Properties

Label 276.2.i.a.133.1
Level $276$
Weight $2$
Character 276.133
Analytic conductor $2.204$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 276 = 2^{2} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 276.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.20387109579\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 43 x^{18} - 165 x^{17} + 538 x^{16} - 1433 x^{15} + 3444 x^{14} - 7370 x^{13} + 15500 x^{12} - 28190 x^{11} + 41920 x^{10} - 33520 x^{9} - 13837 x^{8} + 78980 x^{7} - 92652 x^{6} - 52852 x^{5} + 177374 x^{4} + 151360 x^{3} + 115323 x^{2} + 12834 x + 529\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 133.1
Root \(-0.262998 - 0.575885i\) of defining polynomial
Character \(\chi\) \(=\) 276.133
Dual form 276.2.i.a.193.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.654861 + 0.755750i) q^{3} +(-0.149019 + 1.03645i) q^{5} +(0.607780 + 1.33085i) q^{7} +(-0.142315 - 0.989821i) q^{9} +O(q^{10})\) \(q+(-0.654861 + 0.755750i) q^{3} +(-0.149019 + 1.03645i) q^{5} +(0.607780 + 1.33085i) q^{7} +(-0.142315 - 0.989821i) q^{9} +(1.96481 - 0.576921i) q^{11} +(-2.86365 + 6.27053i) q^{13} +(-0.685708 - 0.791349i) q^{15} +(-6.54296 + 4.20490i) q^{17} +(5.36057 + 3.44503i) q^{19} +(-1.40380 - 0.412194i) q^{21} +(-0.692970 - 4.74550i) q^{23} +(3.74545 + 1.09976i) q^{25} +(0.841254 + 0.540641i) q^{27} +(3.48875 - 2.24209i) q^{29} +(-0.595921 - 0.687730i) q^{31} +(-0.850671 + 1.86271i) q^{33} +(-1.46993 + 0.431610i) q^{35} +(-0.580529 - 4.03767i) q^{37} +(-2.86365 - 6.27053i) q^{39} +(-0.696437 + 4.84382i) q^{41} +(2.29407 - 2.64750i) q^{43} +1.04710 q^{45} -1.92699 q^{47} +(3.18225 - 3.67251i) q^{49} +(1.10687 - 7.69846i) q^{51} +(-3.25236 - 7.12168i) q^{53} +(0.305154 + 2.12240i) q^{55} +(-6.11401 + 1.79523i) q^{57} +(6.00809 - 13.1559i) q^{59} +(4.93456 + 5.69479i) q^{61} +(1.23081 - 0.790994i) q^{63} +(-6.07233 - 3.90245i) q^{65} +(9.68609 + 2.84409i) q^{67} +(4.04021 + 2.58393i) q^{69} +(0.189483 + 0.0556372i) q^{71} +(-6.69670 - 4.30371i) q^{73} +(-3.28389 + 2.11043i) q^{75} +(1.96197 + 2.26424i) q^{77} +(-1.92232 + 4.20928i) q^{79} +(-0.959493 + 0.281733i) q^{81} +(-1.17882 - 8.19891i) q^{83} +(-3.38314 - 7.40803i) q^{85} +(-0.590193 + 4.10488i) q^{87} +(0.180249 - 0.208018i) q^{89} -10.0856 q^{91} +0.909997 q^{93} +(-4.36941 + 5.04257i) q^{95} +(1.04696 - 7.28177i) q^{97} +(-0.850671 - 1.86271i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} + O(q^{10}) \) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} - 22q^{13} + 7q^{15} + 7q^{17} + 19q^{19} + 20q^{23} + 20q^{25} - 2q^{27} + 32q^{29} - 3q^{31} + 11q^{33} - 26q^{35} - 10q^{37} - 22q^{39} - 40q^{41} + 8q^{43} - 4q^{45} - 18q^{47} - 34q^{49} - 26q^{51} - 34q^{53} - 17q^{55} - 3q^{57} - 32q^{59} + 32q^{61} + 49q^{65} + 35q^{67} - 2q^{69} + 33q^{71} - q^{73} - 2q^{75} - 50q^{77} + 22q^{79} - 2q^{81} - 14q^{83} - 9q^{85} - 12q^{87} + 10q^{89} - 72q^{91} + 30q^{93} - 51q^{95} - 4q^{97} + 11q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/276\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(139\) \(185\)
\(\chi(n)\) \(e\left(\frac{6}{11}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.654861 + 0.755750i −0.378084 + 0.436332i
\(4\) 0 0
\(5\) −0.149019 + 1.03645i −0.0666431 + 0.463513i 0.928986 + 0.370115i \(0.120682\pi\)
−0.995629 + 0.0933976i \(0.970227\pi\)
\(6\) 0 0
\(7\) 0.607780 + 1.33085i 0.229719 + 0.503015i 0.989030 0.147713i \(-0.0471911\pi\)
−0.759311 + 0.650728i \(0.774464\pi\)
\(8\) 0 0
\(9\) −0.142315 0.989821i −0.0474383 0.329940i
\(10\) 0 0
\(11\) 1.96481 0.576921i 0.592413 0.173948i 0.0282350 0.999601i \(-0.491011\pi\)
0.564178 + 0.825653i \(0.309193\pi\)
\(12\) 0 0
\(13\) −2.86365 + 6.27053i −0.794235 + 1.73913i −0.130123 + 0.991498i \(0.541537\pi\)
−0.664112 + 0.747633i \(0.731190\pi\)
\(14\) 0 0
\(15\) −0.685708 0.791349i −0.177049 0.204325i
\(16\) 0 0
\(17\) −6.54296 + 4.20490i −1.58690 + 1.01984i −0.613798 + 0.789463i \(0.710359\pi\)
−0.973102 + 0.230375i \(0.926005\pi\)
\(18\) 0 0
\(19\) 5.36057 + 3.44503i 1.22980 + 0.790344i 0.983860 0.178941i \(-0.0572672\pi\)
0.245939 + 0.969285i \(0.420904\pi\)
\(20\) 0 0
\(21\) −1.40380 0.412194i −0.306335 0.0899481i
\(22\) 0 0
\(23\) −0.692970 4.74550i −0.144494 0.989506i
\(24\) 0 0
\(25\) 3.74545 + 1.09976i 0.749090 + 0.219953i
\(26\) 0 0
\(27\) 0.841254 + 0.540641i 0.161899 + 0.104046i
\(28\) 0 0
\(29\) 3.48875 2.24209i 0.647845 0.416345i −0.175033 0.984563i \(-0.556003\pi\)
0.822878 + 0.568218i \(0.192367\pi\)
\(30\) 0 0
