Properties

Label 276.2.i.a.13.1
Level $276$
Weight $2$
Character 276.13
Analytic conductor $2.204$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 276 = 2^{2} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 276.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.20387109579\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 43 x^{18} - 165 x^{17} + 538 x^{16} - 1433 x^{15} + 3444 x^{14} - 7370 x^{13} + 15500 x^{12} - 28190 x^{11} + 41920 x^{10} - 33520 x^{9} - 13837 x^{8} + 78980 x^{7} - 92652 x^{6} - 52852 x^{5} + 177374 x^{4} + 151360 x^{3} + 115323 x^{2} + 12834 x + 529\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 13.1
Root \(1.84381 + 0.541390i\) of defining polynomial
Character \(\chi\) \(=\) 276.13
Dual form 276.2.i.a.85.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.841254 + 0.540641i) q^{3} +(-1.21471 + 2.65985i) q^{5} +(0.960219 + 0.281946i) q^{7} +(0.415415 + 0.909632i) q^{9} +O(q^{10})\) \(q+(0.841254 + 0.540641i) q^{3} +(-1.21471 + 2.65985i) q^{5} +(0.960219 + 0.281946i) q^{7} +(0.415415 + 0.909632i) q^{9} +(-1.65056 + 1.90485i) q^{11} +(0.463267 - 0.136028i) q^{13} +(-2.45990 + 1.58088i) q^{15} +(0.446491 + 3.10542i) q^{17} +(-0.0786963 + 0.547345i) q^{19} +(0.655357 + 0.756322i) q^{21} +(3.87251 - 2.82908i) q^{23} +(-2.32496 - 2.68314i) q^{25} +(-0.142315 + 0.989821i) q^{27} +(-0.0173123 - 0.120410i) q^{29} +(6.92752 - 4.45205i) q^{31} +(-2.41838 + 0.710099i) q^{33} +(-1.91632 + 2.21155i) q^{35} +(-3.95959 - 8.67029i) q^{37} +(0.463267 + 0.136028i) q^{39} +(-0.578290 + 1.26628i) q^{41} +(5.21923 + 3.35419i) q^{43} -2.92409 q^{45} +8.69831 q^{47} +(-5.04625 - 3.24303i) q^{49} +(-1.30330 + 2.85383i) q^{51} +(-7.41370 - 2.17686i) q^{53} +(-3.06165 - 6.70407i) q^{55} +(-0.362120 + 0.417909i) q^{57} +(0.227334 - 0.0667513i) q^{59} +(-1.54102 + 0.990353i) q^{61} +(0.142423 + 0.990571i) q^{63} +(-0.200924 + 1.39745i) q^{65} +(1.83195 + 2.11418i) q^{67} +(4.78728 - 0.286340i) q^{69} +(-7.51699 - 8.67507i) q^{71} +(1.94856 - 13.5525i) q^{73} +(-0.505261 - 3.51417i) q^{75} +(-2.12196 + 1.36370i) q^{77} +(16.3977 - 4.81479i) q^{79} +(-0.654861 + 0.755750i) q^{81} +(-3.34983 - 7.33511i) q^{83} +(-8.80229 - 2.58458i) q^{85} +(0.0505345 - 0.110655i) q^{87} +(4.15453 + 2.66995i) q^{89} +0.483191 q^{91} +8.23476 q^{93} +(-1.36026 - 0.874186i) q^{95} +(-6.49214 + 14.2158i) q^{97} +(-2.41838 - 0.710099i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} + O(q^{10}) \) \( 20q - 2q^{3} - 4q^{5} - 2q^{9} - 22q^{13} + 7q^{15} + 7q^{17} + 19q^{19} + 20q^{23} + 20q^{25} - 2q^{27} + 32q^{29} - 3q^{31} + 11q^{33} - 26q^{35} - 10q^{37} - 22q^{39} - 40q^{41} + 8q^{43} - 4q^{45} - 18q^{47} - 34q^{49} - 26q^{51} - 34q^{53} - 17q^{55} - 3q^{57} - 32q^{59} + 32q^{61} + 49q^{65} + 35q^{67} - 2q^{69} + 33q^{71} - q^{73} - 2q^{75} - 50q^{77} + 22q^{79} - 2q^{81} - 14q^{83} - 9q^{85} - 12q^{87} + 10q^{89} - 72q^{91} + 30q^{93} - 51q^{95} - 4q^{97} + 11q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/276\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(139\) \(185\)
\(\chi(n)\) \(e\left(\frac{7}{11}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.841254 + 0.540641i 0.485698 + 0.312139i
\(4\) 0 0
\(5\) −1.21471 + 2.65985i −0.543235 + 1.18952i 0.416635 + 0.909074i \(0.363209\pi\)
−0.959870 + 0.280445i \(0.909518\pi\)
\(6\) 0 0
\(7\) 0.960219 + 0.281946i 0.362929 + 0.106566i 0.458113 0.888894i \(-0.348526\pi\)
−0.0951837 + 0.995460i \(0.530344\pi\)
\(8\) 0 0
\(9\) 0.415415 + 0.909632i 0.138472 + 0.303211i
\(10\) 0 0
\(11\) −1.65056 + 1.90485i −0.497662 + 0.574333i −0.947897 0.318578i \(-0.896795\pi\)
0.450235 + 0.892910i \(0.351340\pi\)
\(12\) 0 0
\(13\) 0.463267 0.136028i 0.128487 0.0377273i −0.216857 0.976203i \(-0.569580\pi\)
0.345344 + 0.938476i \(0.387762\pi\)
\(14\) 0 0
\(15\) −2.45990 + 1.58088i −0.635144 + 0.408182i
\(16\) 0 0
\(17\) 0.446491 + 3.10542i 0.108290 + 0.753174i 0.969529 + 0.244975i \(0.0787796\pi\)
−0.861239 + 0.508199i \(0.830311\pi\)
\(18\) 0 0
\(19\) −0.0786963 + 0.547345i −0.0180542 + 0.125569i −0.996855 0.0792435i \(-0.974750\pi\)
0.978801 + 0.204813i \(0.0656586\pi\)
\(20\) 0 0
\(21\) 0.655357 + 0.756322i 0.143011 + 0.165043i
\(22\) 0 0
\(23\) 3.87251 2.82908i 0.807473 0.589904i
\(24\) 0 0
\(25\) −2.32496 2.68314i −0.464991 0.536628i
\(26\) 0 0
\(27\) −0.142315 + 0.989821i −0.0273885 + 0.190491i
\(28\) 0 0
\(29\) −0.0173123 0.120410i −0.00321482 0.0223596i 0.988151 0.153486i \(-0.0490499\pi\)
−0.991366 + 0.131126i \(0.958141\pi\)
\(30\) 0 0
\(31\) 6.92752 4.45205i 1.24422 0.799611i 0.258175 0.966098i \(-0.416879\pi\)
