Properties

Label 276.2.i.a.193.1
Level $276$
Weight $2$
Character 276.193
Analytic conductor $2.204$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 276 = 2^{2} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 276.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.20387109579\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 43 x^{18} - 165 x^{17} + 538 x^{16} - 1433 x^{15} + 3444 x^{14} - 7370 x^{13} + 15500 x^{12} - 28190 x^{11} + 41920 x^{10} - 33520 x^{9} - 13837 x^{8} + 78980 x^{7} - 92652 x^{6} - 52852 x^{5} + 177374 x^{4} + 151360 x^{3} + 115323 x^{2} + 12834 x + 529\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 193.1
Root \(-0.262998 + 0.575885i\) of defining polynomial
Character \(\chi\) \(=\) 276.193
Dual form 276.2.i.a.133.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.654861 - 0.755750i) q^{3} +(-0.149019 - 1.03645i) q^{5} +(0.607780 - 1.33085i) q^{7} +(-0.142315 + 0.989821i) q^{9} +O(q^{10})\) \(q+(-0.654861 - 0.755750i) q^{3} +(-0.149019 - 1.03645i) q^{5} +(0.607780 - 1.33085i) q^{7} +(-0.142315 + 0.989821i) q^{9} +(1.96481 + 0.576921i) q^{11} +(-2.86365 - 6.27053i) q^{13} +(-0.685708 + 0.791349i) q^{15} +(-6.54296 - 4.20490i) q^{17} +(5.36057 - 3.44503i) q^{19} +(-1.40380 + 0.412194i) q^{21} +(-0.692970 + 4.74550i) q^{23} +(3.74545 - 1.09976i) q^{25} +(0.841254 - 0.540641i) q^{27} +(3.48875 + 2.24209i) q^{29} +(-0.595921 + 0.687730i) q^{31} +(-0.850671 - 1.86271i) q^{33} +(-1.46993 - 0.431610i) q^{35} +(-0.580529 + 4.03767i) q^{37} +(-2.86365 + 6.27053i) q^{39} +(-0.696437 - 4.84382i) q^{41} +(2.29407 + 2.64750i) q^{43} +1.04710 q^{45} -1.92699 q^{47} +(3.18225 + 3.67251i) q^{49} +(1.10687 + 7.69846i) q^{51} +(-3.25236 + 7.12168i) q^{53} +(0.305154 - 2.12240i) q^{55} +(-6.11401 - 1.79523i) q^{57} +(6.00809 + 13.1559i) q^{59} +(4.93456 - 5.69479i) q^{61} +(1.23081 + 0.790994i) q^{63} +(-6.07233 + 3.90245i) q^{65} +(9.68609 - 2.84409i) q^{67} +(4.04021 - 2.58393i) q^{69} +(0.189483 - 0.0556372i) q^{71} +(-6.69670 + 4.30371i) q^{73} +(-3.28389 - 2.11043i) q^{75} +(1.96197 - 2.26424i) q^{77} +(-1.92232 - 4.20928i) q^{79} +(-0.959493 - 0.281733i) q^{81} +(-1.17882 + 8.19891i) q^{83} +(-3.38314 + 7.40803i) q^{85} +(-0.590193 - 4.10488i) q^{87} +(0.180249 + 0.208018i) q^{89} -10.0856 q^{91} +0.909997 q^{93} +(-4.36941 - 5.04257i) q^{95} +(1.04696 + 7.28177i) q^{97} +(-0.850671 + 1.86271i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} + O(q^{10}) \) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} - 22q^{13} + 7q^{15} + 7q^{17} + 19q^{19} + 20q^{23} + 20q^{25} - 2q^{27} + 32q^{29} - 3q^{31} + 11q^{33} - 26q^{35} - 10q^{37} - 22q^{39} - 40q^{41} + 8q^{43} - 4q^{45} - 18q^{47} - 34q^{49} - 26q^{51} - 34q^{53} - 17q^{55} - 3q^{57} - 32q^{59} + 32q^{61} + 49q^{65} + 35q^{67} - 2q^{69} + 33q^{71} - q^{73} - 2q^{75} - 50q^{77} + 22q^{79} - 2q^{81} - 14q^{83} - 9q^{85} - 12q^{87} + 10q^{89} - 72q^{91} + 30q^{93} - 51q^{95} - 4q^{97} + 11q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/276\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(139\) \(185\)
\(\chi(n)\) \(e\left(\frac{5}{11}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.654861 0.755750i −0.378084 0.436332i
\(4\) 0 0
\(5\) −0.149019 1.03645i −0.0666431 0.463513i −0.995629 0.0933976i \(-0.970227\pi\)
0.928986 0.370115i \(-0.120682\pi\)
\(6\) 0 0
\(7\) 0.607780 1.33085i 0.229719 0.503015i −0.759311 0.650728i \(-0.774464\pi\)
0.989030 + 0.147713i \(0.0471911\pi\)
\(8\) 0 0
\(9\) −0.142315 + 0.989821i −0.0474383 + 0.329940i
\(10\) 0 0
\(11\) 1.96481 + 0.576921i 0.592413 + 0.173948i 0.564178 0.825653i \(-0.309193\pi\)
0.0282350 + 0.999601i \(0.491011\pi\)
\(12\) 0 0
\(13\) −2.86365 6.27053i −0.794235 1.73913i −0.664112 0.747633i \(-0.731190\pi\)
−0.130123 0.991498i \(-0.541537\pi\)
\(14\) 0 0
\(15\) −0.685708 + 0.791349i −0.177049 + 0.204325i
\(16\) 0 0
\(17\) −6.54296 4.20490i −1.58690 1.01984i −0.973102 0.230375i \(-0.926005\pi\)
−0.613798 0.789463i \(-0.710359\pi\)
\(18\) 0 0
\(19\) 5.36057 3.44503i 1.22980 0.790344i 0.245939 0.969285i \(-0.420904\pi\)
0.983860 + 0.178941i \(0.0572672\pi\)
\(20\) 0 0
\(21\) −1.40380 + 0.412194i −0.306335 + 0.0899481i
\(22\) 0 0
\(23\) −0.692970 + 4.74550i −0.144494 + 0.989506i
\(24\) 0 0
\(25\) 3.74545 1.09976i 0.749090 0.219953i
\(26\) 0 0
\(27\) 0.841254 0.540641i 0.161899 0.104046i
\(28\) 0 0
\(29\) 3.48875 + 2.24209i 0.647845 + 0.416345i 0.822878 0.568218i \(-0.192367\pi\)
−0.175033 + 0.984563i \(0.556003\pi\)
\(30\) 0 0