\(31\) −0.595921 0.687730i −0.107031 0.123520i 0.699707 0.714430i \(-0.253314\pi\)
−0.806737 + 0.590910i \(0.798769\pi\)
\(32\) 0 0
\(33\) −0.850671 + 1.86271i −0.148083 + 0.324256i
\(34\) 0 0
\(35\) −1.46993 + 0.431610i −0.248463 + 0.0729554i
\(36\) 0 0
\(37\) −0.580529 4.03767i −0.0954384 0.663789i −0.980239 0.197818i \(-0.936614\pi\)
0.884800 0.465970i \(-0.154295\pi\)
\(38\) 0 0
\(39\) −2.86365 6.27053i −0.458552 1.00409i
\(40\) 0 0
\(41\) −0.696437 + 4.84382i −0.108765 + 0.756478i 0.860321 + 0.509753i \(0.170263\pi\)
−0.969086 + 0.246725i \(0.920646\pi\)
\(42\) 0 0
\(43\) 2.29407 2.64750i 0.349842 0.403740i −0.553369 0.832937i \(-0.686658\pi\)
0.903211 + 0.429197i \(0.141203\pi\)
\(44\) 0 0
\(45\) 1.04710 0.156093
\(46\) 0 0
\(47\) −1.92699 −0.281080 −0.140540 0.990075i \(-0.544884\pi\)
−0.140540 + 0.990075i \(0.544884\pi\)
\(48\) 0 0
\(49\) 3.18225 3.67251i 0.454607 0.524645i
\(50\) 0 0
\(51\) 1.10687 7.69846i 0.154993 1.07800i
\(52\) 0 0
\(53\) −3.25236 7.12168i −0.446746 0.978238i −0.990311 0.138870i \(-0.955653\pi\)
0.543564 0.839368i \(-0.317074\pi\)
\(54\) 0 0
\(55\) 0.305154 + 2.12240i 0.0411470 + 0.286184i
\(56\) 0 0
\(57\) −6.11401 + 1.79523i −0.809820 + 0.237785i
\(58\) 0 0
\(59\) 6.00809 13.1559i 0.782187 1.71275i 0.0844153 0.996431i \(-0.473098\pi\)
0.697772 0.716320i \(-0.254175\pi\)
\(60\) 0 0
\(61\) 4.93456 + 5.69479i 0.631806 + 0.729143i 0.977904 0.209056i \(-0.0670390\pi\)
−0.346098 + 0.938198i \(0.612494\pi\)
\(62\) 0 0
\(63\) 1.23081 0.790994i 0.155068 0.0996559i
\(64\) 0 0
\(65\) −6.07233 3.90245i −0.753180 0.484039i
\(66\) 0 0
\(67\) 9.68609 + 2.84409i 1.18334 + 0.347461i 0.813462 0.581618i \(-0.197580\pi\)
0.369882 + 0.929079i \(0.379398\pi\)
\(68\) 0 0
\(69\) 4.04021 + 2.58393i 0.486384 + 0.311069i
\(70\) 0 0
\(71\) 0.189483 + 0.0556372i 0.0224875 + 0.00660292i 0.292957 0.956126i \(-0.405361\pi\)
−0.270469 + 0.962729i \(0.587179\pi\)
\(72\) 0 0
\(73\) −6.69670 4.30371i −0.783789 0.503711i 0.0864999 0.996252i \(-0.472432\pi\)
−0.870289 + 0.492541i \(0.836068\pi\)
\(74\) 0 0
\(75\) −3.28389 + 2.11043i −0.379191 + 0.243691i
\(76\) 0 0
\(77\) 1.96197 + 2.26424i 0.223587 + 0.258034i
\(78\) 0 0
\(79\) −1.92232 + 4.20928i −0.216277 + 0.473581i −0.986410 0.164302i \(-0.947463\pi\)
0.770133 + 0.637884i \(0.220190\pi\)
\(80\) 0 0
\(81\) −0.959493 + 0.281733i −0.106610 + 0.0313036i
\(82\) 0 0
\(83\) −1.17882 8.19891i −0.129393 0.899947i −0.946326 0.323214i \(-0.895237\pi\)
0.816933 0.576733i \(-0.195673\pi\)
\(84\) 0 0
\(85\) −3.38314 7.40803i −0.366953 0.803514i
\(86\) 0 0
\(87\) −0.590193 + 4.10488i −0.0632753 + 0.440089i
\(88\) 0 0
\(89\) 0.180249 0.208018i 0.0191063 0.0220499i −0.746116 0.665816i \(-0.768084\pi\)
0.765222 + 0.643766i \(0.222629\pi\)
\(90\) 0 0
\(91\) −10.0856 −1.05726
\(92\) 0 0
\(93\) 0.909997 0.0943623
\(94\) 0 0
\(95\) −4.36941 + 5.04257i −0.448292 + 0.517357i
\(96\) 0 0
\(97\) 1.04696 7.28177i 0.106303 0.739351i −0.865046 0.501693i \(-0.832711\pi\)
0.971349 0.237659i \(-0.0763800\pi\)
\(98\) 0 0
\(99\) −0.850671 1.86271i −0.0854956 0.187209i
\(100\) 0 0
\(101\) 2.03748 + 14.1710i 0.202737 + 1.41006i 0.796117 + 0.605143i \(0.206884\pi\)
−0.593380 + 0.804922i \(0.702207\pi\)
\(102\) 0 0
\(103\) 3.85204 1.13106i 0.379553 0.111447i −0.0863903 0.996261i \(-0.527533\pi\)
0.465943 + 0.884815i \(0.345715\pi\)
\(104\) 0 0
\(105\) 0.636410 1.39354i 0.0621072 0.135996i
\(106\) 0 0
\(107\) 8.52969 + 9.84379i 0.824596 + 0.951635i 0.999457 0.0329585i \(-0.0104929\pi\)
−0.174861 + 0.984593i \(0.555947\pi\)
\(108\) 0 0
\(109\) −2.98252 + 1.91675i −0.285674 + 0.183592i −0.675628 0.737243i \(-0.736127\pi\)
0.389954 + 0.920834i \(0.372491\pi\)
\(110\) 0 0
\(111\) 3.43163 + 2.20538i 0.325716 + 0.209325i
\(112\) 0 0
\(113\) 14.6873 + 4.31258i 1.38166 + 0.405693i 0.886348 0.463019i \(-0.153234\pi\)
0.495316 + 0.868713i \(0.335052\pi\)
\(114\) 0 0
\(115\) 5.02173 0.0110588i 0.468278 0.00103124i
\(116\) 0 0
\(117\) 6.61424 + 1.94212i 0.611487 + 0.179549i
\(118\) 0 0
\(119\) −9.57279 6.15206i −0.877536 0.563958i
\(120\) 0 0
\(121\) −5.72614 + 3.67997i −0.520558 + 0.334542i
\(122\) 0 0
\(123\) −3.20465 3.69836i −0.288953 0.333470i
\(124\) 0 0
\(125\) −3.87290 + 8.48047i −0.346403 + 0.758517i
\(126\) 0 0
\(127\) −13.2206 + 3.88193i −1.17314 + 0.344466i −0.809527 0.587083i \(-0.800276\pi\)
−0.363616 + 0.931549i \(0.618458\pi\)
\(128\) 0 0
\(129\) 0.498549 + 3.46748i 0.0438948 + 0.305295i
\(130\) 0 0
\(131\) −3.99409 8.74584i −0.348966 0.764128i −0.999987 0.00506875i \(-0.998387\pi\)
0.651022 0.759059i \(-0.274341\pi\)