0.986044 + 0.166487i \(0.0532424\pi\)
\(32\) 0 0
\(33\) −2.41838 + 0.710099i −0.420985 + 0.123612i
\(34\) 0 0
\(35\) −1.91632 + 2.21155i −0.323917 + 0.373821i
\(36\) 0 0
\(37\) −3.95959 8.67029i −0.650952 1.42539i −0.890718 0.454556i \(-0.849798\pi\)
0.239766 0.970831i \(-0.422929\pi\)
\(38\) 0 0
\(39\) 0.463267 + 0.136028i 0.0741822 + 0.0217818i
\(40\) 0 0
\(41\) −0.578290 + 1.26628i −0.0903137 + 0.197760i −0.949399 0.314074i \(-0.898306\pi\)
0.859085 + 0.511833i \(0.171033\pi\)
\(42\) 0 0
\(43\) 5.21923 + 3.35419i 0.795925 + 0.511510i 0.874284 0.485415i \(-0.161332\pi\)
−0.0783589 + 0.996925i \(0.524968\pi\)
\(44\) 0 0
\(45\) −2.92409 −0.435898
\(46\) 0 0
\(47\) 8.69831 1.26878 0.634389 0.773014i \(-0.281252\pi\)
0.634389 + 0.773014i \(0.281252\pi\)
\(48\) 0 0
\(49\) −5.04625 3.24303i −0.720892 0.463289i
\(50\) 0 0
\(51\) −1.30330 + 2.85383i −0.182499 + 0.399617i
\(52\) 0 0
\(53\) −7.41370 2.17686i −1.01835 0.299015i −0.270385 0.962752i \(-0.587151\pi\)
−0.747965 + 0.663738i \(0.768969\pi\)
\(54\) 0 0
\(55\) −3.06165 6.70407i −0.412832 0.903976i
\(56\) 0 0
\(57\) −0.362120 + 0.417909i −0.0479640 + 0.0553534i
\(58\) 0 0
\(59\) 0.227334 0.0667513i 0.0295964 0.00869028i −0.266901 0.963724i \(-0.586000\pi\)
0.296497 + 0.955034i \(0.404181\pi\)
\(60\) 0 0
\(61\) −1.54102 + 0.990353i −0.197307 + 0.126802i −0.635564 0.772048i \(-0.719232\pi\)
0.438257 + 0.898850i \(0.355596\pi\)
\(62\) 0 0
\(63\) 0.142423 + 0.990571i 0.0179436 + 0.124800i
\(64\) 0 0
\(65\) −0.200924 + 1.39745i −0.0249215 + 0.173333i
\(66\) 0 0
\(67\) 1.83195 + 2.11418i 0.223808 + 0.258288i 0.856538 0.516084i \(-0.172611\pi\)
−0.632730 + 0.774373i \(0.718065\pi\)
\(68\) 0 0
\(69\) 4.78728 0.286340i 0.576320 0.0344712i
\(70\) 0 0
\(71\) −7.51699 8.67507i −0.892103 1.02954i −0.999376 0.0353118i \(-0.988758\pi\)
0.107274 0.994230i \(-0.465788\pi\)
\(72\) 0 0
\(73\) 1.94856 13.5525i 0.228061 1.58620i −0.478200 0.878251i \(-0.658711\pi\)
0.706261 0.707951i \(-0.250380\pi\)
\(74\) 0 0
\(75\) −0.505261 3.51417i −0.0583425 0.405781i
\(76\) 0 0
\(77\) −2.12196 + 1.36370i −0.241820 + 0.155408i
\(78\) 0 0
\(79\) 16.3977 4.81479i 1.84488 0.541706i 0.844903 0.534919i \(-0.179658\pi\)
0.999977 0.00678681i \(-0.00216032\pi\)
\(80\) 0 0
\(81\) −0.654861 + 0.755750i −0.0727623 + 0.0839722i
\(82\) 0 0
\(83\) −3.34983 7.33511i −0.367692 0.805133i −0.999548 0.0300477i \(-0.990434\pi\)
0.631857 0.775085i \(-0.282293\pi\)
\(84\) 0 0
\(85\) −8.80229 2.58458i −0.954742 0.280338i
\(86\) 0 0
\(87\) 0.0505345 0.110655i 0.00541787 0.0118635i
\(88\) 0 0
\(89\) 4.15453 + 2.66995i 0.440379 + 0.283015i 0.741983 0.670419i \(-0.233886\pi\)
−0.301604 + 0.953433i \(0.597522\pi\)
\(90\) 0 0
\(91\) 0.483191 0.0506522
\(92\) 0 0
\(93\) 8.23476 0.853904
\(94\) 0 0
\(95\) −1.36026 0.874186i −0.139560 0.0896896i
\(96\) 0 0
\(97\) −6.49214 + 14.2158i −0.659177 + 1.44340i 0.224109 + 0.974564i \(0.428053\pi\)
−0.883287 + 0.468833i \(0.844675\pi\)
\(98\) 0 0
\(99\) −2.41838 0.710099i −0.243056 0.0713676i
\(100\) 0 0
\(101\) −1.35100 2.95829i −0.134430 0.294361i 0.830431 0.557121i \(-0.188094\pi\)
−0.964861 + 0.262761i \(0.915367\pi\)
\(102\) 0 0
\(103\) 0.917997 1.05943i 0.0904529 0.104388i −0.708719 0.705491i \(-0.750726\pi\)
0.799172 + 0.601103i \(0.205272\pi\)
\(104\) 0 0
\(105\) −2.80777 + 0.824435i −0.274010 + 0.0804566i
\(106\) 0 0
\(107\) −8.44978 + 5.43034i −0.816871 + 0.524971i −0.881081 0.472965i \(-0.843184\pi\)
0.0642102 + 0.997936i \(0.479547\pi\)
\(108\) 0 0
\(109\) 0.961777 + 6.68930i 0.0921215 + 0.640719i 0.982606 + 0.185705i \(0.0594568\pi\)
−0.890484 + 0.455014i \(0.849634\pi\)
\(110\) 0 0
\(111\) 1.35649 9.43463i 0.128753 0.895495i
\(112\) 0 0
\(113\) 6.56447 + 7.57581i 0.617534 + 0.712672i 0.975237 0.221164i \(-0.0709854\pi\)
−0.357703 + 0.933835i \(0.616440\pi\)
\(114\) 0 0
\(115\) 2.82094 + 13.7368i 0.263054 + 1.28096i
\(116\) 0 0
\(117\) 0.316183 + 0.364895i 0.0292312 + 0.0337346i
\(118\) 0 0
\(119\) −0.446829 + 3.10777i −0.0409608 + 0.284889i
\(120\) 0 0
\(121\) 0.661368 + 4.59992i 0.0601244 + 0.418174i
\(122\) 0 0
\(123\) −1.17109 + 0.752614i −0.105594 + 0.0678609i
\(124\) 0 0
\(125\) −4.06733 + 1.19428i −0.363793 + 0.106819i
\(126\) 0 0
\(127\) −10.9350 + 12.6197i −0.970327 + 1.11982i 0.0224388 + 0.999748i \(0.492857\pi\)
−0.992766 + 0.120069i \(0.961689\pi\)
\(128\) 0 0
\(129\) 2.57728 + 5.64345i 0.226917 + 0.496878i
\(130\) 0 0
\(131\) 13.8070 + 4.05411i 1.20633 + 0.354209i 0.822268 0.569100i \(-0.192708\pi\)
0.384057 + 0.923309i \(0.374526\pi\)
