Properties

Label 276.2.e
Level $276$
Weight $2$
Character orbit 276.e
Rep. character $\chi_{276}(91,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 276 = 2^{2} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 276.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 92 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(276, [\chi])\).

Total New Old
Modular forms 52 24 28
Cusp forms 44 24 20
Eisenstein series 8 0 8

Trace form

\( 24q + 4q^{2} + 4q^{6} + 4q^{8} - 24q^{9} + O(q^{10}) \) \( 24q + 4q^{2} + 4q^{6} + 4q^{8} - 24q^{9} + 8q^{16} - 4q^{18} - 4q^{24} - 24q^{25} + 40q^{26} - 32q^{29} - 36q^{32} + 16q^{41} - 32q^{48} + 40q^{49} - 12q^{50} - 40q^{52} - 4q^{54} + 24q^{58} - 40q^{62} + 48q^{64} + 16q^{69} + 72q^{70} - 4q^{72} + 16q^{77} + 24q^{81} - 40q^{82} - 64q^{85} + 44q^{92} + 16q^{93} + 72q^{94} + 44q^{96} - 52q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(276, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
276.2.e.a \(24\) \(2.204\) None \(4\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(276, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(276, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 2}\)