\(132\) 0 0
\(133\) −1.32678 + 9.22796i −0.115046 + 0.800165i
\(134\) 0 0
\(135\) −0.685708 + 0.791349i −0.0590163 + 0.0681085i
\(136\) 0 0
\(137\) 3.53079 0.301656 0.150828 0.988560i \(-0.451806\pi\)
0.150828 + 0.988560i \(0.451806\pi\)
\(138\) 0 0
\(139\) 2.28333 0.193670 0.0968349 0.995300i \(-0.469128\pi\)
0.0968349 + 0.995300i \(0.469128\pi\)
\(140\) 0 0
\(141\) 1.26191 1.45632i 0.106272 0.122644i
\(142\) 0 0
\(143\) −2.00894 + 13.9725i −0.167996 + 1.16844i
\(144\) 0 0
\(145\) 1.80391 + 3.95002i 0.149807 + 0.328031i
\(146\) 0 0
\(147\) 0.691569 + 4.80997i 0.0570397 + 0.396720i
\(148\) 0 0
\(149\) 12.9656 3.80706i 1.06219 0.311886i 0.296456 0.955047i \(-0.404195\pi\)
0.765732 + 0.643160i \(0.222377\pi\)
\(150\) 0 0
\(151\) −0.959780 + 2.10162i −0.0781058 + 0.171028i −0.944656 0.328061i \(-0.893605\pi\)
0.866551 + 0.499089i \(0.166332\pi\)
\(152\) 0 0
\(153\) 5.09326 + 5.87794i 0.411766 + 0.475203i
\(154\) 0 0
\(155\) 0.801598 0.515156i 0.0643859 0.0413783i
\(156\) 0 0
\(157\) −10.1745 6.53877i −0.812015 0.521851i 0.0675010 0.997719i \(-0.478497\pi\)
−0.879516 + 0.475869i \(0.842134\pi\)
\(158\) 0 0
\(159\) 7.51205 + 2.20574i 0.595744 + 0.174926i
\(160\) 0 0
\(161\) 5.89439 3.80646i 0.464543 0.299991i
\(162\) 0 0
\(163\) 20.7606 + 6.09585i 1.62609 + 0.477464i 0.962647 0.270759i \(-0.0872748\pi\)
0.663447 + 0.748224i \(0.269093\pi\)
\(164\) 0 0
\(165\) −1.80383 1.15925i −0.140428 0.0902477i
\(166\) 0 0
\(167\) −4.66020 + 2.99493i −0.360617 + 0.231755i −0.708385 0.705826i \(-0.750576\pi\)
0.347768 + 0.937581i \(0.386940\pi\)
\(168\) 0 0
\(169\) −22.6058 26.0885i −1.73891 2.00681i
\(170\) 0 0
\(171\) 2.64708 5.79629i 0.202427 0.443253i
\(172\) 0 0
\(173\) −10.5327 + 3.09267i −0.800783 + 0.235131i −0.656422 0.754394i \(-0.727931\pi\)
−0.144361 + 0.989525i \(0.546113\pi\)
\(174\) 0 0
\(175\) 0.812787 + 5.65306i 0.0614409 + 0.427331i
\(176\) 0 0
\(177\) 6.00809 + 13.1559i 0.451596 + 0.988857i
\(178\) 0 0
\(179\) −2.69832 + 18.7672i −0.201682 + 1.40273i 0.597611 + 0.801786i \(0.296117\pi\)
−0.799293 + 0.600942i \(0.794792\pi\)
\(180\) 0 0
\(181\) 10.9386 12.6238i 0.813060 0.938322i −0.185961 0.982557i \(-0.559540\pi\)
0.999021 + 0.0442355i \(0.0140852\pi\)
\(182\) 0 0
\(183\) −7.53528 −0.557024
\(184\) 0 0
\(185\) 4.27134 0.314035
\(186\) 0 0
\(187\) −10.4298 + 12.0366i −0.762701 + 0.880204i
\(188\) 0 0
\(189\) −0.208216 + 1.44818i −0.0151455 + 0.105339i
\(190\) 0 0
\(191\) 4.20633 + 9.21058i 0.304359 + 0.666454i 0.998578 0.0533102i \(-0.0169772\pi\)
−0.694219 + 0.719764i \(0.744250\pi\)
\(192\) 0 0
\(193\) −2.01479 14.0132i −0.145028 1.00869i −0.924207 0.381891i \(-0.875273\pi\)
0.779180 0.626801i \(-0.215636\pi\)
\(194\) 0 0
\(195\) 6.92580 2.03360i 0.495967 0.145629i
\(196\) 0 0
\(197\) −10.5317 + 23.0613i −0.750356 + 1.64305i 0.0153688 + 0.999882i \(0.495108\pi\)
−0.765725 + 0.643168i \(0.777620\pi\)
\(198\) 0 0
\(199\) −8.66657 10.0018i −0.614357 0.709005i 0.360269 0.932849i \(-0.382685\pi\)
−0.974625 + 0.223843i \(0.928140\pi\)
\(200\) 0 0
\(201\) −8.49246 + 5.45777i −0.599012 + 0.384961i
\(202\) 0 0
\(203\) 5.10428 + 3.28032i 0.358251 + 0.230234i
\(204\) 0 0
\(205\) −4.91658 1.44364i −0.343389 0.100828i
\(206\) 0 0
\(207\) −4.59858 + 1.36127i −0.319623 + 0.0946150i
\(208\) 0 0
\(209\) 12.5200 + 3.67621i 0.866028 + 0.254289i
\(210\) 0 0
\(211\) −1.09064 0.700911i −0.0750826 0.0482527i 0.502561 0.864542i \(-0.332391\pi\)
−0.577644 + 0.816289i \(0.696028\pi\)
\(212\) 0 0
\(213\) −0.166133 + 0.106767i −0.0113832 + 0.00731555i
\(214\) 0 0
\(215\) 2.40213 + 2.77221i 0.163824 + 0.189063i
\(216\) 0 0
\(217\) 0.553078 1.21107i 0.0375454 0.0822129i
\(218\) 0 0
\(219\) 7.63793 2.24270i 0.516123 0.151548i
\(220\) 0 0
\(221\) −7.63019 53.0692i −0.513262 3.56982i
\(222\) 0 0
\(223\) −5.04981 11.0575i −0.338160 0.740468i 0.661797 0.749683i \(-0.269794\pi\)
−0.999958 + 0.00921525i \(0.997067\pi\)
\(224\) 0 0
\(225\) 0.555536 3.86384i 0.0370357 0.257589i
\(226\) 0 0
\(227\) 15.4515 17.8319i 1.02555 1.18355i 0.0427099 0.999088i \(-0.486401\pi\)
0.982840 0.184460i \(-0.0590537\pi\)
\(228\) 0 0
\(229\) 15.4803 1.02296 0.511482 0.859294i \(-0.329097\pi\)
0.511482 + 0.859294i \(0.329097\pi\)
\(230\) 0 0
\(231\) −2.99601 −0.197123
\(232\) 0 0
\(233\) −8.18474 + 9.44569i −0.536200 + 0.618808i −0.957612 0.288062i \(-0.906989\pi\)
0.421412 + 0.906869i \(0.361535\pi\)
\(234\) 0 0
\(235\) 0.287157 1.99722i 0.0187320 0.130284i
\(236\) 0 0
\(237\) −1.92232 4.20928i −0.124868 0.273422i
\(238\) 0 0
\(239\) −2.97190 20.6700i −0.192236 1.33703i −0.826073 0.563564i \(-0.809430\pi\)