\(132\) 0 0
\(133\) −0.229887 + 0.503383i −0.0199338 + 0.0436488i
\(134\) 0 0
\(135\) −2.45990 1.58088i −0.211715 0.136061i
\(136\) 0 0
\(137\) 1.88176 0.160769 0.0803847 0.996764i \(-0.474385\pi\)
0.0803847 + 0.996764i \(0.474385\pi\)
\(138\) 0 0
\(139\) 3.46292 0.293721 0.146860 0.989157i \(-0.453083\pi\)
0.146860 + 0.989157i \(0.453083\pi\)
\(140\) 0 0
\(141\) 7.31748 + 4.70266i 0.616243 + 0.396035i
\(142\) 0 0
\(143\) −0.505538 + 1.10697i −0.0422752 + 0.0925699i
\(144\) 0 0
\(145\) 0.341302 + 0.100215i 0.0283436 + 0.00832242i
\(146\) 0 0
\(147\) −2.49186 5.45641i −0.205525 0.450037i
\(148\) 0 0
\(149\) 14.1256 16.3019i 1.15722 1.33550i 0.224678 0.974433i \(-0.427867\pi\)
0.932540 0.361067i \(-0.117588\pi\)
\(150\) 0 0
\(151\) −3.13983 + 0.921937i −0.255516 + 0.0750262i −0.406982 0.913436i \(-0.633419\pi\)
0.151466 + 0.988462i \(0.451601\pi\)
\(152\) 0 0
\(153\) −2.63931 + 1.69618i −0.213375 + 0.137128i
\(154\) 0 0
\(155\) 3.42682 + 23.8341i 0.275249 + 1.91440i
\(156\) 0 0
\(157\) −3.24424 + 22.5642i −0.258919 + 1.80082i 0.281649 + 0.959518i \(0.409119\pi\)
−0.540567 + 0.841301i \(0.681790\pi\)
\(158\) 0 0
\(159\) −5.05990 5.83944i −0.401277 0.463098i
\(160\) 0 0
\(161\) 4.51610 1.62470i 0.355919 0.128044i
\(162\) 0 0
\(163\) 7.91542 + 9.13488i 0.619984 + 0.715499i 0.975704 0.219093i \(-0.0703099\pi\)
−0.355720 + 0.934592i \(0.615764\pi\)
\(164\) 0 0
\(165\) 1.04887 7.29507i 0.0816547 0.567921i
\(166\) 0 0
\(167\) −1.18059 8.21115i −0.0913565 0.635398i −0.983129 0.182914i \(-0.941447\pi\)
0.891772 0.452484i \(-0.149462\pi\)
\(168\) 0 0
\(169\) −10.7402 + 6.90230i −0.826168 + 0.530946i
\(170\) 0 0
\(171\) −0.530574 + 0.155791i −0.0405740 + 0.0119136i
\(172\) 0 0
\(173\) 13.5301 15.6146i 1.02868 1.18716i 0.0465543 0.998916i \(-0.485176\pi\)
0.982123 0.188241i \(-0.0602786\pi\)
\(174\) 0 0
\(175\) −1.47597 3.23192i −0.111573 0.244310i
\(176\) 0 0
\(177\) 0.227334 + 0.0667513i 0.0170875 + 0.00501733i
\(178\) 0 0
\(179\) 1.61211 3.53002i 0.120494 0.263846i −0.839768 0.542946i \(-0.817309\pi\)
0.960262 + 0.279100i \(0.0900361\pi\)
\(180\) 0 0
\(181\) 6.70576 + 4.30953i 0.498435 + 0.320325i 0.765590 0.643329i \(-0.222447\pi\)
−0.267155 + 0.963654i \(0.586083\pi\)
\(182\) 0 0
\(183\) −1.83181 −0.135412
\(184\) 0 0
\(185\) 27.8714 2.04915
\(186\) 0 0
\(187\) −6.65230 4.27517i −0.486464 0.312632i
\(188\) 0 0
\(189\) −0.415730 + 0.910321i −0.0302399 + 0.0662161i
\(190\) 0 0
\(191\) −16.2019 4.75730i −1.17233 0.344226i −0.363116 0.931744i \(-0.618287\pi\)
−0.809211 + 0.587518i \(0.800105\pi\)
\(192\) 0 0
\(193\) −8.84842 19.3753i −0.636923 1.39467i −0.902547 0.430591i \(-0.858305\pi\)
0.265624 0.964077i \(-0.414422\pi\)
\(194\) 0 0
\(195\) −0.924549 + 1.06699i −0.0662083 + 0.0764084i
\(196\) 0 0
\(197\) −25.8424 + 7.58802i −1.84120 + 0.540624i −1.00000 0.000106800i \(-0.999966\pi\)
−0.841196 + 0.540731i \(0.818148\pi\)
\(198\) 0 0
\(199\) −6.12918 + 3.93898i −0.434486 + 0.279227i −0.739546 0.673106i \(-0.764960\pi\)
0.305060 + 0.952333i \(0.401323\pi\)
\(200\) 0 0
\(201\) 0.398121 + 2.76899i 0.0280813 + 0.195309i
\(202\) 0 0
\(203\) 0.0173255 0.120501i 0.00121601 0.00845752i
\(204\) 0 0
\(205\) −2.66565 3.07633i −0.186177 0.214860i
\(206\) 0 0
\(207\) 4.18212 + 2.34731i 0.290677 + 0.163149i
\(208\) 0 0
\(209\) −0.912714 1.05333i −0.0631338 0.0728603i
\(210\) 0 0
\(211\) −2.22131 + 15.4495i −0.152921 + 1.06359i 0.758369 + 0.651825i \(0.225997\pi\)
−0.911290 + 0.411765i \(0.864913\pi\)
\(212\) 0 0
\(213\) −1.63360 11.3619i −0.111932 0.778506i
\(214\) 0 0
\(215\) −15.2615 + 9.80797i −1.04083 + 0.668898i
\(216\) 0 0
\(217\) 7.90717 2.32176i 0.536774 0.157611i
\(218\) 0 0
\(219\) 8.96628 10.3476i 0.605885 0.699228i
\(220\) 0 0
\(221\) 0.629267 + 1.37790i 0.0423291 + 0.0926878i
\(222\) 0 0
\(223\) 1.34888 + 0.396066i 0.0903274 + 0.0265225i 0.326584 0.945168i \(-0.394102\pi\)
−0.236257 + 0.971691i \(0.575921\pi\)
\(224\) 0 0
\(225\) 1.47485 3.22947i 0.0983233 0.215298i
\(226\) 0 0
\(227\) −3.73511 2.40041i −0.247908 0.159321i 0.410786 0.911732i \(-0.365254\pi\)
−0.658694 + 0.752411i \(0.728891\pi\)
\(228\) 0 0
\(229\) −1.67523 −0.110702 −0.0553512 0.998467i \(-0.517628\pi\)
−0.0553512 + 0.998467i \(0.517628\pi\)
\(230\) 0 0
\(231\) −2.52238 −0.165960
\(232\) 0 0
\(233\) −18.3038 11.7632i −1.19912 0.770630i −0.220319 0.975428i \(-0.570710\pi\)
−0.978804 + 0.204798i \(0.934346\pi\)
\(234\) 0 0
\(235\) −10.5659 + 23.1362i −0.689245 + 1.50924i
\(236\) 0 0
\(237\) 16.3977 + 4.81479i 1.06514 + 0.312754i
\(238\) 0 0
\(239\) −8.72594 19.1071i −0.564434 1.23594i −0.949708 0.313136i \(-0.898620\pi\)