\(31\) −0.595921 + 0.687730i −0.107031 + 0.123520i −0.806737 0.590910i \(-0.798769\pi\)
0.699707 + 0.714430i \(0.253314\pi\)
\(32\) 0 0
\(33\) −0.850671 1.86271i −0.148083 0.324256i
\(34\) 0 0
\(35\) −1.46993 0.431610i −0.248463 0.0729554i
\(36\) 0 0
\(37\) −0.580529 + 4.03767i −0.0954384 + 0.663789i 0.884800 + 0.465970i \(0.154295\pi\)
−0.980239 + 0.197818i \(0.936614\pi\)
\(38\) 0 0
\(39\) −2.86365 + 6.27053i −0.458552 + 1.00409i
\(40\) 0 0
\(41\) −0.696437 4.84382i −0.108765 0.756478i −0.969086 0.246725i \(-0.920646\pi\)
0.860321 0.509753i \(-0.170263\pi\)
\(42\) 0 0
\(43\) 2.29407 + 2.64750i 0.349842 + 0.403740i 0.903211 0.429197i \(-0.141203\pi\)
−0.553369 + 0.832937i \(0.686658\pi\)
\(44\) 0 0
\(45\) 1.04710 0.156093
\(46\) 0 0
\(47\) −1.92699 −0.281080 −0.140540 0.990075i \(-0.544884\pi\)
−0.140540 + 0.990075i \(0.544884\pi\)
\(48\) 0 0
\(49\) 3.18225 + 3.67251i 0.454607 + 0.524645i
\(50\) 0 0
\(51\) 1.10687 + 7.69846i 0.154993 + 1.07800i
\(52\) 0 0
\(53\) −3.25236 + 7.12168i −0.446746 + 0.978238i 0.543564 + 0.839368i \(0.317074\pi\)
−0.990311 + 0.138870i \(0.955653\pi\)
\(54\) 0 0
\(55\) 0.305154 2.12240i 0.0411470 0.286184i
\(56\) 0 0
\(57\) −6.11401 1.79523i −0.809820 0.237785i
\(58\) 0 0
\(59\) 6.00809 + 13.1559i 0.782187 + 1.71275i 0.697772 + 0.716320i \(0.254175\pi\)
0.0844153 + 0.996431i \(0.473098\pi\)
\(60\) 0 0
\(61\) 4.93456 5.69479i 0.631806 0.729143i −0.346098 0.938198i \(-0.612494\pi\)
0.977904 + 0.209056i \(0.0670390\pi\)
\(62\) 0 0
\(63\) 1.23081 + 0.790994i 0.155068 + 0.0996559i
\(64\) 0 0
\(65\) −6.07233 + 3.90245i −0.753180 + 0.484039i
\(66\) 0 0
\(67\) 9.68609 2.84409i 1.18334 0.347461i 0.369882 0.929079i \(-0.379398\pi\)
0.813462 + 0.581618i \(0.197580\pi\)
\(68\) 0 0
\(69\) 4.04021 2.58393i 0.486384 0.311069i
\(70\) 0 0
\(71\) 0.189483 0.0556372i 0.0224875 0.00660292i −0.270469 0.962729i \(-0.587179\pi\)
0.292957 + 0.956126i \(0.405361\pi\)
\(72\) 0 0
\(73\) −6.69670 + 4.30371i −0.783789 + 0.503711i −0.870289 0.492541i \(-0.836068\pi\)
0.0864999 + 0.996252i \(0.472432\pi\)
\(74\) 0 0
\(75\) −3.28389 2.11043i −0.379191 0.243691i
\(76\) 0 0
\(77\) 1.96197 2.26424i 0.223587 0.258034i
\(78\) 0 0
\(79\) −1.92232 4.20928i −0.216277 0.473581i 0.770133 0.637884i \(-0.220190\pi\)
−0.986410 + 0.164302i \(0.947463\pi\)
\(80\) 0 0
\(81\) −0.959493 0.281733i −0.106610 0.0313036i
\(82\) 0 0
\(83\) −1.17882 + 8.19891i −0.129393 + 0.899947i 0.816933 + 0.576733i \(0.195673\pi\)
−0.946326 + 0.323214i \(0.895237\pi\)
\(84\) 0 0
\(85\) −3.38314 + 7.40803i −0.366953 + 0.803514i
\(86\) 0 0
\(87\) −0.590193 4.10488i −0.0632753 0.440089i
\(88\) 0 0
\(89\) 0.180249 + 0.208018i 0.0191063 + 0.0220499i 0.765222 0.643766i \(-0.222629\pi\)
−0.746116 + 0.665816i \(0.768084\pi\)
\(90\) 0 0
\(91\) −10.0856 −1.05726
\(92\) 0 0
\(93\) 0.909997 0.0943623
\(94\) 0 0
\(95\) −4.36941 5.04257i −0.448292 0.517357i
\(96\) 0 0
\(97\) 1.04696 + 7.28177i 0.106303 + 0.739351i 0.971349 + 0.237659i \(0.0763800\pi\)
−0.865046 + 0.501693i \(0.832711\pi\)
\(98\) 0 0
\(99\) −0.850671 + 1.86271i −0.0854956 + 0.187209i
\(100\) 0 0
\(101\) 2.03748 14.1710i 0.202737 1.41006i −0.593380 0.804922i \(-0.702207\pi\)
0.796117 0.605143i \(-0.206884\pi\)
\(102\) 0 0
\(103\) 3.85204 + 1.13106i 0.379553 + 0.111447i 0.465943 0.884815i \(-0.345715\pi\)
−0.0863903 + 0.996261i \(0.527533\pi\)
\(104\) 0 0
\(105\) 0.636410 + 1.39354i 0.0621072 + 0.135996i
\(106\) 0 0
\(107\) 8.52969 9.84379i 0.824596 0.951635i −0.174861 0.984593i \(-0.555947\pi\)
0.999457 + 0.0329585i \(0.0104929\pi\)
\(108\) 0 0
\(109\) −2.98252 1.91675i −0.285674 0.183592i 0.389954 0.920834i \(-0.372491\pi\)
−0.675628 + 0.737243i \(0.736127\pi\)
\(110\) 0 0
\(111\) 3.43163 2.20538i 0.325716 0.209325i
\(112\) 0 0
\(113\) 14.6873 4.31258i 1.38166 0.405693i 0.495316 0.868713i \(-0.335052\pi\)
0.886348 + 0.463019i \(0.153234\pi\)
\(114\) 0 0
\(115\) 5.02173 + 0.0110588i 0.468278 + 0.00103124i
\(116\) 0 0
\(117\) 6.61424 1.94212i 0.611487 0.179549i
\(118\) 0 0
\(119\) −9.57279 + 6.15206i −0.877536 + 0.563958i
\(120\) 0 0
\(121\) −5.72614 3.67997i −0.520558 0.334542i
\(122\) 0 0
\(123\) −3.20465 + 3.69836i −0.288953 + 0.333470i
\(124\) 0 0
\(125\) −3.87290 8.48047i −0.346403 0.758517i
\(126\) 0 0
\(127\) −13.2206 3.88193i −1.17314 0.344466i −0.363616 0.931549i \(-0.618458\pi\)
−0.809527 + 0.587083i \(0.800276\pi\)
\(128\) 0 0
\(129\) 0.498549 3.46748i 0.0438948 0.305295i
\(130\) 0 0
\(131\) −3.99409 + 8.74584i −0.348966 + 0.764128i 0.651022 + 0.759059i \(0.274341\pi\)
−0.999987 + 0.00506875i \(0.998387\pi\)
\(132\) 0 0