0.633837 0.773467i \(-0.281479\pi\)
\(240\) 0 0
\(241\) −2.47491 + 0.726700i −0.159423 + 0.0468109i −0.360470 0.932771i \(-0.617384\pi\)
0.201047 + 0.979582i \(0.435566\pi\)
\(242\) 0 0
\(243\) 0.415415 0.909632i 0.0266489 0.0583529i
\(244\) 0 0
\(245\) 3.33215 + 3.84551i 0.212883 + 0.245680i
\(246\) 0 0
\(247\) −36.9530 + 23.7482i −2.35126 + 1.51106i
\(248\) 0 0
\(249\) 6.96829 + 4.47825i 0.441597 + 0.283797i
\(250\) 0 0
\(251\) −6.05809 1.77882i −0.382383 0.112278i 0.0848910 0.996390i \(-0.472946\pi\)
−0.467274 + 0.884112i \(0.654764\pi\)
\(252\) 0 0
\(253\) −4.09934 8.92423i −0.257723 0.561062i
\(254\) 0 0
\(255\) 7.81410 + 2.29443i 0.489338 + 0.143683i
\(256\) 0 0
\(257\) 10.3497 + 6.65137i 0.645599 + 0.414901i 0.822056 0.569407i \(-0.192827\pi\)
−0.176457 + 0.984308i \(0.556464\pi\)
\(258\) 0 0
\(259\) 5.02071 3.22661i 0.311972 0.200492i
\(260\) 0 0
\(261\) −2.71577 3.13416i −0.168102 0.194000i
\(262\) 0 0
\(263\) 2.94567 6.45011i 0.181638 0.397731i −0.796809 0.604231i \(-0.793480\pi\)
0.978447 + 0.206500i \(0.0662075\pi\)
\(264\) 0 0
\(265\) 7.86590 2.30964i 0.483199 0.141880i
\(266\) 0 0
\(267\) 0.0391718 + 0.272446i 0.00239728 + 0.0166734i
\(268\) 0 0
\(269\) −6.22048 13.6209i −0.379269 0.830484i −0.998958 0.0456362i \(-0.985469\pi\)
0.619689 0.784848i \(-0.287259\pi\)
\(270\) 0 0
\(271\) −2.61485 + 18.1867i −0.158841 + 1.10476i 0.741933 + 0.670474i \(0.233909\pi\)
−0.900774 + 0.434288i \(0.857000\pi\)
\(272\) 0 0
\(273\) 6.60468 7.62221i 0.399733 0.461317i
\(274\) 0 0
\(275\) 7.99358 0.482031
\(276\) 0 0
\(277\) 13.9414 0.837657 0.418829 0.908065i \(-0.362441\pi\)
0.418829 + 0.908065i \(0.362441\pi\)
\(278\) 0 0
\(279\) −0.595921 + 0.687730i −0.0356769 + 0.0411733i
\(280\) 0 0
\(281\) 1.10403 7.67872i 0.0658611 0.458074i −0.930028 0.367490i \(-0.880217\pi\)
0.995889 0.0905846i \(-0.0288736\pi\)
\(282\) 0 0
\(283\) −13.5340 29.6354i −0.804514 1.76164i −0.629385 0.777093i \(-0.716693\pi\)
−0.175128 0.984546i \(-0.556034\pi\)
\(284\) 0 0
\(285\) −0.949564 6.60437i −0.0562473 0.391209i
\(286\) 0 0
\(287\) −6.86970 + 2.01713i −0.405506 + 0.119067i
\(288\) 0 0
\(289\) 18.0670 39.5612i 1.06277 2.32713i
\(290\) 0 0
\(291\) 4.81758 + 5.55978i 0.282411 + 0.325920i
\(292\) 0 0
\(293\) 18.0543 11.6028i 1.05475 0.677844i 0.106155 0.994350i \(-0.466146\pi\)
0.948591 + 0.316506i \(0.102510\pi\)
\(294\) 0 0
\(295\) 12.7401 + 8.18754i 0.741755 + 0.476697i
\(296\) 0 0
\(297\) 1.96481 + 0.576921i 0.114010 + 0.0334763i
\(298\) 0 0
\(299\) 31.7412 + 9.24419i 1.83564 + 0.534605i
\(300\) 0 0
\(301\) 4.91772 + 1.44397i 0.283453 + 0.0832293i
\(302\) 0 0
\(303\) −12.0440 7.74019i −0.691908 0.444662i
\(304\) 0 0
\(305\) −6.63768 + 4.26578i −0.380073 + 0.244258i
\(306\) 0 0
\(307\) 2.82498 + 3.26020i 0.161230 + 0.186070i 0.830616 0.556845i \(-0.187988\pi\)
−0.669386 + 0.742915i \(0.733443\pi\)
\(308\) 0 0
\(309\) −1.66775 + 3.65187i −0.0948751 + 0.207748i
\(310\) 0 0
\(311\) −12.4182 + 3.64631i −0.704171 + 0.206763i −0.614165 0.789178i \(-0.710507\pi\)
−0.0900065 + 0.995941i \(0.528689\pi\)
\(312\) 0 0
\(313\) −0.525717 3.65644i −0.0297153 0.206674i 0.969555 0.244874i \(-0.0787467\pi\)
−0.999270 + 0.0382000i \(0.987838\pi\)
\(314\) 0 0
\(315\) 0.636410 + 1.39354i 0.0358576 + 0.0785172i
\(316\) 0 0
\(317\) −2.66225 + 18.5164i −0.149527 + 1.03998i 0.767469 + 0.641087i \(0.221516\pi\)
−0.916996 + 0.398897i \(0.869393\pi\)
\(318\) 0 0
\(319\) 5.56124 6.41801i 0.311370 0.359340i
\(320\) 0 0
\(321\) −13.0252 −0.726996
\(322\) 0 0
\(323\) −49.5600 −2.75759
\(324\) 0 0
\(325\) −17.6218 + 20.3366i −0.977480 + 1.12807i
\(326\) 0 0
\(327\) 0.504553 3.50925i 0.0279019 0.194062i
\(328\) 0 0
\(329\) −1.17118 2.56454i −0.0645695 0.141387i
\(330\) 0 0
\(331\) 0.646147 + 4.49405i 0.0355154 + 0.247015i 0.999843 0.0176950i \(-0.00563279\pi\)
−0.964328 + 0.264710i \(0.914724\pi\)
\(332\) 0 0
\(333\) −3.91395 + 1.14924i −0.214483 + 0.0629780i
\(334\) 0 0
\(335\) −4.39116 + 9.61529i −0.239914 + 0.525339i
\(336\) 0 0
\(337\) 14.8054 + 17.0864i 0.806503 + 0.930754i 0.998719 0.0505986i \(-0.0161129\pi\)
−0.192216 + 0.981353i \(0.561567\pi\)
\(338\) 0 0
\(339\) −12.8774 + 8.27578i −0.699402 + 0.449479i
\(340\) 0 0
\(341\) −1.56764 1.00746i −0.0848924 0.0545570i
\(342\) 0 0
\(343\) 16.6483 + 4.88839i 0.898924 + 0.263948i
\(344\) 0 0
\(345\) −3.28017 + 3.80241i −0.176599 + 0.204715i
\(346\) 0 0
\(347\) −17.3095 5.08253i −0.929222 0.272844i −0.218111 0.975924i \(-0.569990\pi\)
−0.711111 + 0.703080i \(0.751808\pi\)
\(348\) 0 0