0.385274 0.922802i \(-0.374107\pi\)
\(240\) 0 0
\(241\) 17.2462 19.9032i 1.11093 1.28208i 0.155182 0.987886i \(-0.450404\pi\)
0.955746 0.294194i \(-0.0950510\pi\)
\(242\) 0 0
\(243\) −0.959493 + 0.281733i −0.0615515 + 0.0180732i
\(244\) 0 0
\(245\) 14.7557 9.48290i 0.942706 0.605840i
\(246\) 0 0
\(247\) 0.0379966 + 0.264272i 0.00241766 + 0.0168152i
\(248\) 0 0
\(249\) 1.14760 7.98174i 0.0727263 0.505823i
\(250\) 0 0
\(251\) −17.0613 19.6898i −1.07690 1.24281i −0.968582 0.248693i \(-0.919999\pi\)
−0.108318 0.994116i \(-0.534547\pi\)
\(252\) 0 0
\(253\) −1.00283 + 12.0461i −0.0630476 + 0.757331i
\(254\) 0 0
\(255\) −6.00762 6.93317i −0.376212 0.434172i
\(256\) 0 0
\(257\) −1.12414 + 7.81860i −0.0701222 + 0.487711i 0.924252 + 0.381784i \(0.124690\pi\)
−0.994374 + 0.105927i \(0.966219\pi\)
\(258\) 0 0
\(259\) −1.35752 9.44177i −0.0843523 0.586683i
\(260\) 0 0
\(261\) 0.102337 0.0657680i 0.00633450 0.00407094i
\(262\) 0 0
\(263\) 11.8421 3.47716i 0.730216 0.214411i 0.104570 0.994518i \(-0.466653\pi\)
0.625646 + 0.780107i \(0.284835\pi\)
\(264\) 0 0
\(265\) 14.7956 17.0751i 0.908888 1.04891i
\(266\) 0 0
\(267\) 2.05153 + 4.49222i 0.125551 + 0.274919i
\(268\) 0 0
\(269\) 10.7364 + 3.15249i 0.654610 + 0.192211i 0.592139 0.805836i \(-0.298284\pi\)
0.0624710 + 0.998047i \(0.480102\pi\)
\(270\) 0 0
\(271\) 9.90135 21.6809i 0.601464 1.31702i −0.326797 0.945095i \(-0.605969\pi\)
0.928261 0.371929i \(-0.121303\pi\)
\(272\) 0 0
\(273\) 0.406486 + 0.261233i 0.0246016 + 0.0158105i
\(274\) 0 0
\(275\) 8.94844 0.539612
\(276\) 0 0
\(277\) −17.8542 −1.07275 −0.536376 0.843979i \(-0.680207\pi\)
−0.536376 + 0.843979i \(0.680207\pi\)
\(278\) 0 0
\(279\) 6.92752 + 4.45205i 0.414740 + 0.266537i
\(280\) 0 0
\(281\) −0.687581 + 1.50559i −0.0410176 + 0.0898161i −0.929032 0.370000i \(-0.879358\pi\)
0.888014 + 0.459817i \(0.152085\pi\)
\(282\) 0 0
\(283\) 1.30907 + 0.384378i 0.0778161 + 0.0228489i 0.320409 0.947279i \(-0.396180\pi\)
−0.242593 + 0.970128i \(0.577998\pi\)
\(284\) 0 0
\(285\) −0.671703 1.47082i −0.0397882 0.0871241i
\(286\) 0 0
\(287\) −0.912307 + 1.05286i −0.0538518 + 0.0621483i
\(288\) 0 0
\(289\) 6.86713 2.01637i 0.403949 0.118610i
\(290\) 0 0
\(291\) −13.1472 + 8.44918i −0.770702 + 0.495300i
\(292\) 0 0
\(293\) 1.50932 + 10.4975i 0.0881752 + 0.613272i 0.985215 + 0.171322i \(0.0548039\pi\)
−0.897040 + 0.441950i \(0.854287\pi\)
\(294\) 0 0
\(295\) −0.0985970 + 0.685757i −0.00574054 + 0.0399263i
\(296\) 0 0
\(297\) −1.65056 1.90485i −0.0957751 0.110530i
\(298\) 0 0
\(299\) 1.40917 1.83739i 0.0814946 0.106259i
\(300\) 0 0
\(301\) 4.06590 + 4.69230i 0.234355 + 0.270460i
\(302\) 0 0
\(303\) 0.462834 3.21908i 0.0265891 0.184931i
\(304\) 0 0
\(305\) −0.762294 5.30187i −0.0436488 0.303584i
\(306\) 0 0
\(307\) −8.68375 + 5.58071i −0.495608 + 0.318508i −0.764457 0.644674i \(-0.776993\pi\)
0.268849 + 0.963182i \(0.413357\pi\)
\(308\) 0 0
\(309\) 1.34504 0.394938i 0.0765165 0.0224673i
\(310\) 0 0
\(311\) 4.61609 5.32725i 0.261755 0.302081i −0.609625 0.792690i \(-0.708680\pi\)
0.871380 + 0.490609i \(0.163226\pi\)
\(312\) 0 0
\(313\) 0.939900 + 2.05809i 0.0531263 + 0.116330i 0.934334 0.356400i \(-0.115996\pi\)
−0.881207 + 0.472730i \(0.843269\pi\)
\(314\) 0 0
\(315\) −2.80777 0.824435i −0.158200 0.0464517i
\(316\) 0 0
\(317\) −1.31835 + 2.88679i −0.0740460 + 0.162138i −0.943035 0.332693i \(-0.892043\pi\)
0.868989 + 0.494831i \(0.164770\pi\)
\(318\) 0 0
\(319\) 0.257938 + 0.165766i 0.0144417 + 0.00928114i
\(320\) 0 0
\(321\) −10.0443 −0.560616
\(322\) 0 0
\(323\) −1.73487 −0.0965308
\(324\) 0 0
\(325\) −1.44206 0.926754i −0.0799909 0.0514071i
\(326\) 0 0
\(327\) −2.80741 + 6.14738i −0.155250 + 0.339951i
\(328\) 0 0
\(329\) 8.35228 + 2.45245i 0.460476 + 0.135208i
\(330\) 0 0
\(331\) −8.63436 18.9066i −0.474587 1.03920i −0.983916 0.178629i \(-0.942834\pi\)
0.509329 0.860572i \(-0.329894\pi\)
\(332\) 0 0
\(333\) 6.24190 7.20354i 0.342054 0.394751i
\(334\) 0 0
\(335\) −7.84869 + 2.30458i −0.428820 + 0.125913i
\(336\) 0 0
\(337\) −21.9636 + 14.1152i −1.19644 + 0.768902i −0.978336 0.207024i \(-0.933622\pi\)
−0.218099 + 0.975927i \(0.569986\pi\)
\(338\) 0 0
\(339\) 1.42660 + 9.92220i 0.0774821 + 0.538900i
\(340\) 0 0
\(341\) −2.95381 + 20.5442i −0.159958 + 1.11253i
\(342\) 0 0
\(343\) −8.51864 9.83104i −0.459963 0.530826i
\(344\) 0 0
\(345\) −5.05354 + 13.0812i −0.272073 + 0.704270i
\(346\) 0 0
\(347\) 7.52379 + 8.68291i 0.403898 + 0.466123i 0.920865 0.389882i \(-0.127484\pi\)
−0.516967 + 0.856006i \(0.672939\pi\)
\(348\) 0 0