\(133\) −1.32678 9.22796i −0.115046 0.800165i
\(134\) 0 0
\(135\) −0.685708 0.791349i −0.0590163 0.0681085i
\(136\) 0 0
\(137\) 3.53079 0.301656 0.150828 0.988560i \(-0.451806\pi\)
0.150828 + 0.988560i \(0.451806\pi\)
\(138\) 0 0
\(139\) 2.28333 0.193670 0.0968349 0.995300i \(-0.469128\pi\)
0.0968349 + 0.995300i \(0.469128\pi\)
\(140\) 0 0
\(141\) 1.26191 + 1.45632i 0.106272 + 0.122644i
\(142\) 0 0
\(143\) −2.00894 13.9725i −0.167996 1.16844i
\(144\) 0 0
\(145\) 1.80391 3.95002i 0.149807 0.328031i
\(146\) 0 0
\(147\) 0.691569 4.80997i 0.0570397 0.396720i
\(148\) 0 0
\(149\) 12.9656 + 3.80706i 1.06219 + 0.311886i 0.765732 0.643160i \(-0.222377\pi\)
0.296456 + 0.955047i \(0.404195\pi\)
\(150\) 0 0
\(151\) −0.959780 2.10162i −0.0781058 0.171028i 0.866551 0.499089i \(-0.166332\pi\)
−0.944656 + 0.328061i \(0.893605\pi\)
\(152\) 0 0
\(153\) 5.09326 5.87794i 0.411766 0.475203i
\(154\) 0 0
\(155\) 0.801598 + 0.515156i 0.0643859 + 0.0413783i
\(156\) 0 0
\(157\) −10.1745 + 6.53877i −0.812015 + 0.521851i −0.879516 0.475869i \(-0.842134\pi\)
0.0675010 + 0.997719i \(0.478497\pi\)
\(158\) 0 0
\(159\) 7.51205 2.20574i 0.595744 0.174926i
\(160\) 0 0
\(161\) 5.89439 + 3.80646i 0.464543 + 0.299991i
\(162\) 0 0
\(163\) 20.7606 6.09585i 1.62609 0.477464i 0.663447 0.748224i \(-0.269093\pi\)
0.962647 + 0.270759i \(0.0872748\pi\)
\(164\) 0 0
\(165\) −1.80383 + 1.15925i −0.140428 + 0.0902477i
\(166\) 0 0
\(167\) −4.66020 2.99493i −0.360617 0.231755i 0.347768 0.937581i \(-0.386940\pi\)
−0.708385 + 0.705826i \(0.750576\pi\)
\(168\) 0 0
\(169\) −22.6058 + 26.0885i −1.73891 + 2.00681i
\(170\) 0 0
\(171\) 2.64708 + 5.79629i 0.202427 + 0.443253i
\(172\) 0 0
\(173\) −10.5327 3.09267i −0.800783 0.235131i −0.144361 0.989525i \(-0.546113\pi\)
−0.656422 + 0.754394i \(0.727931\pi\)
\(174\) 0 0
\(175\) 0.812787 5.65306i 0.0614409 0.427331i
\(176\) 0 0
\(177\) 6.00809 13.1559i 0.451596 0.988857i
\(178\) 0 0
\(179\) −2.69832 18.7672i −0.201682 1.40273i −0.799293 0.600942i \(-0.794792\pi\)
0.597611 0.801786i \(-0.296117\pi\)
\(180\) 0 0
\(181\) 10.9386 + 12.6238i 0.813060 + 0.938322i 0.999021 0.0442355i \(-0.0140852\pi\)
−0.185961 + 0.982557i \(0.559540\pi\)
\(182\) 0 0
\(183\) −7.53528 −0.557024
\(184\) 0 0
\(185\) 4.27134 0.314035
\(186\) 0 0
\(187\) −10.4298 12.0366i −0.762701 0.880204i
\(188\) 0 0
\(189\) −0.208216 1.44818i −0.0151455 0.105339i
\(190\) 0 0
\(191\) 4.20633 9.21058i 0.304359 0.666454i −0.694219 0.719764i \(-0.744250\pi\)
0.998578 + 0.0533102i \(0.0169772\pi\)
\(192\) 0 0
\(193\) −2.01479 + 14.0132i −0.145028 + 1.00869i 0.779180 + 0.626801i \(0.215636\pi\)
−0.924207 + 0.381891i \(0.875273\pi\)
\(194\) 0 0
\(195\) 6.92580 + 2.03360i 0.495967 + 0.145629i
\(196\) 0 0
\(197\) −10.5317 23.0613i −0.750356 1.64305i −0.765725 0.643168i \(-0.777620\pi\)
0.0153688 0.999882i \(-0.495108\pi\)
\(198\) 0 0
\(199\) −8.66657 + 10.0018i −0.614357 + 0.709005i −0.974625 0.223843i \(-0.928140\pi\)
0.360269 + 0.932849i \(0.382685\pi\)
\(200\) 0 0
\(201\) −8.49246 5.45777i −0.599012 0.384961i
\(202\) 0 0
\(203\) 5.10428 3.28032i 0.358251 0.230234i
\(204\) 0 0
\(205\) −4.91658 + 1.44364i −0.343389 + 0.100828i
\(206\) 0 0
\(207\) −4.59858 1.36127i −0.319623 0.0946150i
\(208\) 0 0
\(209\) 12.5200 3.67621i 0.866028 0.254289i
\(210\) 0 0
\(211\) −1.09064 + 0.700911i −0.0750826 + 0.0482527i −0.577644 0.816289i \(-0.696028\pi\)
0.502561 + 0.864542i \(0.332391\pi\)
\(212\) 0 0
\(213\) −0.166133 0.106767i −0.0113832 0.00731555i
\(214\) 0 0
\(215\) 2.40213 2.77221i 0.163824 0.189063i
\(216\) 0 0
\(217\) 0.553078 + 1.21107i 0.0375454 + 0.0822129i
\(218\) 0 0
\(219\) 7.63793 + 2.24270i 0.516123 + 0.151548i
\(220\) 0 0
\(221\) −7.63019 + 53.0692i −0.513262 + 3.56982i
\(222\) 0 0
\(223\) −5.04981 + 11.0575i −0.338160 + 0.740468i −0.999958 0.00921525i \(-0.997067\pi\)
0.661797 + 0.749683i \(0.269794\pi\)
\(224\) 0 0
\(225\) 0.555536 + 3.86384i 0.0370357 + 0.257589i
\(226\) 0 0
\(227\) 15.4515 + 17.8319i 1.02555 + 1.18355i 0.982840 + 0.184460i \(0.0590537\pi\)
0.0427099 + 0.999088i \(0.486401\pi\)
\(228\) 0 0
\(229\) 15.4803 1.02296 0.511482 0.859294i \(-0.329097\pi\)
0.511482 + 0.859294i \(0.329097\pi\)
\(230\) 0 0
\(231\) −2.99601 −0.197123
\(232\) 0 0
\(233\) −8.18474 9.44569i −0.536200 0.618808i 0.421412 0.906869i \(-0.361535\pi\)
−0.957612 + 0.288062i \(0.906989\pi\)
\(234\) 0 0
\(235\) 0.287157 + 1.99722i 0.0187320 + 0.130284i
\(236\) 0 0
\(237\) −1.92232 + 4.20928i −0.124868 + 0.273422i
\(238\) 0 0
\(239\) −2.97190 + 20.6700i −0.192236 + 1.33703i 0.633837 + 0.773467i \(0.281479\pi\)