\(349\) −4.22571 2.71570i −0.226197 0.145368i 0.422634 0.906300i \(-0.361106\pi\)
−0.648831 + 0.760932i \(0.724742\pi\)
\(350\) 0 0
\(351\) −5.79916 + 3.72689i −0.309536 + 0.198927i
\(352\) 0 0
\(353\) −8.32044 9.60230i −0.442852 0.511079i 0.489810 0.871829i \(-0.337066\pi\)
−0.932662 + 0.360750i \(0.882521\pi\)
\(354\) 0 0
\(355\) −0.0859014 + 0.188098i −0.00455917 + 0.00998320i
\(356\) 0 0
\(357\) 10.9183 3.20589i 0.577855 0.169674i
\(358\) 0 0
\(359\) −0.759247 5.28068i −0.0400715 0.278703i 0.959927 0.280249i \(-0.0904171\pi\)
−0.999999 + 0.00154569i \(0.999508\pi\)
\(360\) 0 0
\(361\) 8.97460 + 19.6516i 0.472348 + 1.03430i
\(362\) 0 0
\(363\) 0.968691 6.73739i 0.0508431 0.353621i
\(364\) 0 0
\(365\) 5.45849 6.29944i 0.285711 0.329728i
\(366\) 0 0
\(367\) −1.47822 −0.0771624 −0.0385812 0.999255i \(-0.512284\pi\)
−0.0385812 + 0.999255i \(0.512284\pi\)
\(368\) 0 0
\(369\) 4.89363 0.254752
\(370\) 0 0
\(371\) 7.50119 8.65683i 0.389442 0.449440i
\(372\) 0 0
\(373\) −2.50047 + 17.3912i −0.129470 + 0.900480i 0.816758 + 0.576980i \(0.195769\pi\)
−0.946228 + 0.323501i \(0.895140\pi\)
\(374\) 0 0
\(375\) −3.87290 8.48047i −0.199996 0.437930i
\(376\) 0 0
\(377\) 4.06848 + 28.2969i 0.209537 + 1.45736i
\(378\) 0 0
\(379\) 4.96855 1.45890i 0.255218 0.0749386i −0.151621 0.988439i \(-0.548449\pi\)
0.406839 + 0.913500i \(0.366631\pi\)
\(380\) 0 0
\(381\) 5.72391 12.5336i 0.293245 0.642117i
\(382\) 0 0
\(383\) 18.1398 + 20.9345i 0.926901 + 1.06970i 0.997391 + 0.0721881i \(0.0229982\pi\)
−0.0704902 + 0.997512i \(0.522456\pi\)
\(384\) 0 0
\(385\) −2.63913 + 1.69607i −0.134503 + 0.0864395i
\(386\) 0 0
\(387\) −2.94703 1.89394i −0.149806 0.0962745i
\(388\) 0 0
\(389\) −5.15517 1.51370i −0.261378 0.0767474i 0.148418 0.988925i \(-0.452582\pi\)
−0.409796 + 0.912177i \(0.634400\pi\)
\(390\) 0 0
\(391\) 24.4884 + 28.1357i 1.23843 + 1.42289i
\(392\) 0 0
\(393\) 9.22524 + 2.70878i 0.465352 + 0.136640i
\(394\) 0 0
\(395\) −4.07624 2.61964i −0.205098 0.131808i
\(396\) 0 0
\(397\) −30.4469 + 19.5670i −1.52808 + 0.982040i −0.537786 + 0.843081i \(0.680739\pi\)
−0.990298 + 0.138959i \(0.955624\pi\)
\(398\) 0 0
\(399\) −6.10517 7.04574i −0.305641 0.352728i
\(400\) 0 0
\(401\) −3.81908 + 8.36262i −0.190716 + 0.417609i −0.980700 0.195518i \(-0.937361\pi\)
0.789984 + 0.613127i \(0.210089\pi\)
\(402\) 0 0
\(403\) 6.01894 1.76732i 0.299825 0.0880365i
\(404\) 0 0
\(405\) −0.149019 1.03645i −0.00740479 0.0515015i
\(406\) 0 0
\(407\) −3.47005 7.59834i −0.172004 0.376636i
\(408\) 0 0
\(409\) 0.120756 0.839879i 0.00597102 0.0415293i −0.986618 0.163048i \(-0.947867\pi\)
0.992589 + 0.121519i \(0.0387765\pi\)
\(410\) 0 0
\(411\) −2.31218 + 2.66839i −0.114051 + 0.131622i
\(412\) 0 0
\(413\) 21.1602 1.04122
\(414\) 0 0
\(415\) 8.67340 0.425760
\(416\) 0 0
\(417\) −1.49527 + 1.72563i −0.0732235 + 0.0845044i
\(418\) 0 0
\(419\) −3.51724 + 24.4629i −0.171828 + 1.19509i 0.703190 + 0.711002i \(0.251758\pi\)
−0.875018 + 0.484090i \(0.839151\pi\)
\(420\) 0 0
\(421\) 6.50485 + 14.2436i 0.317027 + 0.694192i 0.999319 0.0368873i \(-0.0117443\pi\)
−0.682293 + 0.731079i \(0.739017\pi\)
\(422\) 0 0
\(423\) 0.274239 + 1.90737i 0.0133339 + 0.0927396i
\(424\) 0 0
\(425\) −29.1307 + 8.55355i −1.41305 + 0.414908i
\(426\) 0 0
\(427\) −4.57980 + 10.0284i −0.221632 + 0.485306i
\(428\) 0 0
\(429\) −9.24414 10.6683i −0.446311 0.515071i
\(430\) 0 0
\(431\) −5.59612 + 3.59641i −0.269555 + 0.173233i −0.668435 0.743771i \(-0.733036\pi\)
0.398880 + 0.917003i \(0.369399\pi\)
\(432\) 0 0
\(433\) 17.0259 + 10.9419i 0.818214 + 0.525834i 0.881513 0.472160i \(-0.156526\pi\)
−0.0632987 + 0.997995i \(0.520162\pi\)
\(434\) 0 0
\(435\) −4.16654 1.22341i −0.199770 0.0586578i
\(436\) 0 0
\(437\) 12.6337 27.8259i 0.604351 1.33109i
\(438\) 0 0
\(439\) −3.95674 1.16180i −0.188845 0.0554498i 0.185943 0.982561i \(-0.440466\pi\)
−0.374787 + 0.927111i \(0.622284\pi\)
\(440\) 0 0
\(441\) −4.08801 2.62721i −0.194667 0.125105i
\(442\) 0 0
\(443\) 25.8064 16.5847i 1.22610 0.787965i 0.242819 0.970072i \(-0.421928\pi\)
0.983279 + 0.182106i \(0.0582916\pi\)
\(444\) 0 0
\(445\) 0.188739 + 0.217817i 0.00894710 + 0.0103255i
\(446\) 0 0
\(447\) −5.61351 + 12.2919i −0.265510 + 0.581386i
\(448\) 0 0
\(449\) −21.7635 + 6.39035i −1.02709 + 0.301579i −0.751525 0.659704i \(-0.770682\pi\)
−0.275560 + 0.961284i \(0.588863\pi\)
\(450\) 0 0
\(451\) 1.42614 + 9.91899i 0.0671541 + 0.467067i
\(452\) 0 0
\(453\) −0.959780 2.10162i −0.0450944 0.0987429i
\(454\) 0 0
\(455\) 1.50294 10.4532i 0.0704591 0.490054i
\(456\) 0 0