\(349\) 4.15887 28.9256i 0.222619 1.54835i −0.505456 0.862852i \(-0.668676\pi\)
0.728075 0.685497i \(-0.240415\pi\)
\(350\) 0 0
\(351\) 0.0687132 + 0.477911i 0.00366764 + 0.0255090i
\(352\) 0 0
\(353\) −27.4206 + 17.6221i −1.45945 + 0.937932i −0.460721 + 0.887545i \(0.652409\pi\)
−0.998730 + 0.0503875i \(0.983954\pi\)
\(354\) 0 0
\(355\) 32.2053 9.45634i 1.70928 0.501890i
\(356\) 0 0
\(357\) −2.05608 + 2.37285i −0.108819 + 0.125584i
\(358\) 0 0
\(359\) −12.1092 26.5155i −0.639101 1.39944i −0.900778 0.434280i \(-0.857003\pi\)
0.261678 0.965155i \(-0.415724\pi\)
\(360\) 0 0
\(361\) 17.9370 + 5.26677i 0.944051 + 0.277198i
\(362\) 0 0
\(363\) −1.93052 + 4.22726i −0.101326 + 0.221874i
\(364\) 0 0
\(365\) 33.6807 + 21.6453i 1.76293 + 1.13296i
\(366\) 0 0
\(367\) −22.4367 −1.17119 −0.585593 0.810605i \(-0.699138\pi\)
−0.585593 + 0.810605i \(0.699138\pi\)
\(368\) 0 0
\(369\) −1.39208 −0.0724687
\(370\) 0 0
\(371\) −6.50502 4.18053i −0.337724 0.217042i
\(372\) 0 0
\(373\) −5.65832 + 12.3900i −0.292977 + 0.641530i −0.997688 0.0679649i \(-0.978349\pi\)
0.704711 + 0.709495i \(0.251077\pi\)
\(374\) 0 0
\(375\) −4.06733 1.19428i −0.210036 0.0616721i
\(376\) 0 0
\(377\) −0.0243993 0.0534271i −0.00125663 0.00275163i
\(378\) 0 0
\(379\) −3.03505 + 3.50264i −0.155900 + 0.179918i −0.828327 0.560246i \(-0.810707\pi\)
0.672426 + 0.740164i \(0.265252\pi\)
\(380\) 0 0
\(381\) −16.0219 + 4.70444i −0.820824 + 0.241016i
\(382\) 0 0
\(383\) 25.6052 16.4555i 1.30837 0.840836i 0.314269 0.949334i \(-0.398241\pi\)
0.994097 + 0.108498i \(0.0346042\pi\)
\(384\) 0 0
\(385\) −1.04967 7.30060i −0.0534960 0.372073i
\(386\) 0 0
\(387\) −0.882937 + 6.14096i −0.0448822 + 0.312162i
\(388\) 0 0
\(389\) −1.96796 2.27115i −0.0997797 0.115152i 0.703663 0.710534i \(-0.251546\pi\)
−0.803443 + 0.595382i \(0.797001\pi\)
\(390\) 0 0
\(391\) 10.5145 + 10.7626i 0.531742 + 0.544287i
\(392\) 0 0
\(393\) 9.42339 + 10.8752i 0.475347 + 0.548580i
\(394\) 0 0
\(395\) −7.11182 + 49.4638i −0.357835 + 2.48879i
\(396\) 0 0
\(397\) 1.38627 + 9.64170i 0.0695747 + 0.483903i 0.994582 + 0.103954i \(0.0331494\pi\)
−0.925007 + 0.379949i \(0.875942\pi\)
\(398\) 0 0
\(399\) −0.465543 + 0.299186i −0.0233063 + 0.0149780i
\(400\) 0 0
\(401\) −19.1560 + 5.62470i −0.956603 + 0.280884i −0.722533 0.691336i \(-0.757022\pi\)
−0.234069 + 0.972220i \(0.575204\pi\)
\(402\) 0 0
\(403\) 2.60369 3.00482i 0.129699 0.149681i
\(404\) 0 0
\(405\) −1.21471 2.65985i −0.0603595 0.132169i
\(406\) 0 0
\(407\) 23.0511 + 6.76841i 1.14260 + 0.335498i
\(408\) 0 0
\(409\) 10.1075 22.1323i 0.499784 1.09437i −0.476756 0.879036i \(-0.658187\pi\)
0.976540 0.215338i \(-0.0690853\pi\)
\(410\) 0 0
\(411\) 1.58303 + 1.01735i 0.0780853 + 0.0501824i
\(412\) 0 0
\(413\) 0.237111 0.0116675
\(414\) 0 0
\(415\) 23.5793 1.15746
\(416\) 0 0
\(417\) 2.91319 + 1.87219i 0.142660 + 0.0916818i
\(418\) 0 0
\(419\) 5.43702 11.9054i 0.265616 0.581618i −0.729086 0.684422i \(-0.760054\pi\)
0.994702 + 0.102805i \(0.0327817\pi\)
\(420\) 0 0
\(421\) 5.86675 + 1.72263i 0.285928 + 0.0839560i 0.421552 0.906804i \(-0.361486\pi\)
−0.135624 + 0.990760i \(0.543304\pi\)
\(422\) 0 0
\(423\) 3.61341 + 7.91226i 0.175690 + 0.384707i
\(424\) 0 0
\(425\) 7.29420 8.41795i 0.353821 0.408331i
\(426\) 0 0
\(427\) −1.75894 + 0.516472i −0.0851212 + 0.0249938i
\(428\) 0 0
\(429\) −1.02376 + 0.657932i −0.0494277 + 0.0317652i
\(430\) 0 0
\(431\) 3.47655 + 24.1799i 0.167459 + 1.16471i 0.884112 + 0.467275i \(0.154764\pi\)
−0.716653 + 0.697430i \(0.754327\pi\)
\(432\) 0 0
\(433\) 2.34204 16.2892i 0.112551 0.782810i −0.852872 0.522121i \(-0.825141\pi\)
0.965423 0.260690i \(-0.0839499\pi\)
\(434\) 0 0
\(435\) 0.232941 + 0.268828i 0.0111687 + 0.0128893i
\(436\) 0 0
\(437\) 1.24373 + 2.34223i 0.0594957 + 0.112044i
\(438\) 0 0
\(439\) 0.691787 + 0.798365i 0.0330172 + 0.0381039i 0.772018 0.635601i \(-0.219247\pi\)
−0.739001 + 0.673705i \(0.764702\pi\)
\(440\) 0 0
\(441\) 0.853673 5.93743i 0.0406511 0.282735i
\(442\) 0 0
\(443\) 2.83450 + 19.7144i 0.134671 + 0.936659i 0.939353 + 0.342953i \(0.111427\pi\)
−0.804681 + 0.593707i \(0.797664\pi\)
\(444\) 0 0
\(445\) −12.1482 + 7.80719i −0.575881 + 0.370096i
\(446\) 0 0
\(447\) 20.6967 6.07710i 0.978920 0.287437i
\(448\) 0 0
\(449\) −16.0130 + 18.4800i −0.755702 + 0.872127i −0.995108 0.0987927i \(-0.968502\pi\)
0.239406 + 0.970920i \(0.423047\pi\)
\(450\) 0 0
\(451\) −1.45756 3.19162i −0.0686340 0.150288i
\(452\) 0 0
\(453\) −3.13983 0.921937i −0.147522 0.0433164i
\(454\) 0 0
\(455\) −0.586937 + 1.28521i −0.0275160 + 0.0602517i
\(456\) 0 0