−0.826073 + 0.563564i \(0.809430\pi\)
\(240\) 0 0
\(241\) −2.47491 0.726700i −0.159423 0.0468109i 0.201047 0.979582i \(-0.435566\pi\)
−0.360470 + 0.932771i \(0.617384\pi\)
\(242\) 0 0
\(243\) 0.415415 + 0.909632i 0.0266489 + 0.0583529i
\(244\) 0 0
\(245\) 3.33215 3.84551i 0.212883 0.245680i
\(246\) 0 0
\(247\) −36.9530 23.7482i −2.35126 1.51106i
\(248\) 0 0
\(249\) 6.96829 4.47825i 0.441597 0.283797i
\(250\) 0 0
\(251\) −6.05809 + 1.77882i −0.382383 + 0.112278i −0.467274 0.884112i \(-0.654764\pi\)
0.0848910 + 0.996390i \(0.472946\pi\)
\(252\) 0 0
\(253\) −4.09934 + 8.92423i −0.257723 + 0.561062i
\(254\) 0 0
\(255\) 7.81410 2.29443i 0.489338 0.143683i
\(256\) 0 0
\(257\) 10.3497 6.65137i 0.645599 0.414901i −0.176457 0.984308i \(-0.556464\pi\)
0.822056 + 0.569407i \(0.192827\pi\)
\(258\) 0 0
\(259\) 5.02071 + 3.22661i 0.311972 + 0.200492i
\(260\) 0 0
\(261\) −2.71577 + 3.13416i −0.168102 + 0.194000i
\(262\) 0 0
\(263\) 2.94567 + 6.45011i 0.181638 + 0.397731i 0.978447 0.206500i \(-0.0662075\pi\)
−0.796809 + 0.604231i \(0.793480\pi\)
\(264\) 0 0
\(265\) 7.86590 + 2.30964i 0.483199 + 0.141880i
\(266\) 0 0
\(267\) 0.0391718 0.272446i 0.00239728 0.0166734i
\(268\) 0 0
\(269\) −6.22048 + 13.6209i −0.379269 + 0.830484i 0.619689 + 0.784848i \(0.287259\pi\)
−0.998958 + 0.0456362i \(0.985469\pi\)
\(270\) 0 0
\(271\) −2.61485 18.1867i −0.158841 1.10476i −0.900774 0.434288i \(-0.857000\pi\)
0.741933 0.670474i \(-0.233909\pi\)
\(272\) 0 0
\(273\) 6.60468 + 7.62221i 0.399733 + 0.461317i
\(274\) 0 0
\(275\) 7.99358 0.482031
\(276\) 0 0
\(277\) 13.9414 0.837657 0.418829 0.908065i \(-0.362441\pi\)
0.418829 + 0.908065i \(0.362441\pi\)
\(278\) 0 0
\(279\) −0.595921 0.687730i −0.0356769 0.0411733i
\(280\) 0 0
\(281\) 1.10403 + 7.67872i 0.0658611 + 0.458074i 0.995889 + 0.0905846i \(0.0288736\pi\)
−0.930028 + 0.367490i \(0.880217\pi\)
\(282\) 0 0
\(283\) −13.5340 + 29.6354i −0.804514 + 1.76164i −0.175128 + 0.984546i \(0.556034\pi\)
−0.629385 + 0.777093i \(0.716693\pi\)
\(284\) 0 0
\(285\) −0.949564 + 6.60437i −0.0562473 + 0.391209i
\(286\) 0 0
\(287\) −6.86970 2.01713i −0.405506 0.119067i
\(288\) 0 0
\(289\) 18.0670 + 39.5612i 1.06277 + 2.32713i
\(290\) 0 0
\(291\) 4.81758 5.55978i 0.282411 0.325920i
\(292\) 0 0
\(293\) 18.0543 + 11.6028i 1.05475 + 0.677844i 0.948591 0.316506i \(-0.102510\pi\)
0.106155 + 0.994350i \(0.466146\pi\)
\(294\) 0 0
\(295\) 12.7401 8.18754i 0.741755 0.476697i
\(296\) 0 0
\(297\) 1.96481 0.576921i 0.114010 0.0334763i
\(298\) 0 0
\(299\) 31.7412 9.24419i 1.83564 0.534605i
\(300\) 0 0
\(301\) 4.91772 1.44397i 0.283453 0.0832293i
\(302\) 0 0
\(303\) −12.0440 + 7.74019i −0.691908 + 0.444662i
\(304\) 0 0
\(305\) −6.63768 4.26578i −0.380073 0.244258i
\(306\) 0 0
\(307\) 2.82498 3.26020i 0.161230 0.186070i −0.669386 0.742915i \(-0.733443\pi\)
0.830616 + 0.556845i \(0.187988\pi\)
\(308\) 0 0
\(309\) −1.66775 3.65187i −0.0948751 0.207748i
\(310\) 0 0
\(311\) −12.4182 3.64631i −0.704171 0.206763i −0.0900065 0.995941i \(-0.528689\pi\)
−0.614165 + 0.789178i \(0.710507\pi\)
\(312\) 0 0
\(313\) −0.525717 + 3.65644i −0.0297153 + 0.206674i −0.999270 0.0382000i \(-0.987838\pi\)
0.969555 + 0.244874i \(0.0787467\pi\)
\(314\) 0 0
\(315\) 0.636410 1.39354i 0.0358576 0.0785172i
\(316\) 0 0
\(317\) −2.66225 18.5164i −0.149527 1.03998i −0.916996 0.398897i \(-0.869393\pi\)
0.767469 0.641087i \(-0.221516\pi\)
\(318\) 0 0
\(319\) 5.56124 + 6.41801i 0.311370 + 0.359340i
\(320\) 0 0
\(321\) −13.0252 −0.726996
\(322\) 0 0
\(323\) −49.5600 −2.75759
\(324\) 0 0
\(325\) −17.6218 20.3366i −0.977480 1.12807i
\(326\) 0 0
\(327\) 0.504553 + 3.50925i 0.0279019 + 0.194062i
\(328\) 0 0
\(329\) −1.17118 + 2.56454i −0.0645695 + 0.141387i
\(330\) 0 0
\(331\) 0.646147 4.49405i 0.0355154 0.247015i −0.964328 0.264710i \(-0.914724\pi\)
0.999843 + 0.0176950i \(0.00563279\pi\)
\(332\) 0 0
\(333\) −3.91395 1.14924i −0.214483 0.0629780i
\(334\) 0 0
\(335\) −4.39116 9.61529i −0.239914 0.525339i
\(336\) 0 0
\(337\) 14.8054 17.0864i 0.806503 0.930754i −0.192216 0.981353i \(-0.561567\pi\)
0.998719 + 0.0505986i \(0.0161129\pi\)
\(338\) 0 0
\(339\) −12.8774 8.27578i −0.699402 0.449479i
\(340\) 0 0
\(341\) −1.56764 + 1.00746i −0.0848924 + 0.0545570i
\(342\) 0 0
\(343\) 16.6483 4.88839i 0.898924 0.263948i
\(344\) 0 0
\(345\) −3.28017 3.80241i −0.176599 0.204715i
\(346\) 0 0
\(347\) −17.3095 + 5.08253i −0.929222 + 0.272844i −0.711111 0.703080i \(-0.751808\pi\)
−0.218111 + 0.975924i \(0.569990\pi\)
\(348\) 0 0