\(457\) 18.4108 21.2472i 0.861222 0.993903i −0.138772 0.990324i \(-0.544315\pi\)
0.999994 0.00357885i \(-0.00113919\pi\)
\(458\) 0 0
\(459\) −7.77763 −0.363029
\(460\) 0 0
\(461\) −4.98643 −0.232241 −0.116121 0.993235i \(-0.537046\pi\)
−0.116121 + 0.993235i \(0.537046\pi\)
\(462\) 0 0
\(463\) 17.2211 19.8742i 0.800333 0.923634i −0.198066 0.980189i \(-0.563466\pi\)
0.998400 + 0.0565546i \(0.0180115\pi\)
\(464\) 0 0
\(465\) −0.135606 + 0.943163i −0.00628859 + 0.0437381i
\(466\) 0 0
\(467\) 14.8145 + 32.4393i 0.685534 + 1.50111i 0.856671 + 0.515863i \(0.172529\pi\)
−0.171137 + 0.985247i \(0.554744\pi\)
\(468\) 0 0
\(469\) 2.10194 + 14.6193i 0.0970588 + 0.675059i
\(470\) 0 0
\(471\) 11.6046 3.40741i 0.534710 0.157005i
\(472\) 0 0
\(473\) 2.98002 6.52533i 0.137021 0.300035i
\(474\) 0 0
\(475\) 16.2890 + 18.7985i 0.747392 + 0.862536i
\(476\) 0 0
\(477\) −6.58633 + 4.23278i −0.301567 + 0.193806i
\(478\) 0 0
\(479\) −35.6477 22.9094i −1.62878 1.04676i −0.949921 0.312490i \(-0.898837\pi\)
−0.678863 0.734265i \(-0.737527\pi\)
\(480\) 0 0
\(481\) 26.9807 + 7.92226i 1.23022 + 0.361224i
\(482\) 0 0
\(483\) −0.983273 + 6.94739i −0.0447405 + 0.316117i
\(484\) 0 0
\(485\) 7.39115 + 2.17024i 0.335615 + 0.0985454i
\(486\) 0 0
\(487\) −25.0812 16.1187i −1.13654 0.730407i −0.169622 0.985509i \(-0.554255\pi\)
−0.966914 + 0.255102i \(0.917891\pi\)
\(488\) 0 0
\(489\) −18.2022 + 11.6979i −0.823133 + 0.528995i
\(490\) 0 0
\(491\) −8.55804 9.87650i −0.386219 0.445720i 0.529034 0.848601i \(-0.322554\pi\)
−0.915253 + 0.402880i \(0.868009\pi\)
\(492\) 0 0
\(493\) −13.3990 + 29.3397i −0.603461 + 1.32140i
\(494\) 0 0
\(495\) 2.05736 0.604097i 0.0924716 0.0271521i
\(496\) 0 0
\(497\) 0.0411190 + 0.285989i 0.00184444 + 0.0128284i
\(498\) 0 0
\(499\) −9.02701 19.7664i −0.404104 0.884865i −0.996838 0.0794664i \(-0.974678\pi\)
0.592733 0.805399i \(-0.298049\pi\)
\(500\) 0 0
\(501\) 0.788367 5.48321i 0.0352216 0.244972i
\(502\) 0 0
\(503\) 11.9282 13.7659i 0.531852 0.613790i −0.424706 0.905331i \(-0.639623\pi\)
0.956558 + 0.291541i \(0.0941680\pi\)
\(504\) 0 0
\(505\) −14.9911 −0.667094
\(506\) 0 0
\(507\) 34.5200 1.53309
\(508\) 0 0
\(509\) 0.994643 1.14788i 0.0440868 0.0508788i −0.733278 0.679929i \(-0.762011\pi\)
0.777365 + 0.629050i \(0.216556\pi\)
\(510\) 0 0
\(511\) 1.65748 11.5280i 0.0733226 0.509970i
\(512\) 0 0
\(513\) 2.64708 + 5.79629i 0.116871 + 0.255912i
\(514\) 0 0
\(515\) 0.598260 + 4.16099i 0.0263625 + 0.183355i
\(516\) 0 0
\(517\) −3.78617 + 1.11172i −0.166515 + 0.0488933i
\(518\) 0 0
\(519\) 4.56014 9.98532i 0.200168 0.438307i
\(520\) 0 0
\(521\) −9.68764 11.1801i −0.424423 0.489810i 0.502756 0.864428i \(-0.332319\pi\)
−0.927179 + 0.374618i \(0.877774\pi\)
\(522\) 0 0
\(523\) 16.4684 10.5836i 0.720114 0.462789i −0.128563 0.991701i \(-0.541036\pi\)
0.848677 + 0.528912i \(0.177400\pi\)
\(524\) 0 0
\(525\) −4.80456 3.08770i −0.209688 0.134758i
\(526\) 0 0
\(527\) 6.79092 + 1.99399i 0.295817 + 0.0868597i
\(528\) 0 0
\(529\) −22.0396 + 6.57698i −0.958243 + 0.285956i
\(530\) 0 0
\(531\) −13.8770 4.07466i −0.602211 0.176825i
\(532\) 0 0
\(533\) −28.3790 18.2381i −1.22923 0.789978i
\(534\) 0 0
\(535\) −11.4736 + 7.37366i −0.496049 + 0.318791i
\(536\) 0 0
\(537\) −12.4163 14.3292i −0.535803 0.618349i
\(538\) 0 0
\(539\) 4.13378 9.05171i 0.178054 0.389885i
\(540\) 0 0
\(541\) 1.35451 0.397719i 0.0582349 0.0170993i −0.252485 0.967601i \(-0.581248\pi\)
0.310720 + 0.950501i \(0.399430\pi\)
\(542\) 0 0
\(543\) 2.37719 + 16.5337i 0.102015 + 0.709529i
\(544\) 0 0
\(545\) −1.54216 3.37686i −0.0660589 0.144649i
\(546\) 0 0
\(547\) 3.19234 22.2032i 0.136494 0.949340i −0.800335 0.599553i \(-0.795345\pi\)
0.936829 0.349787i \(-0.113746\pi\)
\(548\) 0 0
\(549\) 4.93456 5.69479i 0.210602 0.243048i
\(550\) 0 0
\(551\) 26.4258 1.12578
\(552\) 0 0
\(553\) −6.77028 −0.287902
\(554\) 0 0
\(555\) −2.79713 + 3.22806i −0.118732 + 0.137024i
\(556\) 0 0
\(557\) −4.95373 + 34.4539i −0.209896 + 1.45986i 0.563594 + 0.826052i \(0.309418\pi\)
−0.773490 + 0.633808i \(0.781491\pi\)
\(558\) 0 0
\(559\) 10.0318 + 21.9665i 0.424299 + 0.929086i
\(560\) 0 0
\(561\) −2.26661 15.7646i −0.0956963 0.665582i
\(562\) 0 0
\(563\) 44.9036 13.1849i 1.89246 0.555677i 0.899553 0.436812i \(-0.143893\pi\)
0.992910 0.118865i \(-0.0379256\pi\)
\(564\) 0 0
\(565\) −6.65844 + 14.5799i −0.280123 + 0.613383i
\(566\) 0 0
\(567\) −0.958106 1.10571i −0.0402367 0.0464356i
\(568\) 0 0
\(569\) −7.35168 + 4.72464i −0.308198 + 0.198067i −0.685592 0.727986i \(-0.740457\pi\)
0.377394 + 0.926053i \(0.376820\pi\)