\(457\) 8.21331 + 5.27838i 0.384203 + 0.246912i 0.718458 0.695571i \(-0.244848\pi\)
−0.334255 + 0.942483i \(0.608485\pi\)
\(458\) 0 0
\(459\) −3.13735 −0.146439
\(460\) 0 0
\(461\) 28.8585 1.34408 0.672038 0.740517i \(-0.265419\pi\)
0.672038 + 0.740517i \(0.265419\pi\)
\(462\) 0 0
\(463\) 17.0636 + 10.9661i 0.793014 + 0.509639i 0.873329 0.487130i \(-0.161956\pi\)
−0.0803151 + 0.996770i \(0.525593\pi\)
\(464\) 0 0
\(465\) −10.0028 + 21.9032i −0.463871 + 1.01574i
\(466\) 0 0
\(467\) −26.5386 7.79244i −1.22806 0.360591i −0.397543 0.917584i \(-0.630137\pi\)
−0.830518 + 0.556993i \(0.811955\pi\)
\(468\) 0 0
\(469\) 1.16299 + 2.54659i 0.0537018 + 0.117591i
\(470\) 0 0
\(471\) −14.9284 + 17.2282i −0.687862 + 0.793835i
\(472\) 0 0
\(473\) −15.0039 + 4.40553i −0.689878 + 0.202567i
\(474\) 0 0
\(475\) 1.65157 1.06140i 0.0757792 0.0487003i
\(476\) 0 0
\(477\) −1.09962 7.64804i −0.0503482 0.350180i
\(478\) 0 0
\(479\) −2.91070 + 20.2444i −0.132993 + 0.924988i 0.808630 + 0.588318i \(0.200210\pi\)
−0.941623 + 0.336670i \(0.890699\pi\)
\(480\) 0 0
\(481\) −3.01375 3.47805i −0.137415 0.158585i
\(482\) 0 0
\(483\) 4.67757 + 1.07480i 0.212837 + 0.0489053i
\(484\) 0 0
\(485\) −29.9258 34.5362i −1.35886 1.56821i
\(486\) 0 0
\(487\) −0.443196 + 3.08250i −0.0200831 + 0.139681i −0.997396 0.0721195i \(-0.977024\pi\)
0.977313 + 0.211801i \(0.0679328\pi\)
\(488\) 0 0
\(489\) 1.72019 + 11.9642i 0.0777895 + 0.541038i
\(490\) 0 0
\(491\) −4.62679 + 2.97346i −0.208804 + 0.134190i −0.640863 0.767655i \(-0.721424\pi\)
0.432059 + 0.901845i \(0.357787\pi\)
\(492\) 0 0
\(493\) 0.366193 0.107524i 0.0164925 0.00484264i
\(494\) 0 0
\(495\) 4.82638 5.56994i 0.216930 0.250350i
\(496\) 0 0
\(497\) −4.77206 10.4494i −0.214056 0.468718i
\(498\) 0 0
\(499\) −8.04956 2.36356i −0.360348 0.105808i 0.0965470 0.995328i \(-0.469220\pi\)
−0.456895 + 0.889521i \(0.651038\pi\)
\(500\) 0 0
\(501\) 3.44611 7.54594i 0.153961 0.337128i
\(502\) 0 0
\(503\) −1.42347 0.914807i −0.0634693 0.0407892i 0.508521 0.861049i \(-0.330192\pi\)
−0.571991 + 0.820260i \(0.693829\pi\)
\(504\) 0 0
\(505\) 9.50967 0.423175
\(506\) 0 0
\(507\) −12.7669 −0.566997
\(508\) 0 0
\(509\) −12.2843 7.89467i −0.544494 0.349925i 0.239300 0.970946i \(-0.423082\pi\)
−0.783794 + 0.621021i \(0.786718\pi\)
\(510\) 0 0
\(511\) 5.69212 12.4640i 0.251805 0.551375i
\(512\) 0 0
\(513\) −0.530574 0.155791i −0.0234254 0.00687832i
\(514\) 0 0
\(515\) 1.70281 + 3.72863i 0.0750346 + 0.164303i
\(516\) 0 0
\(517\) −14.3571 + 16.5689i −0.631423 + 0.728701i
\(518\) 0 0
\(519\) 19.8242 5.82090i 0.870184 0.255509i
\(520\) 0 0
\(521\) −21.6860 + 13.9368i −0.950083 + 0.610581i −0.921237 0.389003i \(-0.872820\pi\)
−0.0288462 + 0.999584i \(0.509183\pi\)
\(522\) 0 0
\(523\) −2.00234 13.9266i −0.0875563 0.608967i −0.985604 0.169070i \(-0.945924\pi\)
0.898048 0.439898i \(-0.144985\pi\)
\(524\) 0 0
\(525\) 0.505644 3.51683i 0.0220681 0.153487i
\(526\) 0 0
\(527\) 16.9185 + 19.5250i 0.736983 + 0.850524i
\(528\) 0 0
\(529\) 6.99260 21.9113i 0.304026 0.952664i
\(530\) 0 0
\(531\) 0.155157 + 0.179061i 0.00673324 + 0.00777058i
\(532\) 0 0
\(533\) −0.0956541 + 0.665289i −0.00414324 + 0.0288169i
\(534\) 0 0
\(535\) −4.17984 29.0714i −0.180710 1.25687i
\(536\) 0 0
\(537\) 3.26466 2.09807i 0.140881 0.0905385i
\(538\) 0 0
\(539\) 14.5066 4.25952i 0.624843 0.183470i
\(540\) 0 0
\(541\) 11.8199 13.6409i 0.508177 0.586468i −0.442454 0.896791i \(-0.645892\pi\)
0.950631 + 0.310324i \(0.100437\pi\)
\(542\) 0 0
\(543\) 3.31134 + 7.25082i 0.142103 + 0.311162i
\(544\) 0 0
\(545\) −18.9608 5.56739i −0.812191 0.238481i
\(546\) 0 0
\(547\) −6.77596 + 14.8373i −0.289719 + 0.634396i −0.997394 0.0721416i \(-0.977017\pi\)
0.707675 + 0.706538i \(0.249744\pi\)
\(548\) 0 0
\(549\) −1.54102 0.990353i −0.0657691 0.0422672i
\(550\) 0 0
\(551\) 0.0672682 0.00286572
\(552\) 0 0
\(553\) 17.1029 0.727287
\(554\) 0 0
\(555\) 23.4469 + 15.0684i 0.995266 + 0.639619i
\(556\) 0 0
\(557\) 9.28190 20.3245i 0.393287 0.861178i −0.604620 0.796514i \(-0.706675\pi\)
0.997907 0.0646639i \(-0.0205975\pi\)
\(558\) 0 0
\(559\) 2.87416 + 0.843930i 0.121564 + 0.0356944i
\(560\) 0 0
\(561\) −3.28494 7.19301i −0.138690 0.303689i
\(562\) 0 0
\(563\) 9.19015 10.6060i 0.387318 0.446989i −0.528288 0.849065i \(-0.677166\pi\)
0.915606 + 0.402076i \(0.131711\pi\)
\(564\) 0 0
\(565\) −28.1244 + 8.25807i −1.18320 + 0.347420i
\(566\) 0 0
\(567\) −0.841890 + 0.541050i −0.0353561 + 0.0227220i
\(568\) 0 0
\(569\) −5.30762 36.9153i −0.222507 1.54757i −0.728509 0.685037i \(-0.759786\pi\)
0.506002 0.862532i \(-0.331123\pi\)