\(349\) −4.22571 + 2.71570i −0.226197 + 0.145368i −0.648831 0.760932i \(-0.724742\pi\)
0.422634 + 0.906300i \(0.361106\pi\)
\(350\) 0 0
\(351\) −5.79916 3.72689i −0.309536 0.198927i
\(352\) 0 0
\(353\) −8.32044 + 9.60230i −0.442852 + 0.511079i −0.932662 0.360750i \(-0.882521\pi\)
0.489810 + 0.871829i \(0.337066\pi\)
\(354\) 0 0
\(355\) −0.0859014 0.188098i −0.00455917 0.00998320i
\(356\) 0 0
\(357\) 10.9183 + 3.20589i 0.577855 + 0.169674i
\(358\) 0 0
\(359\) −0.759247 + 5.28068i −0.0400715 + 0.278703i −0.999999 0.00154569i \(-0.999508\pi\)
0.959927 + 0.280249i \(0.0904171\pi\)
\(360\) 0 0
\(361\) 8.97460 19.6516i 0.472348 1.03430i
\(362\) 0 0
\(363\) 0.968691 + 6.73739i 0.0508431 + 0.353621i
\(364\) 0 0
\(365\) 5.45849 + 6.29944i 0.285711 + 0.329728i
\(366\) 0 0
\(367\) −1.47822 −0.0771624 −0.0385812 0.999255i \(-0.512284\pi\)
−0.0385812 + 0.999255i \(0.512284\pi\)
\(368\) 0 0
\(369\) 4.89363 0.254752
\(370\) 0 0
\(371\) 7.50119 + 8.65683i 0.389442 + 0.449440i
\(372\) 0 0
\(373\) −2.50047 17.3912i −0.129470 0.900480i −0.946228 0.323501i \(-0.895140\pi\)
0.816758 0.576980i \(-0.195769\pi\)
\(374\) 0 0
\(375\) −3.87290 + 8.48047i −0.199996 + 0.437930i
\(376\) 0 0
\(377\) 4.06848 28.2969i 0.209537 1.45736i
\(378\) 0 0
\(379\) 4.96855 + 1.45890i 0.255218 + 0.0749386i 0.406839 0.913500i \(-0.366631\pi\)
−0.151621 + 0.988439i \(0.548449\pi\)
\(380\) 0 0
\(381\) 5.72391 + 12.5336i 0.293245 + 0.642117i
\(382\) 0 0
\(383\) 18.1398 20.9345i 0.926901 1.06970i −0.0704902 0.997512i \(-0.522456\pi\)
0.997391 0.0721881i \(-0.0229982\pi\)
\(384\) 0 0
\(385\) −2.63913 1.69607i −0.134503 0.0864395i
\(386\) 0 0
\(387\) −2.94703 + 1.89394i −0.149806 + 0.0962745i
\(388\) 0 0
\(389\) −5.15517 + 1.51370i −0.261378 + 0.0767474i −0.409796 0.912177i \(-0.634400\pi\)
0.148418 + 0.988925i \(0.452582\pi\)
\(390\) 0 0
\(391\) 24.4884 28.1357i 1.23843 1.42289i
\(392\) 0 0
\(393\) 9.22524 2.70878i 0.465352 0.136640i
\(394\) 0 0
\(395\) −4.07624 + 2.61964i −0.205098 + 0.131808i
\(396\) 0 0
\(397\) −30.4469 19.5670i −1.52808 0.982040i −0.990298 0.138959i \(-0.955624\pi\)
−0.537786 0.843081i \(-0.680739\pi\)
\(398\) 0 0
\(399\) −6.10517 + 7.04574i −0.305641 + 0.352728i
\(400\) 0 0
\(401\) −3.81908 8.36262i −0.190716 0.417609i 0.789984 0.613127i \(-0.210089\pi\)
−0.980700 + 0.195518i \(0.937361\pi\)
\(402\) 0 0
\(403\) 6.01894 + 1.76732i 0.299825 + 0.0880365i
\(404\) 0 0
\(405\) −0.149019 + 1.03645i −0.00740479 + 0.0515015i
\(406\) 0 0
\(407\) −3.47005 + 7.59834i −0.172004 + 0.376636i
\(408\) 0 0
\(409\) 0.120756 + 0.839879i 0.00597102 + 0.0415293i 0.992589 0.121519i \(-0.0387765\pi\)
−0.986618 + 0.163048i \(0.947867\pi\)
\(410\) 0 0
\(411\) −2.31218 2.66839i −0.114051 0.131622i
\(412\) 0 0
\(413\) 21.1602 1.04122
\(414\) 0 0
\(415\) 8.67340 0.425760
\(416\) 0 0
\(417\) −1.49527 1.72563i −0.0732235 0.0845044i
\(418\) 0 0
\(419\) −3.51724 24.4629i −0.171828 1.19509i −0.875018 0.484090i \(-0.839151\pi\)
0.703190 0.711002i \(-0.251758\pi\)
\(420\) 0 0
\(421\) 6.50485 14.2436i 0.317027 0.694192i −0.682293 0.731079i \(-0.739017\pi\)
0.999319 + 0.0368873i \(0.0117443\pi\)
\(422\) 0 0
\(423\) 0.274239 1.90737i 0.0133339 0.0927396i
\(424\) 0 0
\(425\) −29.1307 8.55355i −1.41305 0.414908i
\(426\) 0 0
\(427\) −4.57980 10.0284i −0.221632 0.485306i
\(428\) 0 0
\(429\) −9.24414 + 10.6683i −0.446311 + 0.515071i
\(430\) 0 0
\(431\) −5.59612 3.59641i −0.269555 0.173233i 0.398880 0.917003i \(-0.369399\pi\)
−0.668435 + 0.743771i \(0.733036\pi\)
\(432\) 0 0
\(433\) 17.0259 10.9419i 0.818214 0.525834i −0.0632987 0.997995i \(-0.520162\pi\)
0.881513 + 0.472160i \(0.156526\pi\)
\(434\) 0 0
\(435\) −4.16654 + 1.22341i −0.199770 + 0.0586578i
\(436\) 0 0
\(437\) 12.6337 + 27.8259i 0.604351 + 1.33109i
\(438\) 0 0
\(439\) −3.95674 + 1.16180i −0.188845 + 0.0554498i −0.374787 0.927111i \(-0.622284\pi\)
0.185943 + 0.982561i \(0.440466\pi\)
\(440\) 0 0
\(441\) −4.08801 + 2.62721i −0.194667 + 0.125105i
\(442\) 0 0
\(443\) 25.8064 + 16.5847i 1.22610 + 0.787965i 0.983279 0.182106i \(-0.0582916\pi\)
0.242819 + 0.970072i \(0.421928\pi\)
\(444\) 0 0
\(445\) 0.188739 0.217817i 0.00894710 0.0103255i
\(446\) 0 0
\(447\) −5.61351 12.2919i −0.265510 0.581386i
\(448\) 0 0
\(449\) −21.7635 6.39035i −1.02709 0.301579i −0.275560 0.961284i \(-0.588863\pi\)
−0.751525 + 0.659704i \(0.770682\pi\)
\(450\) 0 0
\(451\) 1.42614 9.91899i 0.0671541 0.467067i
\(452\) 0 0
\(453\) −0.959780 + 2.10162i −0.0450944 + 0.0987429i
\(454\) 0 0
\(455\) 1.50294 + 10.4532i 0.0704591 + 0.490054i
\(456\) 0 0
