.218300i
\(686\) 0 0
\(687\) 0.963281 + 6.69977i 0.0367515 + 0.255612i
\(688\) 0 0
\(689\) −32.8057 −1.24980
\(690\) 0 0
\(691\) −29.9939 −1.14102 −0.570511 0.821290i \(-0.693255\pi\)
−0.570511 + 0.821290i \(0.693255\pi\)
\(692\) 0 0
\(693\) −2.77784 19.3203i −0.105521 0.733917i
\(694\) 0 0
\(695\) 24.2068 + 7.10776i 0.918216 + 0.269613i
\(696\) 0 0
\(697\) 22.4644 25.9253i 0.850901 0.981992i
\(698\) 0 0
\(699\) 10.3829 3.04869i 0.392716 0.115312i
\(700\) 0 0
\(701\) 38.9924 25.0589i 1.47272 0.946462i 0.474934 0.880022i \(-0.342472\pi\)
0.997790 0.0664406i \(-0.0211643\pi\)
\(702\) 0 0
\(703\) −30.9588 35.7283i −1.16763 1.34752i
\(704\) 0 0
\(705\) 2.72100 18.9250i 0.102479 0.712755i
\(706\) 0 0
\(707\) 8.88168 19.4482i 0.334030 0.731424i
\(708\) 0 0
\(709\) −0.678476 1.48565i −0.0254807 0.0557949i 0.896464 0.443117i \(-0.146127\pi\)
−0.921944 + 0.387322i \(0.873400\pi\)
\(710\) 0 0
\(711\) −9.79492 6.29482i −0.367338 0.236074i
\(712\) 0 0
\(713\) −0.140495 + 24.5279i −0.00526157 + 0.918578i
\(714\) 0 0
\(715\) −43.4234 27.9065i −1.62394 1.04364i
\(716\) 0 0
\(717\) 7.96117 + 17.4325i 0.297315 + 0.651030i
\(718\) 0 0
\(719\) 1.86499 4.08377i 0.0695525 0.152299i −0.871663 0.490106i \(-0.836958\pi\)
0.941215 + 0.337807i \(0.109685\pi\)
\(720\) 0 0
\(721\) 11.0270 76.6943i 0.410666 2.85625i
\(722\) 0 0
\(723\) 6.51839 + 7.52263i 0.242422 + 0.279770i
\(724\) 0 0
\(725\) −0.504804 + 0.324418i −0.0187479 + 0.0120486i
\(726\) 0 0
\(727\) −25.1042 + 7.37125i −0.931062 + 0.273384i −0.711881 0.702300i \(-0.752157\pi\)
−0.219181 + 0.975684i \(0.570338\pi\)
\(728\) 0 0
\(729\) −0.654861 + 0.755750i −0.0242541 + 0.0279907i
\(730\) 0 0
\(731\) 32.8294 + 9.63959i 1.21424 + 0.356533i
\(732\) 0 0
\(733\) 4.67175 + 32.4927i 0.172555 + 1.20015i 0.873461 + 0.486894i \(0.161870\pi\)
−0.700906 + 0.713253i \(0.747221\pi\)
\(734\) 0 0
\(735\) 23.3153 0.859999
\(736\) 0 0
\(737\) −58.0034 −2.13658
\(738\) 0 0
\(739\) 1.53138 + 10.6510i 0.0563328 + 0.391803i 0.998408 + 0.0564017i \(0.0179628\pi\)
−0.942075 + 0.335401i \(0.891128\pi\)
\(740\) 0 0
\(741\) 18.2574 + 5.36085i 0.670702 + 0.196936i
\(742\) 0 0
\(743\) −8.99673 + 10.3828i −0.330058 + 0.380907i −0.896387 0.443272i \(-0.853818\pi\)
0.566329 + 0.824179i \(0.308363\pi\)
\(744\) 0 0
\(745\) −15.8516 + 4.65446i −0.580759 + 0.170526i
\(746\) 0 0
\(747\) 4.46418 2.86895i 0.163336 0.104970i
\(748\) 0 0
\(749\) −29.2223 33.7244i −1.06776 1.23226i
\(750\) 0 0
\(751\) 1.35281 9.40898i 0.0493646 0.343338i −0.950139 0.311827i \(-0.899059\pi\)
0.999503 0.0315111i \(-0.0100319\pi\)
\(752\) 0 0
\(753\) 4.73627 10.3710i 0.172599 0.377939i
\(754\) 0 0
\(755\) −8.79262 19.2532i −0.319996 0.700694i
\(756\) 0 0
\(757\) 34.4271 + 22.1249i 1.25127 + 0.804144i 0.987065 0.160322i \(-0.0512531\pi\)
0.264208 + 0.964466i \(0.414889\pi\)
\(758\) 0 0
\(759\) 17.4025 + 15.2548i 0.631671 + 0.553713i
\(760\) 0 0
\(761\) 17.7600 + 11.4136i 0.643798 + 0.413744i 0.821395 0.570359i \(-0.193196\pi\)
−0.177597 + 0.984103i \(0.556832\pi\)
\(762\) 0 0
\(763\) 2.92970 + 6.41514i 0.106062 + 0.232244i
\(764\) 0 0
\(765\) 4.66726 10.2199i 0.168745 0.369500i
\(766\) 0 0
\(767\) −1.72891 + 12.0248i −0.0624273 + 0.434191i
\(768\) 0 0
\(769\) −16.4272 18.9580i −0.592380 0.683643i 0.377839 0.925871i \(-0.376667\pi\)
−0.970219 + 0.242228i \(0.922122\pi\)
\(770\) 0 0
\(771\) 22.0109 14.1455i 0.792703 0.509439i
\(772\) 0 0
\(773\) −25.5088 + 7.49005i −0.917487 + 0.269399i −0.706189 0.708023i \(-0.749587\pi\)
−0.211298 + 0.977422i \(0.567769\pi\)
\(774\) 0 0
\(775\) −4.02646 + 4.64679i −0.144635 + 0.166917i
\(776\) 0 0
\(777\) −41.4175 12.1613i −1.48585 0.436284i
\(778\) 0 0
\(779\) −4.79402 33.3431i −0.171764 1.19464i
\(780\) 0 0
\(781\) −18.2966 −0.654704
\(782\) 0 0
\(783\) −0.499143 −0.0178379
\(784\) 0 0
\(785\) −3.32322 23.1135i −0.118611 0.824957i
\(786\) 0 0
\(787\) 22.4544 + 6.59320i 0.800412 + 0.235022i 0.656262 0.754534i \(-0.272137\pi\)
0.144151 + 0.989556i \(0.453955\pi\)
\(788\) 0 0
\(789\) 19.2160 22.1764i 0.684106 0.789501i
\(790\) 0 0
\(791\) −67.0475 + 19.6869i −2.38393 + 0.699986i
\(792\) 0 0
\(793\) 5.73803 3.68761i 0.203764 0.130951i
\(794\) 0