\(570\) 0 0
\(571\) 5.24484 36.4787i 0.219490 1.52659i −0.520438 0.853899i \(-0.674231\pi\)
0.739928 0.672686i \(-0.234860\pi\)
\(572\) 0 0
\(573\) −11.0579 12.7615i −0.461950 0.533119i
\(574\) 0 0
\(575\) −16.5942 3.81299i −0.692027 0.159013i
\(576\) 0 0
\(577\) −13.7946 15.9198i −0.574278 0.662752i 0.392087 0.919928i \(-0.371753\pi\)
−0.966364 + 0.257177i \(0.917208\pi\)
\(578\) 0 0
\(579\) 3.03133 21.0834i 0.125978 0.876196i
\(580\) 0 0
\(581\) −1.14847 7.98779i −0.0476466 0.331389i
\(582\) 0 0
\(583\) 16.3833 10.5289i 0.678528 0.436064i
\(584\) 0 0
\(585\) −1.35464 + 0.397757i −0.0560073 + 0.0164452i
\(586\) 0 0
\(587\) −0.0269562 + 0.0311092i −0.00111260 + 0.00128401i −0.756306 0.654218i \(-0.772998\pi\)
0.755193 + 0.655503i \(0.227543\pi\)
\(588\) 0 0
\(589\) 1.89163 + 4.14210i 0.0779434 + 0.170672i
\(590\) 0 0
\(591\) −25.8424 7.58802i −1.06301 0.312129i
\(592\) 0 0
\(593\) 6.17509 13.5216i 0.253580 0.555264i −0.739438 0.673225i \(-0.764909\pi\)
0.993018 + 0.117961i \(0.0376358\pi\)
\(594\) 0 0
\(595\) −7.72341 4.96354i −0.316629 0.203485i
\(596\) 0 0
\(597\) −7.28577 −0.298187
\(598\) 0 0
\(599\) 44.0448 1.79962 0.899811 0.436280i \(-0.143704\pi\)
0.899811 + 0.436280i \(0.143704\pi\)
\(600\) 0 0
\(601\) 37.1322 + 23.8634i 1.51465 + 0.973409i 0.992723 + 0.120422i \(0.0384248\pi\)
0.521932 + 0.852987i \(0.325212\pi\)
\(602\) 0 0
\(603\) −1.16211 + 2.54466i −0.0473247 + 0.103627i
\(604\) 0 0
\(605\) −13.0384 3.82843i −0.530088 0.155648i
\(606\) 0 0
\(607\) −8.82155 19.3165i −0.358056 0.784032i −0.999853 0.0171579i \(-0.994538\pi\)
0.641797 0.766874i \(-0.278189\pi\)
\(608\) 0 0
\(609\) 0.0797229 0.0920052i 0.00323054 0.00372824i
\(610\) 0 0
\(611\) 4.02964 1.18321i 0.163022 0.0478676i
\(612\) 0 0
\(613\) −28.7218 + 18.4584i −1.16006 + 0.745527i −0.971618 0.236557i \(-0.923981\pi\)
−0.188445 + 0.982084i \(0.560345\pi\)
\(614\) 0 0
\(615\) −0.579301 4.02913i −0.0233597 0.162470i
\(616\) 0 0
\(617\) −5.83677 + 40.5956i −0.234980 + 1.63432i 0.441077 + 0.897469i \(0.354596\pi\)
−0.676057 + 0.736849i \(0.736313\pi\)
\(618\) 0 0
\(619\) −4.61337 5.32411i −0.185427 0.213994i 0.655424 0.755262i \(-0.272490\pi\)
−0.840851 + 0.541267i \(0.817945\pi\)
\(620\) 0 0
\(621\) 2.24917 + 4.23571i 0.0902561 + 0.169973i
\(622\) 0 0
\(623\) 3.23648 + 3.73510i 0.129667 + 0.149643i
\(624\) 0 0
\(625\) 4.29035 29.8400i 0.171614 1.19360i
\(626\) 0 0
\(627\) −0.198352 1.37957i −0.00792141 0.0550946i
\(628\) 0 0
\(629\) 25.1569 16.1674i 1.00307 0.644636i
\(630\) 0 0
\(631\) −22.4420 + 6.58958i −0.893403 + 0.262327i −0.696040 0.718003i \(-0.745056\pi\)
−0.197364 + 0.980330i \(0.563238\pi\)
\(632\) 0 0
\(633\) −10.2213 + 11.7961i −0.406262 + 0.468851i
\(634\) 0 0
\(635\) −20.2835 44.4148i −0.804928 1.76255i
\(636\) 0 0
\(637\) −2.77890 0.815959i −0.110104 0.0323295i
\(638\) 0 0
\(639\) 4.76845 10.4414i 0.188637 0.413057i
\(640\) 0 0
\(641\) 13.9034 + 8.93518i 0.549152 + 0.352919i 0.785609 0.618723i \(-0.212350\pi\)
−0.236457 + 0.971642i \(0.575986\pi\)
\(642\) 0 0
\(643\) −34.1400 −1.34635 −0.673176 0.739482i \(-0.735070\pi\)
−0.673176 + 0.739482i \(0.735070\pi\)
\(644\) 0 0
\(645\) −18.1414 −0.714316
\(646\) 0 0
\(647\) −8.12978 5.22469i −0.319614 0.205404i 0.370989 0.928637i \(-0.379019\pi\)
−0.690604 + 0.723233i \(0.742655\pi\)
\(648\) 0 0
\(649\) −0.248077 + 0.543213i −0.00973788 + 0.0213230i
\(650\) 0 0
\(651\) 7.90717 + 2.32176i 0.309907 + 0.0909968i
\(652\) 0 0
\(653\) 2.47632 + 5.42237i 0.0969057 + 0.212194i 0.951876 0.306483i \(-0.0991522\pi\)
−0.854971 + 0.518677i \(0.826425\pi\)
\(654\) 0 0
\(655\) −27.5549 + 31.8000i −1.07666 + 1.24253i
\(656\) 0 0
\(657\) 13.1373 3.85745i 0.512534 0.150493i
\(658\) 0 0
\(659\) 31.7171 20.3833i 1.23552 0.794021i 0.250780 0.968044i \(-0.419313\pi\)
0.984742 + 0.174023i \(0.0556766\pi\)
\(660\) 0 0
\(661\) 4.57689 + 31.8330i 0.178020 + 1.23816i 0.861336 + 0.508036i \(0.169628\pi\)
−0.683316 + 0.730123i \(0.739463\pi\)
\(662\) 0 0
\(663\) −0.215577 + 1.49937i −0.00837233 + 0.0582308i
\(664\) 0 0
\(665\) −1.05967 1.22293i −0.0410924 0.0474232i
\(666\) 0 0
\(667\) −0.407692 0.417310i −0.0157859 0.0161583i
\(668\) 0 0
\(669\) 0.920617 + 1.06245i 0.0355931 + 0.0410766i
\(670\) 0 0
\(671\) 0.657073 4.57004i 0.0253660 0.176424i
\(672\) 0 0
\(673\) 4.44939 + 30.9462i 0.171511 + 1.19289i 0.875693 + 0.482868i \(0.160405\pi\)
−0.704181 + 0.710020i \(0.748686\pi\)
\(674\) 0 0
\(675\) 2.98671 1.91944i 0.114958 0.0738793i
\(676\) 0 0
\(677\) −5.24755 + 1.54082i −0.201680 + 0.0592185i −0.381012 0.924570i \(-0.624424\pi\)