\(457\) 18.4108 + 21.2472i 0.861222 + 0.993903i 0.999994 + 0.00357885i \(0.00113919\pi\)
−0.138772 + 0.990324i \(0.544315\pi\)
\(458\) 0 0
\(459\) −7.77763 −0.363029
\(460\) 0 0
\(461\) −4.98643 −0.232241 −0.116121 0.993235i \(-0.537046\pi\)
−0.116121 + 0.993235i \(0.537046\pi\)
\(462\) 0 0
\(463\) 17.2211 + 19.8742i 0.800333 + 0.923634i 0.998400 0.0565546i \(-0.0180115\pi\)
−0.198066 + 0.980189i \(0.563466\pi\)
\(464\) 0 0
\(465\) −0.135606 0.943163i −0.00628859 0.0437381i
\(466\) 0 0
\(467\) 14.8145 32.4393i 0.685534 1.50111i −0.171137 0.985247i \(-0.554744\pi\)
0.856671 0.515863i \(-0.172529\pi\)
\(468\) 0 0
\(469\) 2.10194 14.6193i 0.0970588 0.675059i
\(470\) 0 0
\(471\) 11.6046 + 3.40741i 0.534710 + 0.157005i
\(472\) 0 0
\(473\) 2.98002 + 6.52533i 0.137021 + 0.300035i
\(474\) 0 0
\(475\) 16.2890 18.7985i 0.747392 0.862536i
\(476\) 0 0
\(477\) −6.58633 4.23278i −0.301567 0.193806i
\(478\) 0 0
\(479\) −35.6477 + 22.9094i −1.62878 + 1.04676i −0.678863 + 0.734265i \(0.737527\pi\)
−0.949921 + 0.312490i \(0.898837\pi\)
\(480\) 0 0
\(481\) 26.9807 7.92226i 1.23022 0.361224i
\(482\) 0 0
\(483\) −0.983273 6.94739i −0.0447405 0.316117i
\(484\) 0 0
\(485\) 7.39115 2.17024i 0.335615 0.0985454i
\(486\) 0 0
\(487\) −25.0812 + 16.1187i −1.13654 + 0.730407i −0.966914 0.255102i \(-0.917891\pi\)
−0.169622 + 0.985509i \(0.554255\pi\)
\(488\) 0 0
\(489\) −18.2022 11.6979i −0.823133 0.528995i
\(490\) 0 0
\(491\) −8.55804 + 9.87650i −0.386219 + 0.445720i −0.915253 0.402880i \(-0.868009\pi\)
0.529034 + 0.848601i \(0.322554\pi\)
\(492\) 0 0
\(493\) −13.3990 29.3397i −0.603461 1.32140i
\(494\) 0 0
\(495\) 2.05736 + 0.604097i 0.0924716 + 0.0271521i
\(496\) 0 0
\(497\) 0.0411190 0.285989i 0.00184444 0.0128284i
\(498\) 0 0
\(499\) −9.02701 + 19.7664i −0.404104 + 0.884865i 0.592733 + 0.805399i \(0.298049\pi\)
−0.996838 + 0.0794664i \(0.974678\pi\)
\(500\) 0 0
\(501\) 0.788367 + 5.48321i 0.0352216 + 0.244972i
\(502\) 0 0
\(503\) 11.9282 + 13.7659i 0.531852 + 0.613790i 0.956558 0.291541i \(-0.0941680\pi\)
−0.424706 + 0.905331i \(0.639623\pi\)
\(504\) 0 0
\(505\) −14.9911 −0.667094
\(506\) 0 0
\(507\) 34.5200 1.53309
\(508\) 0 0
\(509\) 0.994643 + 1.14788i 0.0440868 + 0.0508788i 0.777365 0.629050i \(-0.216556\pi\)
−0.733278 + 0.679929i \(0.762011\pi\)
\(510\) 0 0
\(511\) 1.65748 + 11.5280i 0.0733226 + 0.509970i
\(512\) 0 0
\(513\) 2.64708 5.79629i 0.116871 0.255912i
\(514\) 0 0
\(515\) 0.598260 4.16099i 0.0263625 0.183355i
\(516\) 0 0
\(517\) −3.78617 1.11172i −0.166515 0.0488933i
\(518\) 0 0
\(519\) 4.56014 + 9.98532i 0.200168 + 0.438307i
\(520\) 0 0
\(521\) −9.68764 + 11.1801i −0.424423 + 0.489810i −0.927179 0.374618i \(-0.877774\pi\)
0.502756 + 0.864428i \(0.332319\pi\)
\(522\) 0 0
\(523\) 16.4684 + 10.5836i 0.720114 + 0.462789i 0.848677 0.528912i \(-0.177400\pi\)
−0.128563 + 0.991701i \(0.541036\pi\)
\(524\) 0 0
\(525\) −4.80456 + 3.08770i −0.209688 + 0.134758i
\(526\) 0 0
\(527\) 6.79092 1.99399i 0.295817 0.0868597i
\(528\) 0 0
\(529\) −22.0396 6.57698i −0.958243 0.285956i
\(530\) 0 0
\(531\) −13.8770 + 4.07466i −0.602211 + 0.176825i
\(532\) 0 0
\(533\) −28.3790 + 18.2381i −1.22923 + 0.789978i
\(534\) 0 0
\(535\) −11.4736 7.37366i −0.496049 0.318791i
\(536\) 0 0
\(537\) −12.4163 + 14.3292i −0.535803 + 0.618349i
\(538\) 0 0
\(539\) 4.13378 + 9.05171i 0.178054 + 0.389885i
\(540\) 0 0
\(541\) 1.35451 + 0.397719i 0.0582349 + 0.0170993i 0.310720 0.950501i \(-0.399430\pi\)
−0.252485 + 0.967601i \(0.581248\pi\)
\(542\) 0 0
\(543\) 2.37719 16.5337i 0.102015 0.709529i
\(544\) 0 0
\(545\) −1.54216 + 3.37686i −0.0660589 + 0.144649i
\(546\) 0 0
\(547\) 3.19234 + 22.2032i 0.136494 + 0.949340i 0.936829 + 0.349787i \(0.113746\pi\)
−0.800335 + 0.599553i \(0.795345\pi\)
\(548\) 0 0
\(549\) 4.93456 + 5.69479i 0.210602 + 0.243048i
\(550\) 0 0
\(551\) 26.4258 1.12578
\(552\) 0 0
\(553\) −6.77028 −0.287902
\(554\) 0 0
\(555\) −2.79713 3.22806i −0.118732 0.137024i
\(556\) 0 0
\(557\) −4.95373 34.4539i −0.209896 1.45986i −0.773490 0.633808i \(-0.781491\pi\)
0.563594 0.826052i \(-0.309418\pi\)
\(558\) 0 0
\(559\) 10.0318 21.9665i 0.424299 0.929086i
\(560\) 0 0
\(561\) −2.26661 + 15.7646i −0.0956963 + 0.665582i
\(562\) 0 0
\(563\) 44.9036 + 13.1849i 1.89246 + 0.555677i 0.992910 + 0.118865i \(0.0379256\pi\)
0.899553 + 0.436812i \(0.143893\pi\)
\(564\) 0 0
\(565\) −6.65844 14.5799i −0.280123 0.613383i
\(566\) 0 0
\(567\) −0.958106 + 1.10571i −0.0402367 + 0.0464356i
\(568\) 0 0
\(569\) −7.35168 4.72464i −0.308198 0.198067i 0.377394 0.926053i \(-0.376820\pi\)
−0.685592 + 0.727986i \(0.740457\pi\)