\(570\) 0 0
\(571\) 16.5741 + 10.6516i 0.693606 + 0.445754i 0.839366 0.543566i \(-0.182926\pi\)
−0.145760 + 0.989320i \(0.546563\pi\)
\(572\) 0 0
\(573\) −9.71545 2.85271i −0.405869 0.119174i
\(574\) 0 0
\(575\) 2.62344 18.5361i 0.109405 0.773011i
\(576\) 0 0
\(577\) 16.5543 + 4.86079i 0.689165 + 0.202357i 0.607520 0.794304i \(-0.292164\pi\)
0.0816453 + 0.996661i \(0.473983\pi\)
\(578\) 0 0
\(579\) 11.9099 + 7.65401i 0.494957 + 0.318090i
\(580\) 0 0
\(581\) 10.1951 6.55198i 0.422963 0.271822i
\(582\) 0 0
\(583\) −10.4989 12.1164i −0.434821 0.501810i
\(584\) 0 0
\(585\) −2.99854 + 6.56590i −0.123975 + 0.271466i
\(586\) 0 0
\(587\) −22.4307 + 6.58626i −0.925815 + 0.271844i −0.709684 0.704520i \(-0.751162\pi\)
−0.216131 + 0.976364i \(0.569344\pi\)
\(588\) 0 0
\(589\) −0.825228 5.73959i −0.0340029 0.236496i
\(590\) 0 0
\(591\) −10.5317 23.0613i −0.433218 0.948616i
\(592\) 0 0
\(593\) −2.08335 + 14.4900i −0.0855529 + 0.595034i 0.901273 + 0.433251i \(0.142634\pi\)
−0.986826 + 0.161783i \(0.948276\pi\)
\(594\) 0 0
\(595\) 7.80280 9.00491i 0.319884 0.369166i
\(596\) 0 0
\(597\) 13.2342 0.541640
\(598\) 0 0
\(599\) −18.2295 −0.744838 −0.372419 0.928065i \(-0.621472\pi\)
−0.372419 + 0.928065i \(0.621472\pi\)
\(600\) 0 0
\(601\) 22.2399 25.6662i 0.907185 1.04695i −0.0915063 0.995804i \(-0.529168\pi\)
0.998691 0.0511429i \(-0.0162864\pi\)
\(602\) 0 0
\(603\) 1.43667 9.99225i 0.0585057 0.406916i
\(604\) 0 0
\(605\) −2.96079 6.48322i −0.120373 0.263580i
\(606\) 0 0
\(607\) −6.97050 48.4809i −0.282924 1.96778i −0.249664 0.968333i \(-0.580320\pi\)
−0.0332604 0.999447i \(-0.510589\pi\)
\(608\) 0 0
\(609\) −5.82170 + 1.70941i −0.235907 + 0.0692686i
\(610\) 0 0
\(611\) 5.51822 12.0832i 0.223243 0.488835i
\(612\) 0 0
\(613\) −13.5055 15.5862i −0.545482 0.629519i 0.414343 0.910121i \(-0.364012\pi\)
−0.959824 + 0.280601i \(0.909466\pi\)
\(614\) 0 0
\(615\) 4.31071 2.77032i 0.173824 0.111710i
\(616\) 0 0
\(617\) −22.7181 14.6000i −0.914597 0.587776i −0.00351174 0.999994i \(-0.501118\pi\)
−0.911085 + 0.412218i \(0.864754\pi\)
\(618\) 0 0
\(619\) −26.2222 7.69954i −1.05396 0.309471i −0.291544 0.956557i \(-0.594169\pi\)
−0.762416 + 0.647087i \(0.775987\pi\)
\(620\) 0 0
\(621\) 1.98265 4.36682i 0.0795610 0.175234i
\(622\) 0 0
\(623\) 0.386393 + 0.113455i 0.0154805 + 0.00454549i
\(624\) 0 0
\(625\) 8.20704 + 5.27435i 0.328282 + 0.210974i
\(626\) 0 0
\(627\) −10.9772 + 7.05460i −0.438386 + 0.281733i
\(628\) 0 0
\(629\) 20.7764 + 23.9772i 0.828408 + 0.956034i
\(630\) 0 0
\(631\) 16.7273 36.6276i 0.665903 1.45812i −0.211015 0.977483i \(-0.567677\pi\)
0.876918 0.480640i \(-0.159596\pi\)
\(632\) 0 0
\(633\) 1.24393 0.365250i 0.0494417 0.0145174i
\(634\) 0 0
\(635\) −2.05329 14.2810i −0.0814825 0.566723i
\(636\) 0 0
\(637\) 13.9157 + 30.4712i 0.551361 + 1.20731i
\(638\) 0 0
\(639\) 0.0281046 0.195472i 0.00111180 0.00773276i
\(640\) 0 0
\(641\) 2.25845 2.60639i 0.0892035 0.102946i −0.709393 0.704813i \(-0.751031\pi\)
0.798596 + 0.601867i \(0.205576\pi\)
\(642\) 0 0
\(643\) −23.4827 −0.926065 −0.463033 0.886341i \(-0.653239\pi\)
−0.463033 + 0.886341i \(0.653239\pi\)
\(644\) 0 0
\(645\) −3.66816 −0.144434
\(646\) 0 0
\(647\) −25.6644 + 29.6183i −1.00897 + 1.16442i −0.0226236 + 0.999744i \(0.507202\pi\)
−0.986348 + 0.164672i \(0.947344\pi\)
\(648\) 0 0
\(649\) 4.21487 29.3150i 0.165448 1.15072i
\(650\) 0 0
\(651\) 0.553078 + 1.21107i 0.0216768 + 0.0474657i
\(652\) 0 0
\(653\) 0.626064 + 4.35437i 0.0244998 + 0.170400i 0.998398 0.0565867i \(-0.0180217\pi\)
−0.973898 + 0.226987i \(0.927113\pi\)
\(654\) 0 0
\(655\) 9.65980 2.83637i 0.377439 0.110826i
\(656\) 0 0
\(657\) −3.30686 + 7.24102i −0.129013 + 0.282499i
\(658\) 0 0
\(659\) −10.1304 11.6911i −0.394623 0.455419i 0.523317 0.852138i \(-0.324694\pi\)
−0.917940 + 0.396719i \(0.870149\pi\)
\(660\) 0 0
\(661\) −21.5003 + 13.8174i −0.836264 + 0.537434i −0.887263 0.461264i \(-0.847396\pi\)
0.0509984 + 0.998699i \(0.483760\pi\)
\(662\) 0 0
\(663\) 45.1037 + 28.9864i 1.75168 + 1.12574i
\(664\) 0 0
\(665\) −9.36657 2.75027i −0.363220 0.106651i
\(666\) 0 0
\(667\) −13.0574 15.0022i −0.505586 0.580887i
\(668\) 0 0
\(669\) 11.6637 + 3.42476i 0.450943 + 0.132409i
\(670\) 0 0
\(671\) 12.9809 + 8.34233i 0.501123 + 0.322052i
\(672\) 0 0
\(673\) −13.8361 + 8.89193i −0.533343 + 0.342759i −0.779430 0.626489i \(-0.784491\pi\)
0.246087 + 0.969248i \(0.420855\pi\)
\(674\) 0 0
\(675\) 2.55630 + 2.95012i 0.0983919 + 0.113550i
\(676\) 0 0
\(677\) 18.6868 40.9185i 0.718193 1.57262i −0.0982256 0.995164i \(-0.531317\pi\)