0.179332 + 0.983789i \(0.442606\pi\)
\(678\) 0 0
\(679\) −10.2420 + 11.8199i −0.393051 + 0.453605i
\(680\) 0 0
\(681\) −1.84442 4.03871i −0.0706782 0.154764i
\(682\) 0 0
\(683\) 31.9778 + 9.38953i 1.22360 + 0.359280i 0.828830 0.559501i \(-0.189007\pi\)
0.394767 + 0.918781i \(0.370825\pi\)
\(684\) 0 0
\(685\) −2.28579 + 5.00518i −0.0873356 + 0.191238i
\(686\) 0 0
\(687\) −1.40929 0.905699i −0.0537679 0.0345546i
\(688\) 0 0
\(689\) −3.73064 −0.142126
\(690\) 0 0
\(691\) 23.4533 0.892206 0.446103 0.894982i \(-0.352811\pi\)
0.446103 + 0.894982i \(0.352811\pi\)
\(692\) 0 0
\(693\) −2.12196 1.36370i −0.0806067 0.0518028i
\(694\) 0 0
\(695\) −4.20644 + 9.21083i −0.159560 + 0.349387i
\(696\) 0 0
\(697\) −4.19052 1.23045i −0.158727 0.0466066i
\(698\) 0 0
\(699\) −9.03851 19.7916i −0.341868 0.748586i
\(700\) 0 0
\(701\) −9.67059 + 11.1605i −0.365253 + 0.421525i −0.908393 0.418118i \(-0.862690\pi\)
0.543140 + 0.839642i \(0.317235\pi\)
\(702\) 0 0
\(703\) 5.05724 1.48494i 0.190737 0.0560056i
\(704\) 0 0
\(705\) −21.3970 + 13.7510i −0.805857 + 0.517893i
\(706\) 0 0
\(707\) −0.463184 3.22152i −0.0174198 0.121158i
\(708\) 0 0
\(709\) −1.84594 + 12.8388i −0.0693258 + 0.482172i 0.925350 + 0.379115i \(0.123771\pi\)
−0.994675 + 0.103057i \(0.967138\pi\)
\(710\) 0 0
\(711\) 11.1915 + 12.9157i 0.419715 + 0.484376i
\(712\) 0 0
\(713\) 14.2317 36.8391i 0.532980 1.37963i
\(714\) 0 0
\(715\) −2.33030 2.68931i −0.0871482 0.100574i
\(716\) 0 0
\(717\) 2.98937 20.7916i 0.111640 0.776475i
\(718\) 0 0
\(719\) 2.59209 + 18.0284i 0.0966687 + 0.672345i 0.979320 + 0.202317i \(0.0648472\pi\)
−0.882651 + 0.470028i \(0.844244\pi\)
\(720\) 0 0
\(721\) 1.18018 0.758455i 0.0439522 0.0282463i
\(722\) 0 0
\(723\) 25.2690 7.41964i 0.939763 0.275939i
\(724\) 0 0
\(725\) −0.282827 + 0.326399i −0.0105039 + 0.0121222i
\(726\) 0 0
\(727\) 3.56341 + 7.80279i 0.132160 + 0.289389i 0.964130 0.265431i \(-0.0855143\pi\)
−0.831970 + 0.554820i \(0.812787\pi\)
\(728\) 0 0
\(729\) −0.959493 0.281733i −0.0355368 0.0104345i
\(730\) 0 0
\(731\) −8.08583 + 17.7055i −0.299065 + 0.654861i
\(732\) 0 0
\(733\) −2.64399 1.69919i −0.0976579 0.0627609i 0.490900 0.871216i \(-0.336668\pi\)
−0.588558 + 0.808455i \(0.700304\pi\)
\(734\) 0 0
\(735\) 17.5401 0.646977
\(736\) 0 0
\(737\) −7.05093 −0.259724
\(738\) 0 0
\(739\) 18.9339 + 12.1681i 0.696494 + 0.447610i 0.840389 0.541983i \(-0.182326\pi\)
−0.143895 + 0.989593i \(0.545963\pi\)
\(740\) 0 0
\(741\) −0.110911 + 0.242862i −0.00407443 + 0.00892176i
\(742\) 0 0
\(743\) −4.72970 1.38877i −0.173516 0.0509489i 0.193821 0.981037i \(-0.437912\pi\)
−0.367336 + 0.930088i \(0.619730\pi\)
\(744\) 0 0
\(745\) 26.2019 + 57.3741i 0.959962 + 2.10202i
\(746\) 0 0
\(747\) 5.28068 6.09423i 0.193210 0.222976i
\(748\) 0 0
\(749\) −9.64470 + 2.83194i −0.352410 + 0.103477i
\(750\) 0 0
\(751\) 0.881369 0.566421i 0.0321616 0.0206690i −0.524461 0.851434i \(-0.675733\pi\)
0.556623 + 0.830765i \(0.312097\pi\)
\(752\) 0 0
\(753\) −3.70778 25.7882i −0.135119 0.939773i
\(754\) 0 0
\(755\) 1.36178 9.47135i 0.0495601 0.344698i
\(756\) 0 0
\(757\) 1.85765 + 2.14384i 0.0675173 + 0.0779192i 0.788503 0.615030i \(-0.210856\pi\)
−0.720986 + 0.692950i \(0.756311\pi\)
\(758\) 0 0
\(759\) −7.35625 + 9.59164i −0.267015 + 0.348155i
\(760\) 0 0
\(761\) 19.1081 + 22.0519i 0.692666 + 0.799380i 0.987742 0.156094i \(-0.0498904\pi\)
−0.295076 + 0.955474i \(0.595345\pi\)
\(762\) 0 0
\(763\) −0.962505 + 6.69437i −0.0348450 + 0.242352i
\(764\) 0 0
\(765\) −1.30558 9.08052i −0.0472034 0.328307i
\(766\) 0 0
\(767\) 0.0962364 0.0618474i 0.00347490 0.00223318i
\(768\) 0 0
\(769\) −19.4993 + 5.72551i −0.703163 + 0.206467i −0.613719 0.789525i \(-0.710327\pi\)
−0.0894441 + 0.995992i \(0.528509\pi\)
\(770\) 0 0
\(771\) −5.17274 + 5.96966i −0.186292 + 0.214992i
\(772\) 0 0
\(773\) −9.32220 20.4128i −0.335296 0.734196i 0.664620 0.747182i \(-0.268594\pi\)
−0.999916 + 0.0129858i \(0.995866\pi\)
\(774\) 0 0
\(775\) −28.0516 8.23670i −1.00764 0.295871i
\(776\) 0 0
\(777\) 3.96259 8.67685i 0.142157 0.311280i
\(778\) 0 0
\(779\) −0.647582 0.416175i −0.0232020 0.0149110i
\(780\) 0 0
\(781\) 28.9319 1.03526
\(782\) 0 0
\(783\) 0.121648 0.00434735
\(784\) 0 0
\(785\) −56.0765 36.0382i −2.00145 1.28626i
\(786\) 0 0
\(787\) −5.82947 + 12.7648i −0.207798 + 0.455015i −0.984621 0.174705i \(-0.944103\pi\)
0.776823 + 0.629720i \(0.216830\pi\)
\(788\) 0 0
\(789\) 11.8421 + 3.47716i 0.421591 + 0.123790i
\(790\) 0 0
\(791\) 4.16737 + 9.12526i 0.148175 + 0.324457i
\(792\) 0 0
\(793\) −0.579189 + 0.668420i −0.0205676 + 0.0237363i
\(794\)