\(570\) 0 0
\(571\) 16.5741 10.6516i 0.693606 0.445754i −0.145760 0.989320i \(-0.546563\pi\)
0.839366 + 0.543566i \(0.182926\pi\)
\(572\) 0 0
\(573\) −9.71545 + 2.85271i −0.405869 + 0.119174i
\(574\) 0 0
\(575\) 2.62344 + 18.5361i 0.109405 + 0.773011i
\(576\) 0 0
\(577\) 16.5543 4.86079i 0.689165 0.202357i 0.0816453 0.996661i \(-0.473983\pi\)
0.607520 + 0.794304i \(0.292164\pi\)
\(578\) 0 0
\(579\) 11.9099 7.65401i 0.494957 0.318090i
\(580\) 0 0
\(581\) 10.1951 + 6.55198i 0.422963 + 0.271822i
\(582\) 0 0
\(583\) −10.4989 + 12.1164i −0.434821 + 0.501810i
\(584\) 0 0
\(585\) −2.99854 6.56590i −0.123975 0.271466i
\(586\) 0 0
\(587\) −22.4307 6.58626i −0.925815 0.271844i −0.216131 0.976364i \(-0.569344\pi\)
−0.709684 + 0.704520i \(0.751162\pi\)
\(588\) 0 0
\(589\) −0.825228 + 5.73959i −0.0340029 + 0.236496i
\(590\) 0 0
\(591\) −10.5317 + 23.0613i −0.433218 + 0.948616i
\(592\) 0 0
\(593\) −2.08335 14.4900i −0.0855529 0.595034i −0.986826 0.161783i \(-0.948276\pi\)
0.901273 0.433251i \(-0.142634\pi\)
\(594\) 0 0
\(595\) 7.80280 + 9.00491i 0.319884 + 0.369166i
\(596\) 0 0
\(597\) 13.2342 0.541640
\(598\) 0 0
\(599\) −18.2295 −0.744838 −0.372419 0.928065i \(-0.621472\pi\)
−0.372419 + 0.928065i \(0.621472\pi\)
\(600\) 0 0
\(601\) 22.2399 + 25.6662i 0.907185 + 1.04695i 0.998691 + 0.0511429i \(0.0162864\pi\)
−0.0915063 + 0.995804i \(0.529168\pi\)
\(602\) 0 0
\(603\) 1.43667 + 9.99225i 0.0585057 + 0.406916i
\(604\) 0 0
\(605\) −2.96079 + 6.48322i −0.120373 + 0.263580i
\(606\) 0 0
\(607\) −6.97050 + 48.4809i −0.282924 + 1.96778i −0.0332604 + 0.999447i \(0.510589\pi\)
−0.249664 + 0.968333i \(0.580320\pi\)
\(608\) 0 0
\(609\) −5.82170 1.70941i −0.235907 0.0692686i
\(610\) 0 0
\(611\) 5.51822 + 12.0832i 0.223243 + 0.488835i
\(612\) 0 0
\(613\) −13.5055 + 15.5862i −0.545482 + 0.629519i −0.959824 0.280601i \(-0.909466\pi\)
0.414343 + 0.910121i \(0.364012\pi\)
\(614\) 0 0
\(615\) 4.31071 + 2.77032i 0.173824 + 0.111710i
\(616\) 0 0
\(617\) −22.7181 + 14.6000i −0.914597 + 0.587776i −0.911085 0.412218i \(-0.864754\pi\)
−0.00351174 + 0.999994i \(0.501118\pi\)
\(618\) 0 0
\(619\) −26.2222 + 7.69954i −1.05396 + 0.309471i −0.762416 0.647087i \(-0.775987\pi\)
−0.291544 + 0.956557i \(0.594169\pi\)
\(620\) 0 0
\(621\) 1.98265 + 4.36682i 0.0795610 + 0.175234i
\(622\) 0 0
\(623\) 0.386393 0.113455i 0.0154805 0.00454549i
\(624\) 0 0
\(625\) 8.20704 5.27435i 0.328282 0.210974i
\(626\) 0 0
\(627\) −10.9772 7.05460i −0.438386 0.281733i
\(628\) 0 0
\(629\) 20.7764 23.9772i 0.828408 0.956034i
\(630\) 0 0
\(631\) 16.7273 + 36.6276i 0.665903 + 1.45812i 0.876918 + 0.480640i \(0.159596\pi\)
−0.211015 + 0.977483i \(0.567677\pi\)
\(632\) 0 0
\(633\) 1.24393 + 0.365250i 0.0494417 + 0.0145174i
\(634\) 0 0
\(635\) −2.05329 + 14.2810i −0.0814825 + 0.566723i
\(636\) 0 0
\(637\) 13.9157 30.4712i 0.551361 1.20731i
\(638\) 0 0
\(639\) 0.0281046 + 0.195472i 0.00111180 + 0.00773276i
\(640\) 0 0
\(641\) 2.25845 + 2.60639i 0.0892035 + 0.102946i 0.798596 0.601867i \(-0.205576\pi\)
−0.709393 + 0.704813i \(0.751031\pi\)
\(642\) 0 0
\(643\) −23.4827 −0.926065 −0.463033 0.886341i \(-0.653239\pi\)
−0.463033 + 0.886341i \(0.653239\pi\)
\(644\) 0 0
\(645\) −3.66816 −0.144434
\(646\) 0 0
\(647\) −25.6644 29.6183i −1.00897 1.16442i −0.986348 0.164672i \(-0.947344\pi\)
−0.0226236 0.999744i \(-0.507202\pi\)
\(648\) 0 0
\(649\) 4.21487 + 29.3150i 0.165448 + 1.15072i
\(650\) 0 0
\(651\) 0.553078 1.21107i 0.0216768 0.0474657i
\(652\) 0 0
\(653\) 0.626064 4.35437i 0.0244998 0.170400i −0.973898 0.226987i \(-0.927113\pi\)
0.998398 + 0.0565867i \(0.0180217\pi\)
\(654\) 0 0
\(655\) 9.65980 + 2.83637i 0.377439 + 0.110826i
\(656\) 0 0
\(657\) −3.30686 7.24102i −0.129013 0.282499i
\(658\) 0 0
\(659\) −10.1304 + 11.6911i −0.394623 + 0.455419i −0.917940 0.396719i \(-0.870149\pi\)
0.523317 + 0.852138i \(0.324694\pi\)
\(660\) 0 0
\(661\) −21.5003 13.8174i −0.836264 0.537434i 0.0509984 0.998699i \(-0.483760\pi\)
−0.887263 + 0.461264i \(0.847396\pi\)
\(662\) 0 0
\(663\) 45.1037 28.9864i 1.75168 1.12574i
\(664\) 0 0
\(665\) −9.36657 + 2.75027i −0.363220 + 0.106651i
\(666\) 0 0
\(667\) −13.0574 + 15.0022i −0.505586 + 0.580887i
\(668\) 0 0
\(669\) 11.6637 3.42476i 0.450943 0.132409i
\(670\) 0 0
\(671\) 12.9809 8.34233i 0.501123 0.322052i
\(672\) 0 0
\(673\) −13.8361 8.89193i −0.533343 0.342759i 0.246087 0.969248i \(-0.420855\pi\)
−0.779430 + 0.626489i \(0.784491\pi\)
\(674\) 0 0
\(675\) 2.55630 2.95012i 0.0983919 0.113550i
\(676\) 0 0
\(677\) 18.6868 + 40.9185i 0.718193 + 1.57262i 0.816419 + 0.577460i \(0.195956\pi\)