0.816419 0.577460i \(-0.195956\pi\)
\(678\) 0 0
\(679\) 10.3273 3.03236i 0.396325 0.116371i
\(680\) 0 0
\(681\) 3.35792 + 23.3549i 0.128676 + 0.894961i
\(682\) 0 0
\(683\) 2.20603 + 4.83054i 0.0844115 + 0.184836i 0.947131 0.320848i \(-0.103968\pi\)
−0.862719 + 0.505683i \(0.831240\pi\)
\(684\) 0 0
\(685\) −0.526153 + 3.65948i −0.0201033 + 0.139821i
\(686\) 0 0
\(687\) −10.1374 + 11.6992i −0.386767 + 0.446353i
\(688\) 0 0
\(689\) 53.9703 2.05611
\(690\) 0 0
\(691\) −22.2506 −0.846454 −0.423227 0.906024i \(-0.639103\pi\)
−0.423227 + 0.906024i \(0.639103\pi\)
\(692\) 0 0
\(693\) 1.96197 2.26424i 0.0745291 0.0860112i
\(694\) 0 0
\(695\) −0.340259 + 2.36655i −0.0129068 + 0.0897685i
\(696\) 0 0
\(697\) −15.8110 34.6214i −0.598886 1.31138i
\(698\) 0 0
\(699\) −1.77871 12.3712i −0.0672771 0.467923i
\(700\) 0 0
\(701\) −29.8621 + 8.76829i −1.12787 + 0.331174i −0.791872 0.610687i \(-0.790893\pi\)
−0.336003 + 0.941861i \(0.609075\pi\)
\(702\) 0 0
\(703\) 10.7979 23.6441i 0.407251 0.891756i
\(704\) 0 0
\(705\) 1.32135 + 1.52492i 0.0497649 + 0.0574318i
\(706\) 0 0
\(707\) −17.6212 + 11.3244i −0.662712 + 0.425899i
\(708\) 0 0
\(709\) 19.2880 + 12.3956i 0.724376 + 0.465528i 0.850157 0.526530i \(-0.176507\pi\)
−0.125781 + 0.992058i \(0.540144\pi\)
\(710\) 0 0
\(711\) 4.44001 + 1.30371i 0.166513 + 0.0488928i
\(712\) 0 0
\(713\) −2.85067 + 3.30452i −0.106758 + 0.123755i
\(714\) 0 0
\(715\) −14.1824 4.16433i −0.530391 0.155737i
\(716\) 0 0
\(717\) 17.5675 + 11.2900i 0.656071 + 0.421631i
\(718\) 0 0
\(719\) 38.6336 24.8283i 1.44079 0.925939i 0.441197 0.897410i \(-0.354554\pi\)
0.999593 0.0285287i \(-0.00908221\pi\)
\(720\) 0 0
\(721\) 3.84647 + 4.43907i 0.143250 + 0.165320i
\(722\) 0 0
\(723\) 1.07152 2.34630i 0.0398503 0.0872599i
\(724\) 0 0
\(725\) 15.5327 4.56082i 0.576871 0.169385i
\(726\) 0 0
\(727\) −2.94326 20.4708i −0.109159 0.759221i −0.968715 0.248178i \(-0.920168\pi\)
0.859555 0.511043i \(-0.170741\pi\)
\(728\) 0 0
\(729\) 0.415415 + 0.909632i 0.0153857 + 0.0336901i
\(730\) 0 0
\(731\) −3.87753 + 26.9688i −0.143416 + 0.997477i
\(732\) 0 0
\(733\) −25.5114 + 29.4417i −0.942284 + 1.08745i 0.0537563 + 0.998554i \(0.482881\pi\)
−0.996041 + 0.0888999i \(0.971665\pi\)
\(734\) 0 0
\(735\) −5.08833 −0.187686
\(736\) 0 0
\(737\) 20.6722 0.761469
\(738\) 0 0
\(739\) −19.0924 + 22.0338i −0.702324 + 0.810525i −0.989065 0.147483i \(-0.952883\pi\)
0.286740 + 0.958008i \(0.407428\pi\)
\(740\) 0 0
\(741\) 6.25133 43.4790i 0.229648 1.59724i
\(742\) 0 0
\(743\) −1.03328 2.26256i −0.0379073 0.0830054i 0.889731 0.456485i \(-0.150892\pi\)
−0.927638 + 0.373480i \(0.878165\pi\)
\(744\) 0 0
\(745\) 2.01369 + 14.0055i 0.0737759 + 0.513123i
\(746\) 0 0
\(747\) −7.94769 + 2.33365i −0.290791 + 0.0853839i
\(748\) 0 0
\(749\) −7.91646 + 17.3346i −0.289261 + 0.633393i
\(750\) 0 0
\(751\) 17.6256 + 20.3411i 0.643169 + 0.742256i 0.979932 0.199333i \(-0.0638775\pi\)
−0.336763 + 0.941589i \(0.609332\pi\)
\(752\) 0 0
\(753\) 5.31155 3.41352i 0.193564 0.124396i
\(754\) 0 0
\(755\) −2.03520 1.30794i −0.0740684 0.0476009i
\(756\) 0 0
\(757\) −14.4648 4.24725i −0.525733 0.154369i 0.00808709 0.999967i \(-0.497426\pi\)
−0.533820 + 0.845598i \(0.679244\pi\)
\(758\) 0 0
\(759\) 9.42898 + 2.74606i 0.342250 + 0.0996756i
\(760\) 0 0
\(761\) −19.3488 5.68132i −0.701394 0.205948i −0.0884574 0.996080i \(-0.528194\pi\)
−0.612937 + 0.790132i \(0.710012\pi\)
\(762\) 0 0
\(763\) −4.36364 2.80434i −0.157974 0.101524i
\(764\) 0 0
\(765\) −6.85116 + 4.40297i −0.247704 + 0.159190i
\(766\) 0 0
\(767\) 65.2892 + 75.3478i 2.35746 + 2.72065i
\(768\) 0 0
\(769\) −12.8841 + 28.2123i −0.464613 + 1.01736i 0.521798 + 0.853069i \(0.325261\pi\)
−0.986412 + 0.164293i \(0.947466\pi\)
\(770\) 0 0
\(771\) −11.8044 + 3.46609i −0.425126 + 0.124828i
\(772\) 0 0
\(773\) −2.11398 14.7030i −0.0760344 0.528831i −0.991868 0.127273i \(-0.959378\pi\)
0.915833 0.401559i \(-0.131531\pi\)
\(774\) 0 0
\(775\) −1.47565 3.23123i −0.0530070 0.116069i
\(776\) 0 0
\(777\) −0.849353 + 5.90738i −0.0304704 + 0.211926i
\(778\) 0 0
\(779\) −20.4204 + 23.5664i −0.731637 + 0.844354i
\(780\) 0 0
\(781\) 0.404396 0.0144704
\(782\) 0 0
\(783\) 4.14709 0.148205
\(784\) 0 0
\(785\) 8.29328 9.57095i 0.296000 0.341602i
\(786\) 0 0
\(787\) 3.39324 23.6005i 0.120956 0.841268i −0.835521 0.549459i \(-0.814834\pi\)
0.956477 0.291809i \(-0.0942571\pi\)
\(788\) 0 0
\(789\) 2.94567 + 6.45011i 0.104869 + 0.229630i
\(790\) 0 0
\(791\) 3.18724 + 22.1677i 0.113325 + 0.788194i
\(792\) 0 0
\(793\) −49.8402 + 14.6344i −1.76988 + 0.519683i
\(794\) 0