−0.0982256 + 0.995164i \(0.531317\pi\)
\(678\) 0 0
\(679\) 10.3273 + 3.03236i 0.396325 + 0.116371i
\(680\) 0 0
\(681\) 3.35792 23.3549i 0.128676 0.894961i
\(682\) 0 0
\(683\) 2.20603 4.83054i 0.0844115 0.184836i −0.862719 0.505683i \(-0.831240\pi\)
0.947131 + 0.320848i \(0.103968\pi\)
\(684\) 0 0
\(685\) −0.526153 3.65948i −0.0201033 0.139821i
\(686\) 0 0
\(687\) −10.1374 11.6992i −0.386767 0.446353i
\(688\) 0 0
\(689\) 53.9703 2.05611
\(690\) 0 0
\(691\) −22.2506 −0.846454 −0.423227 0.906024i \(-0.639103\pi\)
−0.423227 + 0.906024i \(0.639103\pi\)
\(692\) 0 0
\(693\) 1.96197 + 2.26424i 0.0745291 + 0.0860112i
\(694\) 0 0
\(695\) −0.340259 2.36655i −0.0129068 0.0897685i
\(696\) 0 0
\(697\) −15.8110 + 34.6214i −0.598886 + 1.31138i
\(698\) 0 0
\(699\) −1.77871 + 12.3712i −0.0672771 + 0.467923i
\(700\) 0 0
\(701\) −29.8621 8.76829i −1.12787 0.331174i −0.336003 0.941861i \(-0.609075\pi\)
−0.791872 + 0.610687i \(0.790893\pi\)
\(702\) 0 0
\(703\) 10.7979 + 23.6441i 0.407251 + 0.891756i
\(704\) 0 0
\(705\) 1.32135 1.52492i 0.0497649 0.0574318i
\(706\) 0 0
\(707\) −17.6212 11.3244i −0.662712 0.425899i
\(708\) 0 0
\(709\) 19.2880 12.3956i 0.724376 0.465528i −0.125781 0.992058i \(-0.540144\pi\)
0.850157 + 0.526530i \(0.176507\pi\)
\(710\) 0 0
\(711\) 4.44001 1.30371i 0.166513 0.0488928i
\(712\) 0 0
\(713\) −2.85067 3.30452i −0.106758 0.123755i
\(714\) 0 0
\(715\) −14.1824 + 4.16433i −0.530391 + 0.155737i
\(716\) 0 0
\(717\) 17.5675 11.2900i 0.656071 0.421631i
\(718\) 0 0
\(719\) 38.6336 + 24.8283i 1.44079 + 0.925939i 0.999593 + 0.0285287i \(0.00908221\pi\)
0.441197 + 0.897410i \(0.354554\pi\)
\(720\) 0 0
\(721\) 3.84647 4.43907i 0.143250 0.165320i
\(722\) 0 0
\(723\) 1.07152 + 2.34630i 0.0398503 + 0.0872599i
\(724\) 0 0
\(725\) 15.5327 + 4.56082i 0.576871 + 0.169385i
\(726\) 0 0
\(727\) −2.94326 + 20.4708i −0.109159 + 0.759221i 0.859555 + 0.511043i \(0.170741\pi\)
−0.968715 + 0.248178i \(0.920168\pi\)
\(728\) 0 0
\(729\) 0.415415 0.909632i 0.0153857 0.0336901i
\(730\) 0 0
\(731\) −3.87753 26.9688i −0.143416 0.997477i
\(732\) 0 0
\(733\) −25.5114 29.4417i −0.942284 1.08745i −0.996041 0.0888999i \(-0.971665\pi\)
0.0537563 0.998554i \(-0.482881\pi\)
\(734\) 0 0
\(735\) −5.08833 −0.187686
\(736\) 0 0
\(737\) 20.6722 0.761469
\(738\) 0 0
\(739\) −19.0924 22.0338i −0.702324 0.810525i 0.286740 0.958008i \(-0.407428\pi\)
−0.989065 + 0.147483i \(0.952883\pi\)
\(740\) 0 0
\(741\) 6.25133 + 43.4790i 0.229648 + 1.59724i
\(742\) 0 0
\(743\) −1.03328 + 2.26256i −0.0379073 + 0.0830054i −0.927638 0.373480i \(-0.878165\pi\)
0.889731 + 0.456485i \(0.150892\pi\)
\(744\) 0 0
\(745\) 2.01369 14.0055i 0.0737759 0.513123i
\(746\) 0 0
\(747\) −7.94769 2.33365i −0.290791 0.0853839i
\(748\) 0 0
\(749\) −7.91646 17.3346i −0.289261 0.633393i
\(750\) 0 0
\(751\) 17.6256 20.3411i 0.643169 0.742256i −0.336763 0.941589i \(-0.609332\pi\)
0.979932 + 0.199333i \(0.0638775\pi\)
\(752\) 0 0
\(753\) 5.31155 + 3.41352i 0.193564 + 0.124396i
\(754\) 0 0
\(755\) −2.03520 + 1.30794i −0.0740684 + 0.0476009i
\(756\) 0 0
\(757\) −14.4648 + 4.24725i −0.525733 + 0.154369i −0.533820 0.845598i \(-0.679244\pi\)
0.00808709 + 0.999967i \(0.497426\pi\)
\(758\) 0 0
\(759\) 9.42898 2.74606i 0.342250 0.0996756i
\(760\) 0 0
\(761\) −19.3488 + 5.68132i −0.701394 + 0.205948i −0.612937 0.790132i \(-0.710012\pi\)
−0.0884574 + 0.996080i \(0.528194\pi\)
\(762\) 0 0
\(763\) −4.36364 + 2.80434i −0.157974 + 0.101524i
\(764\) 0 0
\(765\) −6.85116 4.40297i −0.247704 0.159190i
\(766\) 0 0
\(767\) 65.2892 75.3478i 2.35746 2.72065i
\(768\) 0 0
\(769\) −12.8841 28.2123i −0.464613 1.01736i −0.986412 0.164293i \(-0.947466\pi\)
0.521798 0.853069i \(-0.325261\pi\)
\(770\) 0 0
\(771\) −11.8044 3.46609i −0.425126 0.124828i
\(772\) 0 0
\(773\) −2.11398 + 14.7030i −0.0760344 + 0.528831i 0.915833 + 0.401559i \(0.131531\pi\)
−0.991868 + 0.127273i \(0.959378\pi\)
\(774\) 0 0
\(775\) −1.47565 + 3.23123i −0.0530070 + 0.116069i
\(776\) 0 0
\(777\) −0.849353 5.90738i −0.0304704 0.211926i
\(778\) 0 0
\(779\) −20.4204 23.5664i −0.731637 0.844354i
\(780\) 0 0
\(781\) 0.404396 0.0144704
\(782\) 0 0
\(783\) 4.14709 0.148205
\(784\) 0 0
\(785\) 8.29328 + 9.57095i 0.296000 + 0.341602i
\(786\) 0 0
\(787\) 3.39324 + 23.6005i 0.120956 + 0.841268i 0.956477 + 0.291809i \(0.0942571\pi\)
−0.835521 + 0.549459i \(0.814834\pi\)
\(788\) 0 0
\(789\) 2.94567 6.45011i 0.104869 0.229630i
\(790\) 0 0
\(791\) 3.18724 22.1677i 0.113325 0.788194i
\(792\) 0 0
\(793\) −49.8402 14.6344i −1.76988 0.519683i
\(794\)